Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firsova, V.G.; Parshikov, V.V.; Kukosh, M.V.; Mukhin, A.S. Antibacterial and Antifungal Therapy for Patients with Acute Pancreatitis at High Risk of Pancreatogenic Sepsis (Review). Sovrem Tekhnologii Med. 2020, 12, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Rasslan, R.; Novo, F.D.C.F.; Bitran, A.; Utiyama, E.M.; Rasslan, S. Management of infected pancreatic necrosis: State of the art. Rev. Col. Bras. Cir. 2017, 44, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Severino, A.; Varca, S.; Airola, C.; Mezza, T.; Gasbarrini, A.; Franceschi, F.; Candelli, M.; Nista, E.C. Antibiotic Utilization in Acute Pancreatitis: A Narrative Review. Antibiotics 2023, 12, 1120. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, A.; Covello, C.; Di Vincenzo, F.; De Lucia, S.S.; Mezza, T.; Nicoletti, A.; Siciliano, V.; Candelli, M.; Gasbarrini, A.; Nista, E.C. Drug-Induced Acute Pancreatitis in Adults: Focus on Antimicrobial and Antiviral Drugs, a Narrative Review. Antibiotics 2023, 12, 1495. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Falconi, C.; Casetti, L.; Valerio, A.; Caldiron, E.; Butturini, G.; Pederzoli, P. Antibiotics in severe pancreatitis: The current status. HPB 1999, 1, 57–60. [Google Scholar] [CrossRef]
- Burns, G.P.; Stein, T.A.; Kabnick, L.S. Blood-pancreatic juice barrier to antibiotic excretion. Am. J. Surg. 1986, 151, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, M.; Trocóniz, I.F.; Fagiolino, P. Enteric reabsorption processes and their impact on drug pharmacokinetics. Sci. Rep. 2021, 11, 5794. [Google Scholar] [CrossRef]
- Malik, M.Y.; Jaiswal, S.; Sharma, A.; Shukla, M.; Lal, J. Role of enterohepatic recirculation in drug disposition: Cooperation and complications. Drug Metab. Rev. 2016, 48, 281–327. [Google Scholar] [CrossRef]
- Okusanya, O.; Forrest, A.; DiFrancesco, R.; Bilic, S.; Rosenkranz, S.; Para, M.F.; Adams, E.; Yarasheski, K.E.; Reichman, R.C.; Morse, G.D. Compartmental Pharmacokinetic Analysis of Oral Amprenavir with Secondary Peaks. Antimicrob. Agents Chemother. 2007, 51, 1822–1826. [Google Scholar] [CrossRef]
- Wallace, J.R.; Cushing, R.D.; E Bawdon, R.; Sugawa, C.; E Lucas, C.; Ledgerwood, A.M. Assessment of antimicrobial penetrance into the pancreatic juice in humans. Surg. Gynecol. Obstet. 1986, 162, 313–316. [Google Scholar]
- Isenmann, R.; Fleischer, K.; Schlegel, P.; Frieß, H.; Büchler, M.W. Penetration of ciprofloxacin into the human pancreas. Infection 1994, 22, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Wicha, S.G.; Mundkowski, R.G.; Klock, A.; Hopt, U.T.; Drewelow, B.; Kloft, C.; Wellner, U.F.; Keck, T.; Wittel, U.A. Is Moxifloxacin a Treatment Option for Pancreatic Infections? A Pharmacometric Analysis of Serum and Pancreatic Juice. J. Clin. Pharmacol. 2019, 59, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Büchler, M.; Frieß, H.; Bittner, R.; Beger, H.G.; Malfertheiner, P.; Vanek, E.; Schlegel, P. The penetration of antibiotics into human pancreas. Infection 1989, 17, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, M.; Schwartz, D.M.; Tandon, M.; Son, A.; Zeng, M.; Swaim, W.; Eckhaus, M.; Hoffman, V.; Cui, Y.; Xiao, B.; et al. Orai1-Mediated Antimicrobial Secretion from Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metab. 2017, 25, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Holowachuk, S.A.; Bal’A, M.F.; Gerard, P.D.; Buddington, R.K. Nonparallel Secretion of Antibacterial Activity and Protein in Porcine Pancreatic Juice. Pancreas 2004, 28, e32–e38. [Google Scholar] [CrossRef] [PubMed]
- Kruszewska, D.; Ljungh, Å.; Hynes, S.O.; Pierzynowski, S.G. Effect of the antibacterial activity of pig pancreatic juice on human multiresistant bacteria. Pancreas 2004, 28, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Baron, T.H.; DiMaio, C.J.; Wang, A.Y.; Morgan, K.A. American Gastroenterological Association Clinical Practice Update: Management of Pancreatic Necrosis. Gastroenterology 2020, 158, 67–75.e1. [Google Scholar] [CrossRef]
- Barr, W.H.; Zola, E.M.; Candler, E.L.; Hwang, S.-M.; Tendolkar, A.V.; Shamburek, R.; Parker, B.; Hilty, M.D. Differential absorption of amoxicillin from the human small and large intestine. Clin. Pharmacol. Ther. 1994, 56, 279–285. [Google Scholar] [CrossRef]
- Spicák, J.; Martínek, J.; Závada, F.; Morávek, J.; Melenovsky, V. Penetration of antibiotics into the pancreas in rats: An effect of acute necrotizing pancreatitis. Scand. J. Gastroenterol. 1999, 34, 92–97. [Google Scholar]
- Samaranayake, L.P.; Leung, W.K.; Jin, L. Oral mucosal fungal infections. Periodontology 2000 2009, 49, 39–59. [Google Scholar] [CrossRef]
- Ziegler, A.; Gonzalez, L.; Blikslager, A. Large Animal Models: The Key to Translational Discovery in Digestive Disease Research. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Burns, G.P.; Stein, T.A.; Cohen, M. Biliary and pancreatic excretion of cefamandole. Antimicrob. Agents Chemother. 1989, 33, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowski, S.G.; Weström, B.R.; Karlsson, B.W.; Nilsson, B.; Svendsen, J. Pancreatic cannulation of young pigs for long-term study of exocrine pancreatic function. Can. J. Anim. Sci. 1988, 68, 953–959. [Google Scholar] [CrossRef]
- Minelli, E.B.; Benini, A.; Bassi, C.; Abbas, H.; Falconi, M.; Locatelli, F.; de Marco, R.; Pederzoli, P. Antimicrobial activity of human pancreatic juice and its interaction with antibiotics. Antimicrob. Agents Chemother. 1996, 40, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Ventrella, D.; Dondi, F.; Barone, F.; Serafini, F.; Elmi, A.; Giunti, M.; Romagnoli, N.; Forni, M.; Bacci, M.L. The biomedical piglet: Establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Veter- Res. 2016, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Pederzoli, P.; Falconi, M.; Bassi, C.; Vesentini, S.; Orcalli, F.; Scaglione, F.; Solbiati, M.; Messori, A.; Martini, N. Ciprofloxacin Penetration in Pancreatic Juice. Chemotherapy 1987, 33, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Brattström, C.; Malborg, A.S.; Tydén, G. Penetration of ciprofloxacin and ofloxacin into pancreatic juice. Chemioter. Int. J. Mediterr. Soc. Chemother. 1987, 6, 295–297. [Google Scholar]
- Brattström, C.; Malmborg, A.-S.; Tydén, G. Penetration of ciprofloxacin and ofloxacin into human allograft pancreatic juice. J. Antimicrob. Chemother. 1988, 22, 213–219. [Google Scholar] [CrossRef]
- Malmborg, A.-S.; Brattström, C.; Tydén, G. Penetration of pefloxacin into human allograft pancreatic juice. J. Antimicrob. Chemother. 1990, 25, 393–397. [Google Scholar] [CrossRef]
- Bassi, C.; Pederzoli, P.; Vesentini, S.; Falconi, M.; Bonora, A.; Abbas, H.; Benini, A.; Bertazzoni, E.M. Behavior of antibiotics during human necrotizing pancreatitis. Antimicrob. Agents Chemother. 1994, 38, 830–836. [Google Scholar] [CrossRef]
- Fanning, K.J.; Robertson, T.A.; Prins, J.B.; Roberts, M.S. Changes in Antibiotic Distribution Due to Pancreatitis. Antimicrob. Agents Chemother. 2011, 55, 3008–3011. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Yamaguchi, H.; Ito, T.; Kyuno, D.; Kono, T.; Konno, T.; Sawada, N. Tight junctions in human pancreatic duct epithelial cells. Tissue Barriers 2013, 1, e24894. [Google Scholar] [CrossRef] [PubMed]
- Emmrich, J.; Seyfarth, M.; Conradi, P.; Plath, F.; Sparmann, G.; Löhr, M.; Liebe, S. Secretory immunoglobulin A in pancreatic juice and pancreatic tissue of patients with chronic pancreatitis. Gut 1998, 42, 436–441. [Google Scholar] [CrossRef] [PubMed]
- A Dainko, E.; Gabel, A.; A Paul, H.; Beattie, E.J. Experimental pancreatic fistula; comparative secretion of antibacterial agents in the dog. Presbyt. St Lukes. Hosp. Med. Bull. 1963, 2, 159–166. [Google Scholar] [PubMed]
- Gerber, B.; Silverman, M.; Preston, F.W. The excretion of antibiotics in pancreatic fluid. Surg. Forum 1957, 8, 261–266. [Google Scholar] [PubMed]
- Preston, F.W.; Silverman, M.; Henegar, G.C. Excretion of Antibiotics in Pancreatic Fluid. Arch. Surg. 1959, 78, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Rumore, P.C.; Olander, G.A.; Puestow, C.B. Excretion of antibiotics, dyes, and radioactive substances through external pancreatic fistula. Surgery 1953, 34, 735–741. [Google Scholar]
- Zhu, Z.; Fu, Q.; Nightingale, C.H.; Zhao, Y.P.; Liao, Q.; Wang, H.N.; Xue, C.Q.; Yang, Z.Y.; Li, D.K. Pharmacokinetics of 5-fluorouracil and its penetration into pancreatic juice in dogs. Zhongguo Yao Li Xue Bao 1998, 19, 7–9. [Google Scholar]
- Lamp, K.C.; Freeman, C.D.; Klutman, N.E.; Lacy, M.K. Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials. Clin. Pharmacokinet. 1999, 36, 353–373. [Google Scholar] [CrossRef]
- Calafatti, S.A. Transfer of metronidazole to gastric juice: Impact of Helicobacter pylori infection and omeprazole. Scand. J. Gastroenterol. 2000, 35, 699–704. [Google Scholar] [CrossRef]
- Turnidge, J. Pharmacokinetics and Pharmacodynamics of Fluoroquinolones. Drugs 1999, 58, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Autmizguine, J.; Melloni, C.; Hornik, C.P.; Dallefeld, S.; Harper, B.; Yogev, R.; Sullivan, J.E.; Atz, A.M.; Al-Uzri, A.; Mendley, S.; et al. Population Pharmacokinetics of Trimethoprim-Sulfamethoxazole in Infants and Children. Antimicrob. Agents Chemother. 2018, 62, e01813-17. [Google Scholar] [CrossRef] [PubMed]
- Vergin, H.; Bishop-Freudling, G.B.; Merk, K.; Szelenyi, I. Pancreatic secretion of benzylpyrimidines. Experimental studies in dogs. Arzneimittelforschung 1982, 32, 1302–1304. [Google Scholar] [PubMed]
- Yotsumoto, K.; Akiyoshi, T.; Wada, N.; Imaoka, A.; Ohtani, H. 5-Fluorouracil treatment alters the expression of intestinal transporters in rats. Biopharm. Drug Dispos. 2017, 38, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, H.; Matsuda, K.; Gu, J.; Suzuki, E.; Yokouchi, I.; Watanabe, J. Dose-Dependent Gastrointestinal Absorption of 5-Fluorouracil in Rats In Vivo. Biol. Pharm. Bull. 1996, 19, 1494–1498. [Google Scholar] [CrossRef]
- De Campos, T.; Rasslan, S.A.J.F.; Rasslan, S. Questions about the use of antibiotics in acute pancreatitis. World J. Emerg. Surg. 2006, 1, 20. [Google Scholar] [CrossRef]
- Dambrauskas, Z.; Gulbinas, A.; Pundzius, J.; Barauskas, G. Meta-analysis of prophylactic parenteral antibiotic use in acute necrotizing pancreatitis. Medicina 2007, 43, 291. [Google Scholar] [CrossRef]
- Chesa-Jiménez, J.; E Peris, J.; Torres-Molina, F.; Granero, L. Low bioavailability of amoxicillin in rats as a consequence of presystemic degradation in the intestine. Antimicrob. Agents Chemother. 1994, 38, 842–847. [Google Scholar] [CrossRef]
- Martínez-Larrañaga, M.R.; Anadón, A.; Martínez, M.A.; Díaz, M.J.; Frejo, M.T.; Castellano, V.J.; Isea, G.; De la Cruz, C.O. Pharmacokinetics of amoxycillin and the rate of depletion of its residues in pigs. Vet Rec. 2004, 154, 627–632. [Google Scholar] [CrossRef]
- Reyns, T.; De Boever, S.; De Baere, S.; De Backer, P.; Croubels, S. Tissue Depletion of Amoxicillin and Its Major Metabolites in Pigs: Influence of the Administration Route and the Simultaneous Dosage of Clavulanic Acid. J. Agric. Food Chem. 2007, 56, 448–454. [Google Scholar] [CrossRef]
- Reyns, T.; DE Boever, S.; Schauvliege, S.; Gasthuys, F.; Meissonnier, G.; Oswald, I.; DE Backer, P.; Croubels, S. Influence of administration route on the biotransformation of amoxicillin in the pig. J. Veter- Pharmacol. Ther. 2009, 32, 241–248. [Google Scholar] [CrossRef]
- Ortiz, R.A.M.; Calafatti, S.A.; Corazzi, A.; Souza, J.M.; Deguer, M.; De Souza, C.A.F.; Marchioretto, M.A.M.; Bernasconi, G.; Ferraz, J.G.P.; Pedrazzoli, J., Jr. Amoxicillin and ampicillin are not transferred to gastric juice irrespective of Helicobacter pylori status or acid blockade by omeprazole. Aliment. Pharmacol. Ther. 2002, 16, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Gregg, J.A.; Maher, L.; DeGirolami, P.C.; Gregg, J.A., Jr. Secretion of beta-lactam antibiotics in pure human pancreatic juice. Am. J. Surg. 1985, 150, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.A.; Williams, R.J. Ampicillin Concentrations in Pancreatic Fluid Bile Obtained at Endoscopic Retrograde Cholangiopancreatography (ERCP). Scand. J. Gastroenterol. 1979, 14, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Falconi, M.; Talamini, G.; Uomo, G.; Papaccio, G.; Dervenis, C.; Salvia, R.; Minelli, E.B.; Pederzoli, P. Controlled clinical trial of pefloxacin versus imipenem in severe acute pancreatitis. Gastroenterology 1998, 115, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Büchler, M.; Malfertheiner, P.; Frieβ, H.; Isenmann, R.; Vanek, E.; Grimm, H.; Schlegel, P.; Friess, T.; Beger, H.G. Human pancreatic tissue concentration of bactericidal antibiotics. Gastroenterology 1992, 103, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Dai, W.; Shen, J.; Zhang, M.; Shi, Y.; Jiang, K.; Guo, L. Assessment of Prophylactic Carbapenem Antibiotics Administration for Severe Acute Pancreatitis: An Updated Systematic Review and Meta-Analysis. Digestion 2022, 103, 183–191. [Google Scholar] [CrossRef]
- Brattström, C.; Malmborg, A.-S.; Tydén, G. Penetration of Imipenem into Human Pancreatic Juice following Single Intravenous Dose Administration1. Chemotherapy 1989, 35, 83–87. [Google Scholar] [CrossRef]
- Shrikhande, S.; Friess, H.; Issenegger, C.; Martignoni, M.E.; Yong, H.; Gloor, B.; Yeates, R.; Kleeff, J.; Büchler, M.W. Fluconazole Penetration into the Pancreas. Antimicrob. Agents Chemother. 2000, 44, 2569–2571. [Google Scholar] [CrossRef]
- Buijk, S.; Gyssens, I.; Mouton, J.; Verbrugh, H.; Touw, D.; Bruining, H. Pharmacokinetics of sequential intravenous and enteral fluconazole in critically ill surgical patients with invasive mycoses and compromised gastro-intestinal function. Intensiv. Care Med. 2001, 27, 115–121. [Google Scholar] [CrossRef]
- Ishiguro, H.; Yamamoto, A.; Nakakuki, M.; Yi, L.; Ishiguro, M.; Yamaguchi, M.; Kondo, S.; Mochimaru, Y. Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J. Med. Sci. 2012, 74, 1–18. [Google Scholar] [PubMed]
- Lemstrová, R.; Souček, P.; Melichar, B.; Mohelnikova-Duchonova, B.; Giovannetti, E.; Pacetti, P.; Reni, M.; Leon, L.G.; Mambrini, A.; Vasile, E.; et al. Role of solute carrier transporters in pancreatic cancer: A review. Pharmacogenomics 2014, 15, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, J.; Liang, C.; Meng, Q.; Hua, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Emerging roles of the solute carrier family in pancreatic cancer. Clin. Transl. Med. 2021, 11, e356. [Google Scholar] [CrossRef] [PubMed]
- Sahores, A.; Carozzo, A.; May, M.; Gómez, N.; Di Siervi, N.; De Sousa Serro, M.; Yaneff, A.; Rodríguez-González, A.; Abba, M.; Shayo, C.; et al. Multidrug transporter MRP4/ABCC4 as a key determinant of pancreatic cancer aggressiveness. Sci. Rep. 2020, 10, 14217. [Google Scholar] [CrossRef] [PubMed]
- Koltai, T.; Reshkin, S.J.; Carvalho, T.M.A.; Di Molfetta, D.; Greco, M.R.; Alfarouk, K.O.; Cardone, R.A. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers 2022, 14, 2486. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.J.; Mekkawy, A.H.; Morris, D.L. Role of human nucleoside transporters in pancreatic cancer and chemoresistance. World J. Gastroenterol. 2021, 27, 6844–6860. [Google Scholar] [CrossRef]
- Hua, W.J.; Hua, W.X.; Jian, Z.; Wei, P.H.; Ni, L.Y.; Hua, L.Y.; Wen, C.D.; Ying, Z.; Li, C. The Role of Drug Transporters in the Pharmacokinetics of Antibiotics. Curr. Drug Metab. 2016, 17, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.-Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective. Physiol. Rev. 2015, 95, 83–123. [Google Scholar] [CrossRef]
- Schaarschmidt, T.; Merkord, J.; Adam, U.; Schroeder, E.; Kunert-Keil, C.; Sperker, B.; Drewelow, B.; Wacke, R. Expression of Multidrug Resistance Proteins in Rat and Human Chronic Pancreatitis. Pancreas 2004, 28, 45–52. [Google Scholar] [CrossRef]
- Ventimiglia, M.S.; Najenson, A.C.; Perazzo, J.C.; Carozzo, A.; Vatta, M.S.; Davio, C.A.; Bianciotti, L.G. Blockade of Multidrug Resistance-Associated Proteins Aggravates Acute Pancreatitis and Blunts Atrial Natriuretic Factor’s Beneficial Effect in Rats: Role of MRP4 (ABCC4). Mol. Med. 2015, 21, 58–67. [Google Scholar] [CrossRef]
- Arakawa, H.; Shirasaka, Y.; Haga, M.; Nakanishi, T.; Tamai, I. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm. Drug Dispos. 2012, 33, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.I.; Pérez, M.; Prieto, J.G.; Molina, A.J.; Real, R.; Merino, G. Fluoroquinolone Efflux Mediated by ABC Transporters. J. Pharm. Sci. 2008, 97, 3483–3493. [Google Scholar] [CrossRef] [PubMed]
- Lavda, M.; Clausnitzer, C.E.; Walters, J.D. Distribution of Systemic Ciprofloxacin and Doxycycline to Gingiva and Gingival Crevicular Fluid. J. Periodontol. 2004, 75, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K. Antibiotics in the Biliary Tract: A Review of the Pharmacokinetics and Clinical Outcomes of Antibiotics Penetrating the Bile and Gallbladder Wall. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 672–691. [Google Scholar] [CrossRef] [PubMed]
- Shimada, S.; Aboubakr, M.; Elbadawy, M.; Usui, T.; Sasaki, K.; Shimoda, M. Biliary excretion and pharmacokinetics of several fluoroquinolones after intravenous injection in rabbits. J. Vet. Med. Sci. 2023, 85, 1099–1105. [Google Scholar] [CrossRef]
- Legen, I.; Kračun, M.; Salobir, M.; Kerč, J. The evaluation of some pharmaceutically acceptable excipients as permeation enhancers for amoxicillin. Int. J. Pharm. 2006, 308, 84–89. [Google Scholar] [CrossRef]
- de Velde, F.; de Winter, B.C.; Koch, B.C.; van Gelder, T.; Mouton, J.W. Non-linear absorption pharmacokinetics of amoxicillin: Consequences for dosing regimens and clinical breakpoints. J. Antimicrob. Chemother. 2016, 71, 2909–2917. [Google Scholar] [CrossRef]
- Haddad, N.; Carr, M.; Balian, S.; Lannin, J.; Kim, Y.; Toth, C.; Jarvis, J. The Blood–Brain Barrier and Pharmacokinetic/Pharmacodynamic Optimization of Antibiotics for the Treatment of Central Nervous System Infections in Adults. Antibiotics 2022, 11, 1843. [Google Scholar] [CrossRef]
- Schneider, F.; Gessner, A.; El-Najjar, N. Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update. Antibiotics 2022, 11, 173. [Google Scholar] [CrossRef]
- Vergin, H.; Bishop-Freudling, G.; Foing, N.; Szelenyi, I.; Armengaud, H.; van Tho, T. Diffusion of Metioprim, Tetroxoprim and Sulphadiazine in the Cerebrospinal Fluid of Dogs with Healthy Meninges and Dogs with Experimental Meningitis. Chemotherapy 1984, 30, 297–304. [Google Scholar] [CrossRef]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed]
- Dingsdag, S.A.; Hunter, N. Metronidazole: An update on metabolism, structure-cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 2018, 73, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yi, J.; Zhou, B.; Xie, S.; Chen, D.; Tao, Y.; Qu, W.; Liu, Z.; Huang, L.; Yuan, Z. Disposition and Residue Depletion of Metronidazole in Pigs and Broilers. Sci. Rep. 2017, 7, 7203. [Google Scholar] [CrossRef] [PubMed]
- Szultka, M.; Krzeminski, R.; Jackowski, M.; Buszewski, B. Identification of In Vitro Metabolites of Amoxicillin in Human Liver Microsomes by LC–ESI/MS. Chromatographia 2014, 77, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xiao, Q.; Zhang, Y.; Wang, X.; Xiao, Y.; Shi, D. Pig liver esterases PLE1 and PLE6: Heterologous expression, hydrolysis of common antibiotics and pharmacological consequences. Sci. Rep. 2019, 9, 15564. [Google Scholar] [CrossRef]
- Boothe, D.M.; Boeckh, A.; Boothe, H.W.; Wilkie, S. Tissue concentrations of enrofloxacin and ciprofloxacin in anesthetized dogs following single intravenous administration. Vet. Ther. 2001, 2, 120–128. [Google Scholar] [PubMed]
- Hwang, Y.H.; Kim, M.S.; Song, I.B.; Lim, J.H.; Park, B.K.; Yun, H.I. Altered pharmacokinetics of enrofloxacin in experimental models of hepatic and renal impairment. Vet. Res. Commun. 2008, 33, 481–487. [Google Scholar] [CrossRef]
- Demol, P.; Singer, M.; Bernemann, D.; Linzenmeier, G.; Goebell, H. Excretion of Azlocillin and Mezlocillin by the Normal Pancreas and in Acute Pancreatitis in Dogs and Rats. Digestion 1983, 27, 93–99. [Google Scholar] [CrossRef]
- Foitzik, T.; Hotz, H.G.; Kinzig, M.; Sörgel, F.; Buhr, H.J. Influence of changes in pancreatic tissue morphology and capillary blood flow on antibiotic tissue concentrations in the pancreas during the progression of acute pancreatitis. Gut 1997, 40, 526–530. [Google Scholar] [CrossRef]
- Brattström, C.; Tydén, G.; Malmborg, A.S.; Lundgren, G.; Ost, L.; Groth, C.G. Studies of the exocrine secretion of segmental pancreatic grafts with special reference to the diagnosis of rejection and to the penetration of drugs into the pancreatic juice. Transplant. Proc. 1987, 19, 2332–2335. [Google Scholar]
- Trudel, J.L.; Thompson, A.G.; Brown, R.A. Prophylactic use of antibiotics in pancreatic sepsis: A 25-year reappraisal. Can. J. Surg. 1984, 27, 567–570. [Google Scholar] [PubMed]
- Thaela, M.J.; Pierzynowski, S.G.; Jensen, M.S.; Jakobsen, K.; Weström, B.R.; Karlsson, B.W. The pattern of the circadian rhythm of pancreatic secretion in fed pigs. J. Anim. Sci. 1995, 73, 3402–3408. [Google Scholar] [CrossRef] [PubMed]
- García-Barrasa, A.; Borobia, F.G.; Pallares, R.; Jorba, R.; Poves, I.; Busquets, J.; Fabregat, J. A Double-blind, Placebo-controlled Trial of Ciprofloxacin Prophylaxis in Patients with Acute Necrotizing Pancreatitis. J. Gastrointest. Surg. 2008, 13, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Wiuff, C.; Lykkesfeldt, J.; Aarestrup, F.M.; Svendsen, O. Distribution of enrofloxacin in intestinal tissue and contents of healthy pigs after oral and intramuscular administrations. J. Vet. Pharmacol. Ther. 2002, 25, 335–342. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buddington, K.K.; Pierzynowski, S.G.; Holmes, W.E.; Buddington, R.K. Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs. Antibiotics 2024, 13, 12. https://doi.org/10.3390/antibiotics13010012
Buddington KK, Pierzynowski SG, Holmes WE, Buddington RK. Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs. Antibiotics. 2024; 13(1):12. https://doi.org/10.3390/antibiotics13010012
Chicago/Turabian StyleBuddington, Karyl K., Stefan G. Pierzynowski, William E. Holmes, and Randal K. Buddington. 2024. "Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs" Antibiotics 13, no. 1: 12. https://doi.org/10.3390/antibiotics13010012
APA StyleBuddington, K. K., Pierzynowski, S. G., Holmes, W. E., & Buddington, R. K. (2024). Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs. Antibiotics, 13(1), 12. https://doi.org/10.3390/antibiotics13010012