Determining Susceptibility and Potential Mediators of Resistance for the Novel Polymyxin Derivative, SPR206, in Acinetobacter baumannii
Abstract
:1. Introduction
2. Results
2.1. Susceptibility Testing
2.2. Genomic Sequencing Analysis
2.3. Time-Kill Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobials
4.3. Susceptibility Testing
4.4. Genomic Sequencing Analyses
4.5. Time-Kill Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qureshi, Z.A.; Hittle, L.E.; O’Hara, J.A.; Rivera, J.I.; Syed, A.; Shields, R.K.; Pasculle, A.W.; Ernst, R.K.; Doi, Y. Colistin-resistant Acinetobacter baumannii: Beyond carbapenem resistance. Clin. Infect. Dis. 2015, 60, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Heil, E.L.; Claeys, K.C.; Kline, E.G.; Rogers, T.M.; Squires, K.M.; Iovleva, A.; Doi, Y.; Banoub, M.; Noval, M.M.; Luethy, P.M.; et al. Early initiation of three-drug combinations for the treatment of carbapenem-resistant A. baumannii among COVID-19 patients. J. Antimicrob. Chemother. 2023, 78, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Reddy, T.; Chopra, T.; Marchaim, D.; Pogue, J.M.; Alangaden, G.; Salimnia, H.; Boikov, D.; Navon-Venezia, S.; Akins, R.; Selman, P.; et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob. Agents Chemother. 2010, 54, 2235–2238. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.A.; Hamouda, A.; Amyes, S.G. The rise of carbapenem-resistant Acinetobacter baumannii. Curr. Pharm. Des. 2013, 19, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Nickel, G.C.; Bajaksouzian, S.; Lavender, H.; Murthy, A.R.; Jacobs, M.R.; Bonomo, R.A. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother. 2009, 53, 3628–3634. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, J.H.; Harper, M.; Harrison, P.; Hale, J.D.; Vinogradov, E.; Seemann, T.; Henry, R.; Crane, B.; St Michael, F.; Cox, A.D.; et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 2010, 54, 4971–4977. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, J.H.; Harper, M.; Boyce, J.D. Mechanisms of Polymyxin Resistance. Adv. Exp. Med. Biol. 2019, 1145, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, L.A.; Herrera, C.M.; Fernandez, L.; Hankins, J.V.; Trent, M.S.; Hancock, R.E. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob. Agents Chemother. 2011, 55, 3743–3751. [Google Scholar] [CrossRef]
- Beceiro, A.; Llobet, E.; Aranda, J.; Bengoechea, J.A.; Doumith, M.; Hornsey, M.; Dhanji, H.; Chart, H.; Bou, G.; Livermore, D.M.; et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother. 2011, 55, 3370–3379. [Google Scholar] [CrossRef]
- Novović, K.; Jovčić, B. Colistin Resistance in Acinetobacter baumannii: Molecular Mechanisms and Epidemiology. Antibiotics 2023, 12, 516. [Google Scholar] [CrossRef]
- Abdul-Mutakabbir, J.C.; Yim, J.; Nguyen, L.; Maassen, P.T.; Stamper, K.; Shiekh, Z.; Kebriaei, R.; Shields, R.K.; Castanheira, M.; Kaye, K.S.; et al. In Vitro Synergy of Colistin in Combination with Meropenem or Tigecycline against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics 2021, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Abbott, E.; Abdulle, O.; Boakes, S.; Coleman, S.; Divall, N.; Duperchy, E.; Moss, S.; Rivers, D.; Simonovic, M.; et al. Design of Next Generation Polymyxins with Lower Toxicity: The Discovery of SPR206. ACS Infect. Dis. 2019, 5, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Boakes, S.; Duperchy, E.; Abdulle, O.; Rivers, D.; Simonovic, M.; Singh, J.; Coleman, S.; Dawson, M.J. Optimisation of Next-Generation Polymyxins Leading to SPR206 as a Development Candidate. In Proceedings of the ASM Microbe, San Francisco, CA, USA.
- Arends, S.J.R.; Rhomberg, P.; Lister, T.; Cotoreno, N.; Flamm, R.K.; Mendes, R.E. Activity of Investigiational Ploymyxib-B-Like Compound (SPR206) against Set of Gram-negative Bacilli Responsible for Human Infections. In Proceedings of the ASM Microbe, San Francisco, CA, USA, 20 June 2019. [Google Scholar]
- Grosser, L.; Heang, K.; Teague, J.; Warn, P.; Corbett, D.; Dawson, M.J.; Rubio, A. In Vivo Efficacy of SPR206 in Murine Lung and Thigh Infection Models Caused by Multidrug Resistant Pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. ASM Microbe, 2019; in press. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; M100-S33; CLSI: Wayne, PA, USA, 2023. [Google Scholar]
- Deveson Lucas, D.; Crane, B.; Wright, A.; Han, M.L.; Moffatt, J.; Bulach, D.; Gladman, S.L.; Powell, D.; Aranda, J.; Seemann, T.; et al. Emergence of High-Level Colistin Resistance in an Acinetobacter baumannii Clinical Isolate Mediated by Inactivation of the Global Regulator H-NS. Antimicrob. Agents Chemother. 2018, 62, e02442-17. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M. Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 2019, 24, 249. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Qin, W.; Lin, J.; Fang, S.; Qiu, J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed. Res. Int. 2015, 2015, 679109. [Google Scholar] [CrossRef]
- Akhoundsadegh, N.; Belanger, C.R.; Hancock, R.E.W. Outer Membrane Interaction Kinetics of New Polymyxin B Analogs in Gram-Negative Bacilli. Antimicrob. Agents Chemother. 2019, 63, e00935-19. [Google Scholar] [CrossRef]
- Li, Z.; Velkov, T. Polymyxins: Mode of Action. Adv. Exp. Med. Biol. 2019, 1145, 37–54. [Google Scholar] [CrossRef]
- Mares, J.; Kumaran, S.; Gobbo, M.; Zerbe, O. Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J. Biol. Chem. 2009, 284, 11498–11506. [Google Scholar] [CrossRef]
- Aslan, A.T.; Akova, M.; Paterson, D.L. Next-Generation Polymyxin Class of Antibiotics: A Ray of Hope Illuminating a Dark Road. Antibiotics 2022, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, O.; Sarrou, S.; Papagiannitsis, C.C.; Georgiadou, S.; Mantzarlis, K.; Zakynthinos, E.; Dalekos, G.N.; Petinaki, E. Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: Mechanisms of resistance, molecular identification and epidemiological data. BMC Infect. Dis. 2015, 15, 559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Aurosree, B.; Gopalakrishnan, B.; Balada-Llasat, J.-M.; Pancholi, V.; Pancholi, P. The role of LpxA/C/D and pmrA/B gene systems in colistin-resistant clinical strains of Acinetobacter baumannii. Front. Lab. Med. 2017, 1, 86–91. [Google Scholar] [CrossRef]
- Adams-Haduch, J.M.; Paterson, D.L.; Sidjabat, H.E.; Pasculle, A.W.; Potoski, B.A.; Muto, C.A.; Harrison, L.H.; Doi, Y. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob. Agents Chemother. 2008, 52, 3837–3843. [Google Scholar] [CrossRef]
- Nutman, A.; Glick, R.; Temkin, E.; Hoshen, M.; Edgar, R.; Braun, T.; Carmeli, Y. A case-control study to identify predictors of 14-day mortality following carbapenem-resistant Acinetobacter baumannii bacteraemia. Clin. Microbiol. Infect. 2014, 20, O1028–O1034. [Google Scholar] [CrossRef]
- Brochado, A.R.; Telzerow, A.; Bobonis, J.; Banzhaf, M.; Mateus, A.; Selkrig, J.; Huth, E.; Bassler, S.; Zamarreno Beas, J.; Zietek, M.; et al. Species-specific activity of antibacterial drug combinations. Nature 2018, 559, 259–263. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Zhang, J.; Wang, Y.; Zhao, Y.; Fan, X.; Yu, L.; Wang, Y.; Zhang, X.; Li, C. Efficacy of tigecycline monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii sequence type 2 in Heilongjiang Province. Ann. Palliat. Med. 2019, 8, 651–659. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef]
- Batirel, A.; Balkan, I.I.; Karabay, O.; Agalar, C.; Akalin, S.; Alici, O.; Alp, E.; Altay, F.A.; Altin, N.; Arslan, F.; et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1311–1322. [Google Scholar] [CrossRef]
- Kaye, K.S.; Marchaim, D.; Thamlikitkul, V.; Carmeli, Y.; Chiu, C.H.; Daikos, G.; Dhar, S.; Durante-Mangoni, E.; Gikas, A.; Kotanidou, A.; et al. Colistin monotherapy versus combination therapy for carbapenem-resistant organisms. NEJM Evid. 2022, 27, 2. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Eigth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2018. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front. Microbiol. 2016, 7, 118. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Deatherage, D.E.; Barrick, J.E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 2014, 1151, 165–188. [Google Scholar] [CrossRef] [PubMed]
- Markou, N.; Markantonis, S.L.; Dimitrakis, E.; Panidis, D.; Boutzouka, E.; Karatzas, S.; Rafailidis, P.; Apostolakos, H.; Baltopoulos, G. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: A prospective, open-label, uncontrolled study. Clin. Ther. 2008, 30, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.W.; van den Anker, J.N. Meropenem clinical pharmacokinetics. Clin. Pharmacokinet. 1995, 28, 275–286. [Google Scholar] [CrossRef] [PubMed]
Isolate Number | Geographical Location | SPR-206 | COL | MEM | MIN | TIG | AMK | SUL |
---|---|---|---|---|---|---|---|---|
J105 | Loma Linda Medical Center, Loma Linda, CA | 1 | 1 | 16 | 0.5 | 0.5 | 64 | 64 |
J104 | Loma Linda Medical Center, Loma Linda, CA | 1 | 0.5 | 32 | 0.5 | 1 | 64 | 64 |
J109 | Loma Linda Medical Center, Loma Linda, CA | 0.25 | 0.5 | 8 | 2 | 1 | 8 | 32 |
J108 | Loma Linda Medical Center, Loma Linda, CA | 1 | 1 | 32 | 0.5 | 1 | 64 | 64 |
J110 | Loma Linda Medical Center, Loma Linda, CA | 0.5 | 1 | 8 | 1 | 1 | 32 | 32 |
J101 | Loma Linda Medical Center, Loma Linda, CA | 0.25 | 1 | 32 | 2 | 1 | 64 | 64 |
J103 | Loma Linda Medical Center, Loma Linda, CA | 1 | 1 | 32 | 1 | 1 | 64 | 64 |
J108 | Loma Linda Medical Center, Loma Linda, CA | 1 | 2 | 32 | 2 | 1 | 64 | 64 |
J106 | Loma Linda Medical Center, Loma Linda, CA | 1 | 0.5 | 4 | 4 | 2 | 64 | 64 |
J115 | Loma Linda Medical Center, Loma Linda, CA | 1 | 2 | 8 | 0.5 | 2 | 32 | 8 |
J112 | Loma Linda Medical Center, Loma Linda, CA | 0.25 | 2 | 8 | 0.5 | 2 | 16 | 16 |
J107 | Loma Linda Medical Center, Loma Linda, CA | 0.5 | 2 | 32 | 1 | 2 | 64 | 16 |
R11248 | Detroit Medical Center, Detroit MI | 0.25 | 4 | 16 | 0.5 | 2 | 256 | 2 |
J113 | Loma Linda Medical Center, Loma Linda, CA | 1 | 4 | 4 | 1 | 2 | 32 | 16 |
J102 | Loma Linda Medical Center, Loma Linda, CA | 1 | 4 | 32 | 1 | 2 | 32 | 64 |
R11252 | Detroit Medical Center, Detroit MI | 2 | 4 | 8 | 2 | 2 | 256 | 4 |
J111 | Loma Linda Medical Center, Loma Linda, CA | 1 | 4 | 2 | 2 | 2 | 32 | 32 |
R9569 | Detroit Medical Center, Detroit MI | 2 | 8 | 32 | 16 | 2 | 16 | 16 |
J114 | Loma Linda Medical Center, Loma Linda, CA | 0.5 | 1 | 16 | 0.5 | 4 | 32 | 16 |
R9788 | Assaf Harofeh Medical Center, Israel | 2 | 16 | 16 | 1 | 4 | 256 | 4 |
R10074 | Siriraj Hospital, Bangkok, Thailand | 0.5 | 16 | 64 | 16 | 4 | 256 | 16 |
R8379 | Corewell Health Detroit, MI | 1 | 32 | 64 | 2 | 4 | 256 | 4 |
R10409 | Siriraj Hospital, Bangkok, Thailand | 1 | 4 | 16 | 0.25 | 8 | 256 | 2 |
R9656 | Siriraj Hospital, Bangkok, Thailand | 32 | 8 | 32 | 4 | 8 | >256 | 32 |
R10367 | Chaung Gung Medical Hospital, Taiwan | 0.5 | 16 | 16 | 4 | 8 | 256 | 16 |
R9645 | Siriraj Hospital, Bangkok, Thailand | 0.125 | 16 | 32 | 16 | 8 | 256 | 8 |
R10141 | Corewell Health Royal Oak, MI | 32 | 32 | 64 | 4 | 8 | >256 | 32 |
R8410 | Corewell Health Royal Oak, MI | 16 | 256 | 64 | 4 | 8 | 64 | 32 |
R8402 | Corewell Health Royal Oak, MI | 8 | 256 | 64 | 32 | 8 | 64 | 64 |
R8407 | Corewell Health Royal Oak, MI | 4 | 256 | 64 | 0.125 | 16 | 64 | 64 |
MIC50 | 1 | 4 | 32 | 1 | 2 | 64 | 16 | |
MIC90 | 8 | 32 | 64 | 4 | 8 | 256 | 64 |
Isolate | Geographical Location | Sequence Type (Oxford/Pasteur) | pmrA Amino Acid Variations | pmrB Amino Acid Variations |
---|---|---|---|---|
R10074 | Siriraj Hospital, Bangkok, Thailand | ST195 (O) ST2 (P) | WT | A138T |
R10141 | DMC, Detroit MI | Not assigned | WT | A138T |
R10363 | Chaung Gung Medical Hospital, Taiwan | ST129 (P) | S119T | A227V |
R10409 | Siriraj Hospital, Bangkok, Thailand | ST106 (O) ST3 (P) | S119T | P360Q |
R11248 | DMC, Detroit MI | ST281 (O) ST2 (P) | WT | L239V |
R11252 | DMC, Detroit MI | ST2 (P) | WT | A142T |
R8379 | Corewell Health, Royal Oak MI | ST2 (P) | WT | L239V |
R8402 | Corewell Health, Royal Oak MI | ST2 (P) | WT | D37G, Q43L |
R8407 | Corewell Health, Royal Oak MI | ST2 (P) | WT | D37G, Q43L |
R8410 | Corewell Health, Royal Oak MI | ST281 (O) ST2 (P) | WT | D37G, Q43L |
R9569 | DMC, Detroit MI | ST2 (P) | WT | WT |
R9645 | Siriraj Hospital, Bangkok, Thailand | ST2 (P) | WT | P233T |
R9656 | Siriraj Hospital, Bangkok, Thailand | ST195 (O) ST2 (P) | WT | A138T, R263L |
R9788 | Assaf Harofeh Medical Center, Israel | ST106 (O) ST3 (P) | A14T, S119T | T187P, P360Q |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul-Mutakabbir, J.C.; Opoku, N.S.; Tan, K.K.; Jorth, P.; Nizet, V.; Fletcher, H.M.; Kaye, K.S.; Rybak, M.J. Determining Susceptibility and Potential Mediators of Resistance for the Novel Polymyxin Derivative, SPR206, in Acinetobacter baumannii. Antibiotics 2024, 13, 47. https://doi.org/10.3390/antibiotics13010047
Abdul-Mutakabbir JC, Opoku NS, Tan KK, Jorth P, Nizet V, Fletcher HM, Kaye KS, Rybak MJ. Determining Susceptibility and Potential Mediators of Resistance for the Novel Polymyxin Derivative, SPR206, in Acinetobacter baumannii. Antibiotics. 2024; 13(1):47. https://doi.org/10.3390/antibiotics13010047
Chicago/Turabian StyleAbdul-Mutakabbir, Jacinda C., Nana Sakyi Opoku, Karen K. Tan, Peter Jorth, Victor Nizet, Hansel M. Fletcher, Keith S. Kaye, and Michael J. Rybak. 2024. "Determining Susceptibility and Potential Mediators of Resistance for the Novel Polymyxin Derivative, SPR206, in Acinetobacter baumannii" Antibiotics 13, no. 1: 47. https://doi.org/10.3390/antibiotics13010047
APA StyleAbdul-Mutakabbir, J. C., Opoku, N. S., Tan, K. K., Jorth, P., Nizet, V., Fletcher, H. M., Kaye, K. S., & Rybak, M. J. (2024). Determining Susceptibility and Potential Mediators of Resistance for the Novel Polymyxin Derivative, SPR206, in Acinetobacter baumannii. Antibiotics, 13(1), 47. https://doi.org/10.3390/antibiotics13010047