New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections
Abstract
:1. Introduction
2. Results
2.1. β-Lactam Antibiotics
2.2. Tetracyclines
2.3. Glycopeptides and Related Compounds
2.4. Oxazolidinones
2.5. Aminoglycosides
2.6. β-Lactam Antibiotic/β-Lactamase Inhibitor Combinations
3. Methods
4. Discussion
5. Conclusions
Drug | Molecular Mass | Hydrophilicity XLOGP3-AA | Vd [l] | t1/2 [h] | Protein Binding [%] | Renal CL [%] |
---|---|---|---|---|---|---|
Cefiderocol | 752.2 | 1 | 13.5/26.6 | 2–3 | 40–60 | 90–98 |
Aztreonam–avibactam | 435.4/265.3 | 0.3/−1.8 | 11.2 */22.2 | 1.7–2 */1.5–2 § | 56 */6–8 § | >90 */>90 § |
Ceftazidime–avibactam | 546.6/265.3 | −0.21/−1.8 | 17.0/22.2 | 1.5–2.7/1.5–2 § | 7–10/6–8 § | 72–87/>90 § |
Ceftolozane–tazobactam | 666.7/300.3 | −3.2/−2 | 13.5/18.2 | 3.1/2.3 § | 16–30/30 § | 62–84/80 § |
Imipenem–relebactam | 299.4/348.4 | −0.7/−3.6 | 19.0/24.3 | 1.2/1.2 § | 20–22/22 § | 52–92/>90 § |
Meropenem–vaborbactam | 383.5/297.1 | −2.4/nd | 18.6/20.2 | 2.3/1.6 § | 2–33/33 § | 74/75–95 § |
Eravacycline | 558.6 | 0.24 # | 321 | 24 | 80–90 | 34 |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B.J.; Vu, B.N.; Seddon, A.N.; Hodgson, H.A.; Wang, S.K. Treatment Considerations for CNS Infections Caused by Vancomycin-Resistant Enterococcus faecium: A Focused Review of Linezolid and Daptomycin. Ann. Pharmacother. 2020, 54, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Çay, Ü.; Alabaz, D.; Özgür Gündeşlioğlu, Ö.; Kibar, F.; Çetin, C.; Oktay, K. Experience with enterococcal meningitis/ventriculitis in children. Pediatr. Int. 2022, 65, e15398. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sun, T.; Cui, Y.; Wang, C.; Wang, F.; Zhou, Y.; Miao, H.; Shan, Y.; Zhang, Y. Multidrug resistant and extensively drug resistant Acinetobacter baumannii hospital infection associated with high mortality: A retrospective study in the pediatric intensive care unit. BMC Infect. Dis. 2020, 20, 597. [Google Scholar] [CrossRef] [PubMed]
- Fursova, N.K.; Fursov, M.V.; Astashkin, E.I.; Fursova, A.D.; Novikova, T.S.; Kislichkina, A.A.; Sizova, A.A.; Fedyukina, G.N.; Savin, I.A.; Ershova, O.N. Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Causing Nosocomial Meningitis in the Neurological Intensive Care Unit. Microorganisms 2023, 11, 2020. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Blei, C.; Eiffert, H. Intrathecal Antibacterial and Antifungal Therapies. Clin. Microbiol. Rev. 2020, 33, e00190-19. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.E.; van Vliet, P.; Koch, B.C.P. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics 2023, 12, 1291. [Google Scholar] [CrossRef]
- Haddad, N.; Carr, M.; Balian, S.; Lannin, J.; Kim, Y.; Toth, C.; Jarvis, J. The Blood-Brain Barrier and Pharmacokinetic/Pharmacodynamic Optimization of Antibiotics for the Treatment of Central Nervous System Infections in Adults. Antibiotics 2022, 11, 1843. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Almyroudi, M.P.; Abdul-Aziz, M.H.; Blot, S.; Paramythiotou, E.; Tsigou, E.; Koulenti, D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics 2023, 12, 76. [Google Scholar] [CrossRef]
- Katsube, T.; Echols, R.; Wajima, T. Pharmacokinetic and pharmacodynamic profiles of Cefiderocol, a novel siderophore cephalosporin. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S552–S558. [Google Scholar] [CrossRef]
- European Medicines Agency EMA (2021): ANNEX I. SUMMARY OF PRODUCT CHARACTERISTICS CEFIDEROCOL. Available online: https://www.ema.europa.eu/en/documents/product-information/fetcroja-epar-product-information_en.pdf (accessed on 25 December 2023).
- Stevenson, D.R.; Cherian, B.P.; Kinzig, M.; Sörgel, F.; Wareham, D.W. Intravenous cefiderocol for neurosurgical meningitis from an extensively drug-resistant New-Delhi metallo-β-lactamase-producing Pseudomonas aeruginosa strain. J. Glob. Antimicrob. Resist. 2023, 32, 29–30. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Volpi, S.; Faltoni, M.; Dolci, G.; Orlando, G.; Franceschini, E.; Menozzi, M.; Sarti, M.; Del Fabro, G.; Fumarola, B.; et al. Real-life experience with compassionate use of cefiderocol for difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections. JAC Antimicrob. Resist. 2021, 3, dlab188. [Google Scholar] [CrossRef] [PubMed]
- Kufel, W.D.; Abouelhassan, Y.; Steele, J.M.; Gutierrez, R.L.; Perwez, T.; Bourdages, G.; Nicolau, D.P. Plasma and cerebrospinal fluid concentrations of cefiderocol during successful treatment of carbapenem-resistant Acinetobacter baumannii meningitis. J. Antimicrob. Chemother. 2022, 77, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, C.; de Gea Grela, A.; Palazuelos, M.M.; Veganzones, J.; Grandioso, D.; Díaz-Pollán, B. Using Cefiderocol: A Case Report and Literature Review. Open Forum Infect. Dis. 2022, 9, ofac391. [Google Scholar] [CrossRef] [PubMed]
- Luque-Paz, D.; Bennis, Y.; Jaubert, P.; Dubée, V.; Wolff, M.; Mortaza, S. Cerebrospinal fluid concentrations of cefiderocol during the treatment of extensively drug-resistant Pseudomonas aeruginosa ventriculitis. J. Antimicrob. Chemother. 2022, 77, 1787–1789. [Google Scholar] [CrossRef] [PubMed]
- Colombo, F.; Waheed, A.; Panese, S.; Scarparo, C.; Solinas, M.; Parisi, S.G.; Geremia, N. Treatment with cefiderocol in K. pneumoniae KPC nosocomial external ventricular drainage meningitis: A brief report. Infez. Med. 2022, 30, 454–458. [Google Scholar] [PubMed]
- Lepak, A.J.; Reda, A.; Marchillo, K.; Van Hecker, J.; Craig, W.A.; Andes, D. Impact of MIC range for Pseudomonas aeruginosa and Streptococcus pneumoniae on the ceftolozane in vivo pharmacokinetic/pharmacodynamic target. Antimicrob. Agents Chemother. 2014, 58, 6311–6314. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagacé-Wiens, P.R.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/tazobactam: A novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Hawser, S.; Kothari, N.; Monti, F.; Morrissey, I.; Siegert, S.; Hodges, T. In vitro activity of eravacycline and comparators against Gram-negative and Gram-positive bacterial isolates collected from patients globally between 2017 and 2020. J. Glob. Antimicrob. Resist. 2023, 33, 304–320. [Google Scholar] [CrossRef]
- Petraitis, V.; Petraitiene, R.; Maung, B.B.W.; Khan, F.; Alisauskaite, I.; Olesky, M.; Newman, J.; Mutlib, A.; Niu, X.; Satlin, M.; et al. Pharmacokinetics and Comprehensive Analysis of the Tissue Distribution of Eravacycline in Rabbits. Antimicrob. Agents Chemother. 2018, 62, e00275-18. [Google Scholar] [CrossRef]
- Newman, J.V.; Zhou, J.; Izmailyan, S.; Tsai, L. Randomized, Double-Blind, Placebo-Controlled Studies of the Safety and Pharmacokinetics of Single and Multiple Ascending Doses of Eravacycline. Antimicrob. Agents Chemother. 2018, 62, e01174-18. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Buta, E.L. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Pharmaceutics 2021, 13, 2085. [Google Scholar] [CrossRef]
- Wenzler, E.; Adeel, A.; Wu, T.; Jurkovic, M.; Walder, J.; Ramasra, E.; Campion, M.; Cerny, J.; Theodoropoulos, N.M. Inadequate Cerebrospinal Fluid Concentrations of Available Salvage Agents Further Impedes the Optimal Treatment of Multidrug-Resistant Enterococcus faecium Meningitis and Bacteremia. Infect. Dis. Rep. 2021, 13, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Molina, K.C.; Miller, M.A.; Mueller, S.W.; Van Matre, E.T.; Krsak, M.; Kiser, T.H. Clinical Pharmacokinetics and Pharmacodynamics of Dalbavancin. Clin. Pharmacokinet. 2022, 61, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Sarkar, C.; Das, D.; Gupta, A.; Kalra, A.; Sahni, S. Telavancin: A novel semisynthetic lipoglycopeptide agent to counter the challenge of resistant Gram-positive pathogens. Ther. Adv. Infect. Dis. 2017, 4, 49–73. [Google Scholar] [CrossRef] [PubMed]
- Stucki, A.; Gerber, P.; Acosta, F.; Cottagnoud, M.; Cottagnoud, P. Efficacy of telavancin against penicillin-resistant pneumococci and Staphylococcus aureus in a rabbit meningitis model and determination of kinetic parameters. Antimicrob. Agents Chemother. 2006, 50, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.; Smirnov, A.; Wellmer, A.; Ragheb, J.; Prange, J.; Schütz, E.; Wettich, K.; Kalich, S.; Nau, R. Activity of LY333328 in Experimental Meningitis Caused by a Streptococcus pneumoniae Strain Susceptible to Penicillin. Antimicrob. Agents Chemother. 2001, 45, 2169–2172. [Google Scholar] [CrossRef]
- Cabellos, C.; Fernàndez, A.; Maiques, J.M.; Tubau, F.; Ardanuy, C.; Viladrich, P.F.; Liñares, J.; Gudiol, F. Experimental study of LY333328 (oritavancin), alone and in combination, in therapy of cephalosporin-resistant pneumococcal meningitis. Antimicrob. Agents Chemother. 2003, 47, 1907–1911. [Google Scholar] [CrossRef]
- Gu, L.; Ma, M.; Zhang, Y.; Zhang, L.; Zhang, S.; Huang, M.; Zhang, M.; Xin, Y.; Zheng, G.; Chen, S. Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid. Regul. Toxicol. Pharmacol. 2019, 107, 104420. [Google Scholar] [CrossRef]
- Beer, R.; Engelhardt, K.W.; Pfausler, B.; Broessner, G.; Helbok, R.; Lackner, P.; Brenneis, C.; Kaehler, S.T.; Georgopoulos, A.; Schmutzhard, E. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Antimicrob. Agents Chemother. 2007, 51, 379–382. [Google Scholar] [CrossRef]
- Duma, R.J.; Berry, A.J.; Smith, S.M.; Baggett, J.W.; Swabb, E.A.; Platt, T.B. Penetration of aztreonam into cerebrospinal fluid of patients with and without inflamed meninges. Antimicrob. Agents Chemother. 1984, 26, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Prange, H.W.; Kinzig, M.; Frank, A.; Dressel, A.; Scholz, P.; Kolenda, H.; Sörgel, F. Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob. Agents Chemother. 1996, 40, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Kinzig-Schippers, M.; Sörgel, F.; Schinschke, S.; Rössing, R.; Müller, C.; Kolenda, H.; Prange, H.W. Kinetics of piperacillin and tazobactam in ventricular cerebrospinal fluid of hydrocephalic patients. Antimicrob. Agents Chemother. 1997, 41, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Lassek, C.; Kinzig-Schippers, M.; Thiel, A.; Prange, H.W.; Sörgel, F. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob. Agents Chemother. 1998, 42, 2012–2016. [Google Scholar] [CrossRef] [PubMed]
- Gorham, J.; Taccone, F.S.; Hites, M. Drug Regimens of Novel Antibiotics in Critically Ill Patients with Varying Renal Functions: A Rapid Review. Antibiotics 2022, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- EUCAST 2021. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 25 October 2023).
- Nordmann, P.; Bouvier, M.; Poirel, L. Efficacy of ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam combinations against carbapenemase-producing Enterobacterales in Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Cerebrospinal Fluid Penetration of Ceftolozane-Tazobactam in Critically Ill Patients with an Indwelling External Ventricular Drain. Antimicrob. Agents Chemother. 2020, 65, e01698-20. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Dinh, A.; Wyplosz, B.; Kernéis, S.; Lebeaux, D.; Bouchand, F.; Duran, C.; Béraud, G.; Lazaro, P.; Davido, B.; Hénard, S.; et al. Use of ceftolozane/tazobactam as salvage therapy for infections due to extensively drug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents. 2017, 49, 782–783. [Google Scholar] [CrossRef]
- Meschiari, M.; Franconi, I.; Bacca, E.; Bianco, V.; Orlando, G.; Cuomo, G.; Bedini, A.; Mussini, C. Ceftazidime/avibactam and ceftolozane/tazobactam for the treatment of extensively drug-resistant Pseudomonas aeruginosa post-neurosurgical infections: Three cases and a review of the literature. Infection 2021, 49, 549–553. [Google Scholar] [CrossRef]
- Winans, S.A.; Guerrero-Wooley, R.L.; Park, S.H.; Hino, G., Jr.; Forland, S.C. Continuous infusion of ceftolozane-tazobactam resulted in high cerebrospinal fluid concentrations of ceftolozane in a patient with multidrug-resistant Pseudomonas aeruginosa meningitis. Infection 2021, 49, 355–359. [Google Scholar] [CrossRef] [PubMed]
- McCreary, E.K.; Byers, K.E.; Fernandes, C.; Kline, E.G.; Nicolau, D.P.; Shields, R.K. Plasma and Cerebrospinal Fluid Therapeutic Drug Monitoring of Ceftolozane and Tazobactam During Treatment of Multidrug-Resistant Pseudomonas aeruginosa Meningitis. Open Forum Infect. Dis. 2020, 7, ofaa549. [Google Scholar] [CrossRef] [PubMed]
- Karvouniaris, M.; Brotis, A.; Tsiakos, K.; Palli, E.; Koulenti, D. Current Perspectives on the Diagnosis and Management of Healthcare-Associated Ventriculitis and Meningitis. Infect. Drug Resist. 2022, 15, 697–721. [Google Scholar] [CrossRef] [PubMed]
- Mattie, H. Clinical pharmacokinetics of aztreonam. An update. Clin. Pharmacokinet. 1994, 26, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, M.; Hanrahan, J.; Marshall, S.; Lodise, T.P.; Chen, L.; Perez, F.; Kreiswirth, B.; Bonomo, R.A. Using Therapeutic Drug Monitoring to Treat KPC-Producing Klebsiella pneumoniae Central Nervous System Infection with Ceftazidime/Avibactam. Open Forum Infect. Dis. 2020, 7, faa349. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, Q.; Liu, L.; Xiao, Y.; Ji, P.; Du, H.; Wang, S.; Zheng, Y.; Yang, Q. Ceftazidime-Avibactam Treatment for Severe Post-Neurosurgical Meningitis and Abscess Caused by Extended-Spectrum β-Lactamase Escherichia coli in a Pediatric Patient: A Case Report. Infect. Drug Resist. 2023, 16, 1905–1911. [Google Scholar] [CrossRef]
- Klugman, K.P.; Dagan, R. Carbapenem treatment of meningitis. Scand. J. Infect. Dis. Suppl. 1995, 96, 45–48. [Google Scholar]
- Hilbert, D.W.; DeRyke, C.A.; Motyl, M.; Hackel, M.; Young, K. Relebactam restores susceptibility of resistant Pseudomonas aeruginosa and Enterobacterales and enhances imipenem activity against chromosomal AmpC-producing species: Analysis of global SMART 2018-2020. BMC Microbiol. 2023, 23, 165. [Google Scholar] [CrossRef]
- Mouton, J.W.; Touzw, D.J.; Horrevorts, A.M.; Vinks, A.A. Comparative pharmacokinetics of the carbapenems: Clinical implications. Clin. Pharmacokinet. 2000, 39, 185–201. [Google Scholar] [CrossRef]
- Overton, E. Studien über die Aufnahme der Anilinfarben durch die lebende Zelle. Jahrb. Wiss. Bot. 1900, 34, 669–701. [Google Scholar]
- Felgenhauer, K. Protein size and cerebrospinal fluid composition. Klin. Wochenschr. 1974, 52, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Djukic, M.; Lange, P.; Erbguth, F.; Nau, R. Spatial and temporal variation of routine parameters: Pitfalls in the cerebrospinal fluid analysis in central nervous system infections. J. Neuroinflamm. 2022, 19, 174. [Google Scholar] [CrossRef] [PubMed]
- Spector, R.; Keep, R.F.; Snodgrass, S.R.; Smith, Q.R.; Johanson, C.E. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp. Neurol. 2015, 267, 78–86. [Google Scholar] [CrossRef]
- Vishwanathan, K.; Mair, S.; Gupta, A.; Atherton, J.; Clarkson-Jones, J.; Edeki, T.; Das, S. Assessment of the mass balance recovery and metabolite profile of avibactam in humans and in vitro drug-drug interaction potential. Drug Metab. Dispos. 2014, 42, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Wang, C.; Duan, Y.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; et al. OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int. J. Pharm. 2018, 537, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, Y.; Li, L.; Ding, Y.; Qian, J.; Jiao, Z. Interactions Between Meropenem and Renal Drug Transporters. Curr. Drug Metab. 2022, 23, 423–431. [Google Scholar] [CrossRef]
- Chan, G.; Houle, R.; Lin, M.; Yabut, J.; Cox, K.; Wu, J.; Chu, X. Role of transporters in the disposition of a novel β-lactamase inhibitor: Relebactam (MK-7655). J. Antimicrob. Chemother. 2019, 74, 1894–1903. [Google Scholar] [CrossRef]
- Dacey, R.G.; Sande, M.A. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob. Agents Chemother. 1974, 6, 437–441. [Google Scholar] [CrossRef]
- Viladrich, P.F.; Cabellos, C.; Pallares, R.; Tubau, F.; Martínez-Lacasa, J.; Liñares, J.; Gudiol, F. High doses of cefotaxime in treatment of adult meningitis due to Streptococcus pneumoniae with decreased susceptibilities to broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 1996, 40, 218–220. [Google Scholar] [CrossRef]
- Cabellos, C.; Guillem, L.; Pelegrin, I.; Tubau, F.; Ardanuy, C.; Gudiol, F.; Ariza, J.; Viladrich, P.F. Penicillin- and Cephalosporin-Resistant Pneumococcal Meningitis: Treatment in the Real World and in Guidelines. Antimicrob. Agents Chemother. 2022, 66, e0082022. [Google Scholar] [CrossRef]
- Kerz, T.; von Loewenich, F.D.; Roberts, J.; Neulen, A.; Ringel, F. Cerebrospinal fluid penetration of very high-dose meropenem: A case report. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- De Sarro, A.; Ammendola, D.; Zappala, M.; Grasso, S.; De Sarro, G.B. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rats. Antimicrob. Agents Chemother. 1995, 39, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, P.; Liu, Y.; Zhang, L. Treatment of Ventriculitis and Meningitis After Neurosurgery Caused by Carbapenem-Resistant Enterobacteriaceae (CRE): A Challenging Topic. Infect. Drug Resist. 2023, 16, 3807–3818. [Google Scholar] [CrossRef] [PubMed]
- Tunkel, A.R.; Hasbun, R.; Bhimraj, A.; Byers, K.; Kaplan, S.L.; Scheld, W.M.; van de Beek, D.; Bleck, T.P.; Garton, H.J.; Zunt, J.R. Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin. Infect. Dis. 2017, 64, e34–e65. [Google Scholar] [CrossRef]
- Barbier, F.; Hraiech, S.; Kernéis, S.; Veluppillai, N.; Pajot, O.; Poissy, J.; Roux, D.; Zahar, J.R. French Intensive Care Society. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann. Intensive Care. 2023, 13, 65. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Wardecki, D.; Dołowy, M.; Bober-Majnusz, K. Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds. Molecules 2023, 28, 2820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nau, R.; Seele, J.; Eiffert, H. New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections. Antibiotics 2024, 13, 58. https://doi.org/10.3390/antibiotics13010058
Nau R, Seele J, Eiffert H. New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections. Antibiotics. 2024; 13(1):58. https://doi.org/10.3390/antibiotics13010058
Chicago/Turabian StyleNau, Roland, Jana Seele, and Helmut Eiffert. 2024. "New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections" Antibiotics 13, no. 1: 58. https://doi.org/10.3390/antibiotics13010058
APA StyleNau, R., Seele, J., & Eiffert, H. (2024). New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections. Antibiotics, 13(1), 58. https://doi.org/10.3390/antibiotics13010058