Molecular Analysis of Anti-Tuberculosis Drug Resistance of Mycobacterium tuberculosis Isolated in the Republic of Korea
Abstract
:1. Introduction
2. Results
2.1. Anti-TB DST
2.2. RIF Resistance
2.3. INH Resistance
2.4. Ethambutol (EMB) Resistance
2.5. Fluoroquinolone (FQ) Resistance
2.6. Aminoglycoside (AG) Resistance
2.7. Compensatory Mutation
2.8. Genetic Relevance of Resistant Strains
3. Discussion
4. Materials and Methods
4.1. Mycobacterium tuberculosis Culture and DNA Extraction
4.2. Resistance Gene Sequencing
4.3. Spoligotyping
4.4. 24 Locus MIRU-VNTR
4.5. Antibiotic Susceptibility Testing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orenstein, E.W.; Basu, S.; Shah, N.S.; Andrews, J.R.; Friedland, G.H.; Moll, A.P.; Gandhi, N.R.; Galvani, A.P. Treatment outcomes among patients with multidrug-resistant tuberculosis: Systematic review and meta-analysis. Lancet Infect. Dis. 2009, 9, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.R.; Tierney, D.B.; Jeon, C.Y.; Mitnick, C.D.; Murray, M.B. Treatment Outcomes among Patients with Extensively Drug-Resistant Tuberculosis: Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2010, 51, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2020, 9, 1651–1663. [Google Scholar] [CrossRef]
- Li, M.-C.; Lu, J.; Lu, Y.; Xiao, T.-Y.; Liu, H.-C.; Lin, S.-Q.; Xu, D.; Li, G.-L.; Zhao, X.-Q.; Liu, Z.-G.; et al. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect. Drug Resist. 2021, 14, 4119–4128. [Google Scholar] [CrossRef] [PubMed]
- Isakova, J.; Sovkhozova, N.; Vinnikov, D.; Goncharova, Z.; Talaibekova, E.; Aldasheva, N.; Aldashev, A. Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic. BMC Microbiol. 2018, 18, 22. [Google Scholar] [CrossRef]
- Kim, B.J.; Oh, S.H.; Cho, E.J.; Park, S.K. Cross-resistance Between Rifampicin and Rifabutin and Its Relationship with rpoB Gene Mutations in Clinically Isolated MDR-TB Strains. Tuberc. Respir. Dis. 2006, 60, 171–179. [Google Scholar] [CrossRef]
- Lew, W.J.; Kil Park, Y.; Kim, H.J.; Chang, C.; Bai, G.H.; Kim, S.K. The Proportion of Rifabutin-susceptible Strains among Rifampicin-resistant Isolates and Its Specific rpoB Mutations. Tuberc. Respir. Dis. 2005, 59, 257–265. [Google Scholar] [CrossRef]
- Prammananan, T.; Cheunoy, W.; Taechamahapun, D.; Yorsangsukkamol, J.; Phunpruch, S.; Phdarat, P.; Leechawengwong, M.; Chaiprasert, A. Distribution of rpoB mutations among multidrug-resistant Mycobacterium tuberculosis (MDRTB) strains from Thailand and development of a rapid method for mutation detection. Clin. Microbiol. Infect. 2008, 14, 446–453. [Google Scholar] [CrossRef]
- Sharma, S. Detection of Mutations in rpob Gene of Clinically Isolated, M. Tuberculosis by DNA Sequencing. Mycobact. Dis. 2014, 4, 156. [Google Scholar] [CrossRef]
- Uddin, M.K.M.; Rahman, A.; Ather, F.; Ahmed, T.; Rahman, S.M.M.; Ahmed, S.; Banu, S. Distribution and Frequency of rpoB Mutations Detected by Xpert MTB/RIF Assay Among Beijing and Non-Beijing Rifampicin Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Infect. Drug Resist. 2020, 13, 789–797. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Nam, J.-S.; Kim, K.-J.; Choi, Y.; Lee, H.; Cho, S.-N.; Ro, Y.-T. Molecular characterization of drug-resistant and -susceptible Mycobacterium tuberculosis isolated from patients with tuberculosis in Korea. Diagn. Microbiol. Infect. Dis. 2012, 72, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-Y.; Chang, C.-Y.; Chang, L.-L.; Chang, S.-F.; Chang, Y.-H.; Chen, Y.-J. Characterization of rifampicin-resistant Mycobacterium tuberculosis in Taiwan. J. Med. Microbiol. 2003, 52, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Brandis, G.; Pietsch, F.; Alemayehu, R.; Hughes, D. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2014, 70, 680–685. [Google Scholar] [CrossRef]
- De Vos, M.; Müller, B.; Borrell, S.; Black, P.A.; van Helden, P.D.; Warren, R.M.; Gagneux, S.; Victor, T.C. Putative Compensatory Mutations in the rpoC Gene of Rifampin-Resistant Mycobacterium tuberculosis Are Associated with Ongoing Transmission. Antimicrob. Agents Chemother. 2013, 57, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Horng, Y.-T.; Jeng, W.-Y.; Chen, Y.-Y.; Liu, C.-H.; Dou, H.-Y.; Lee, J.-J.; Chang, K.-C.; Chien, C.-C.; Soo, P.-C. Molecular Analysis of Codon 548 in the rpoB Gene Involved in Mycobacterium tuberculosis Resistance to Rifampin. Antimicrob. Agents Chemother. 2015, 59, 1542–1548. [Google Scholar] [CrossRef]
- McAlister, A.J.; Driscoll, J.; Metchock, B. DNA Sequencing for Confirmation of Rifampin Resistance Detected by Cepheid Xpert MTB/RIF Assay. J. Clin. Microbiol. 2015, 53, 1752–1753. [Google Scholar] [CrossRef]
- Meftahi, N.; Namouchi, A.; Mhenni, B.; Brandis, G.; Hughes, D.; Mardassi, H. Evidence for the critical role of a secondary site rpoB mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain. J. Antimicrob. Chemother. 2015, 71, 324–332. [Google Scholar] [CrossRef]
- Ocheretina, O.; Escuyer, V.E.; Mabou, M.-M.; Royal-Mardi, G.; Collins, S.; Vilbrun, S.C.; Pape, J.W.; Fitzgerald, D.W. Correlation between Genotypic and Phenotypic Testing for Resistance to Rifampin in Mycobacterium tuberculosis Clinical Isolates in Haiti: Investigation of Cases with Discrepant Susceptibility Results. PLoS ONE 2014, 9, e90569. [Google Scholar] [CrossRef]
- Rigouts, L.; Gumusboga, M.; de Rijk, W.B.; Nduwamahoro, E.; Uwizeye, C.; de Jong, B.; Van Deun, A. Rifampin Resistance Missed in Automated Liquid Culture System for Mycobacterium tuberculosis Isolates with Specific rpoB Mutations. J. Clin. Microbiol. 2013, 51, 2641–2645. [Google Scholar] [CrossRef]
- Schon, T.; Jureen, P.; Chryssanthou, E.; Giske, C.G.; Kahlmeter, G.; Hoffner, S.; Angeby, K. Rifampicin-resistant and rifabutin-susceptible Mycobacterium tuberculosis strains: A breakpoint artefact? J. Antimicrob. Chemother. 2013, 68, 2074–2077. [Google Scholar] [CrossRef]
- Strauss, O.J.; Warren, R.M.; Jordaan, A.; Streicher, E.M.; Hanekom, M.; Falmer, A.A.; Albert, H.; Trollip, A.; Hoosain, E.; van Helden, P.D.; et al. Spread of a Low-Fitness Drug-Resistant Mycobacterium tuberculosis Strain in a Setting of High Human Immunodeficiency Virus Prevalence. J. Clin. Microbiol. 2008, 46, 1514–1516. [Google Scholar] [CrossRef]
- Fenner, L.; Egger, M.; Bodmer, T.; Altpeter, E.; Zwahlen, M.; Jaton, K.; Pfyffer, G.E.; Borrell, S.; Dubuis, O.; Bruderer, T.; et al. Effect of Mutation and Genetic Background on Drug Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012, 56, 3047–3053. [Google Scholar] [CrossRef] [PubMed]
- Gagneux, S.; Burgos, M.V.; DeRiemer, K.; Enciso, A.; Muñoz, S.; Hopewell, P.C.; Small, P.M.; Pym, A.S. Impact of Bacterial Genetics on the Transmission of Isoniazid-Resistant Mycobacterium tuberculosis. PLoS Pathog. 2006, 2, e61. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Park, Y.-J.; Kim, W.-I.; Lee, S.-H.; Chang, C.L.; Kang, S.-J.; Kang, C.-S. Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea. Diagn. Microbiol. Infect. Dis. 2003, 47, 497–502. [Google Scholar] [CrossRef]
- Unissa, A.N.; Selvakumar, N.; Narayanan, S.; Narayanan, P. Molecular analysis of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India. Int. J. Antimicrob. Agents 2008, 31, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, P.P.; Becerra, M.C.; Wiesch, P.A.Z.; Hinkley, T.; Kaur, D.; Sloutsky, A.; Cohen, T. Fitness Costs of Drug Resistance Mutations in Multidrug-Resistant Mycobacterium tuberculosis: A Household-Based Case-Control Study. J. Infect. Dis. 2015, 213, 149–155. [Google Scholar] [CrossRef]
- Brossier, F.; Sougakoff, W.; Bernard, C.; Petrou, M.; Adeyema, K.; Pham, A.; de la Breteque, D.A.; Vallet, M.; Jarlier, V.; Sola, C.; et al. Molecular Analysis of the embCAB Locus and embR Gene Involved in Ethambutol Resistance in Clinical Isolates of Mycobacterium tuberculosis in France. Antimicrob. Agents Chemother. 2015, 59, 4800–4808. [Google Scholar] [CrossRef]
- Cuevas-Córdoba, B.; Juárez-Eusebio, D.M.; Almaraz-Velasco, R.; Muñiz-Salazar, R.; Laniado-Laborin, R.; Zenteno-Cuevas, R. Mutation at embB Codon 306, a Potential Marker for the Identification of Multidrug Resistance Associated with Ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 5455–5462. [Google Scholar] [CrossRef]
- Zhao, L.-L.; Liu, H.-C.; Sun, Q.; Xiao, T.-Y.; Zhao, X.-Q.; Li, G.-L.; Zeng, C.-Y.; Wan, K.-L. Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China. Diagn. Microbiol. Infect. Dis. 2015, 83, 150–153. [Google Scholar] [CrossRef]
- Alangaden, G.J.; Kreiswirth, B.N.; Aouad, A.; Khetarpal, M.; Igno, F.R.; Moghazeh, S.L.; Manavathu, E.K.; Lerner, S.A. Mechanism of Resistance to Amikacin and Kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1998, 42, 1295–1297. [Google Scholar] [CrossRef]
- Maus, C.E.; Plikaytis, B.B.; Shinnick, T.M. Mutation of tlyA Confers Capreomycin Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005, 49, 571–577. [Google Scholar] [CrossRef]
- Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol. Microbiol. 2007, 63, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Smittipat, N.; Juthayothin, T.; Billamas, P.; Jaitrong, S.; Rukseree, K.; Dokladda, K.; Chaiyasirinroje, B.; Disratthakit, A.; Chaiprasert, A.; Mahasirimongkol, S.; et al. Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. J. Glob. Antimicrob. Resist. 2015, 4, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, C.; Xiang, L.; Pi, R.; Guo, Z.; Zheng, C.; Li, S.; Zhao, Y.; Tang, K.; Luo, M.; et al. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis 2016, 96, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Katsukawa, C.; Tamaru, A.; Abe, C.; Makino, M.; Mizuguchi, Y.; Taniguchi, H. Detection of Kanamycin-Resistant Mycobacterium tuberculosis by Identifying Mutations in the 16S rRNA Gene. J. Clin. Microbiol. 1998, 36, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.S.; Gupta, Y.; Nair, D.; Manzoor, N.; Rautela, R.S.; Rai, A.; Katoch, V.M. Evaluation of gidB alterations responsible for streptomycin resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2014, 69, 2935–2941. [Google Scholar] [CrossRef]
- Zaunbrecher, M.A.; Sikes, R.D.; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2009, 106, 20004–20009. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-L.; Sun, Q.; Liu, H.-C.; Wu, X.-C.; Xiao, T.-Y.; Zhao, X.-Q.; Li, G.-L.; Jiang, Y.; Zeng, C.-Y.; Wan, K.-L. Analysis of embCAB Mutations Associated with Ethambutol Resistance in Multidrug-Resistant Mycobacterium tuberculosis Isolates from China. Antimicrob. Agents Chemother. 2015, 59, 2045–2050. [Google Scholar] [CrossRef]
- Aubry, A.; Veziris, N.; Cambau, E.; Truffot-Pernot, C.; Jarlier, V.; Fisher, L.M. Novel Gyrase Mutations in Quinolone-Resistant and -Hypersusceptible Clinical Isolates of Mycobacterium tuberculosis: Functional Analysis of Mutant Enzymes. Antimicrob. Agents Chemother. 2006, 50, 104–112. [Google Scholar] [CrossRef]
- Bernard, C.; Veziris, N.; Brossier, F.; Sougakoff, W.; Jarlier, V.; Robert, J.; Aubry, A. Molecular Diagnosis of Fluoroquinolone Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 1519–1524. [Google Scholar] [CrossRef]
- Chien, J.-Y.; Chiu, W.-Y.; Chien, S.-T.; Chiang, C.-J.; Yu, C.-J.; Hsueh, P.-R. Mutations in gyrA and gyrB among Fluoroquinolone- and Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother. 2016, 60, 2090–2096. [Google Scholar] [CrossRef]
- Coeck, N.; de Jong, B.C.; Diels, M.; de Rijk, P.; Ardizzoni, E.; Van Deun, A.; Rigouts, L. Correlation of different phenotypic drug susceptibility testing methods for four fluoroquinolones in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2016, 71, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.R.; Jacobson, K.R.; Franke, M.F.; Kaur, D.; Sloutsky, A.; Mitnick, C.D.; Murray, M. Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 2016, 54, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.W.T.; Ho, P.-L.; Kao, R.Y.T.; Yew, W.-W.; Lau, T.C.K.; Cheng, V.C.C.; Yuen, K.-Y.; Tsui, S.K.W.; Chen, X.; Yam, W.-C. Molecular Characterization of Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Analysis of gyrA Mutation at Position 74. Antimicrob. Agents Chemother. 2011, 55, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, M.; Wang, Y.; Pang, Y.; Zhao, Z. Mechanisms of fluoroquinolone monoresistance in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2014, 353, 40–48. [Google Scholar] [CrossRef]
- Malik, S.; Willby, M.; Sikes, D.; Tsodikov, O.V.; Posey, J.E. New Insights into Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Genetic Analysis of gyrA and gyrB Mutations. PLoS ONE 2012, 7, e39754. [Google Scholar] [CrossRef]
- Willby, M.; Sikes, R.D.; Malik, S.; Metchock, B.; Posey, J.E. Correlation between GyrA Substitutions and Ofloxacin, Levofloxacin, and Moxifloxacin Cross-Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 5427–5434. [Google Scholar] [CrossRef]
- Lee, M.; Han, J.; Kim, Y.R.; Kwak, N.; Kim, J.H.; Park, O.; Shin, S.; Moon, H.S.; Kim, H.J.; Jang, M.-J.; et al. Multidrug-resistant tuberculosis in South Korea: A retrospective analysis of national registry data in 2011–2015. Int. J. Tuberc. Lung Dis. 2019, 23, 850–857. [Google Scholar] [CrossRef]
- World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium Tuberculosis Complex: Technical Guide; World Health Organization: Geneva, Switzerland, 2018. Available online: https://apps.who.int/iris/handle/10665/274443 (accessed on 24 July 2023).
- World Health Organization. Catalogue of Mutations in Mycobacterium tuberculosis Complex and Their Association with Drug Resistance; World Health Organization: Geneva, Switzerland, 2021. Available online: https://www.who.int/publications/i/item/9789240028173 (accessed on 24 July 2023).
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/publications/i/item/9789240061729 (accessed on 24 July 2023).
- Lin, Y.-H.; Tai, C.-H.; Li, C.-R.; Lin, C.-F.; Shi, Z.-Y. Resistance profiles and rpoB gene mutations of Mycobacterium tuberculosis isolates in Taiwan. J. Microbiol. Immunol. Infect. 2013, 46, 266–270. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, B.; Song, Y.; Zhou, Y.; Pang, Y.; Ou, X.; Li, Q.; Xia, H.; Zhao, Y. Molecular characterization of the rpoB gene mutations of Mycobacterium tuberculosis isolated from China. J. Tuberc. Res. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol. 2016, 45, 474–492. [Google Scholar] [CrossRef] [PubMed]
- Kil Park, Y.; Ryoo, S.W.; Lee, S.H.; Jnawali, H.N.; Kim, C.-K.; Kim, H.J.; Kim, S.J. Correlation of the phenotypic ethambutol susceptibility of Mycobacterium tuberculosis with embB gene mutations in Korea. J. Med. Microbiol. 2012, 61, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Yakrus, M.A.; Driscoll, J.; McAlister, A.; Sikes, D.; Hartline, D.; Metchock, B.; Starks, A.M. Molecular and Growth-Based Drug Susceptibility Testing of Mycobacterium tuberculosis Complex for Ethambutol Resistance in the United States. Tuberc. Res. Treat. 2016, 2016, 3404860. [Google Scholar] [CrossRef]
- Song, T.; Park, Y.; Shamputa, I.C.; Seo, S.; Lee, S.Y.; Jeon, H.-S.; Choi, H.; Lee, M.; Glynne, R.J.; Barnes, S.W.; et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Mol. Microbiol. 2014, 91, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, Y.; Zhao, B.; Ou, X.; Xia, H.; Zheng, Y.; Song, Y.; Cheng, Q.; Wang, X.; Zhao, Y. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Front. Med. 2020, 14, 51–59. [Google Scholar] [CrossRef]
- Supply, P.; Allix, C.; Lesjean, S.; Cardoso-Oelemann, M.; Rüsch-Gerdes, S.; Willery, E.; Savine, E.; de Haas, P.; van Deutekom, H.; Roring, S.; et al. Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 4498–4510. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Lim, N.; Park, S.; Park, M.; Kim, S. Comparison of PFGE, IS6110-RFLP, and 24-Locus MIRU-VNTR for Molecular Epidemiologic Typing of Mycobacterium tuberculosis Isolates with Known Epidemic Connections. J. Microbiol. Biotechnol. 2018, 28, 338–346. [Google Scholar] [CrossRef]
- Lee, J.; Armstrong, D.T.; Ssengooba, W.; Park, J.-A.; Yu, Y.; Mumbowa, F.; Namaganda, C.; Mboowa, G.; Nakayita, G.; Armakovitch, S.; et al. Sensititre MYCOTB MIC Plate for Testing Mycobacterium tuberculosis Susceptibility to First- and Second-Line Drugs. Antimicrob. Agents Chemother. 2014, 58, 11–18. [Google Scholar] [CrossRef]
- Heysell, S.K.; Pholwat, S.; Mpagama, S.G.; Pazia, S.J.; Kumburu, H.; Ndusilo, N.; Gratz, J.; Houpt, E.R.; Kibiki, G.S. Sensititre MycoTB Plate Compared to Bactec MGIT 960 for First- and Second-Line Antituberculosis Drug Susceptibility Testing in Tanzania: A Call To Operationalize MICs. Antimicrob. Agents Chemother. 2015, 59, 7104–7108. [Google Scholar] [CrossRef]
- Campbell, P.J.; Morlock, G.P.; Sikes, R.D.; Dalton, T.L.; Metchock, B.; Starks, A.M.; Hooks, D.P.; Cowan, L.S.; Plikaytis, B.B.; Posey, J.E. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2011, 55, 2032–2041. [Google Scholar] [CrossRef]
- Jnawali, H.N.; Hwang, S.C.; Park, Y.K.; Kim, H.; Lee, Y.S.; Chung, G.T.; Choe, K.H.; Ryoo, S. Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagn. Microbiol. Infect. Dis. 2013, 76, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakajima, C.; Tamaru, A.; Kim, H.; Matsuba, T.; Saito, H. Sensitivities of ciprofloxacin-resistant Mycobacterium tuberculosis clinical isolates to fluoroquinolones: Role of mutant DNA gyrase subunits in drug resistance. Int. J. Antimicrob. Agents 2012, 39, 435–439. [Google Scholar] [CrossRef] [PubMed]
Type of Mutations | Additional Mutation | MIC Range for Rifampicin (μg/mL) | No. of Isolates |
---|---|---|---|
Gln513Lys | - | >16 | 2 |
Gln513Leu | - | >16 | 1 |
513Del | - | 16 | 1 |
Asp516Gly | rpoB: Leu533Pro rpoB: Leu511Pro | >16 | 3 |
Asp516Asn | rpoB: His526Asn | >16 | 1 |
Asp516Val | - | 16–>16 | 13 |
Asp516Tyr | - | 0.5–>16 | 9 |
rpoB: Met515Ile | 16 | 1 | |
Ser522Leu | - | 16–>16 | 2 |
His526Cys | - | >16 | 1 |
His526Asp | - | >16 | 7 |
His526Gly | - | >16 | 1 |
His526Leu | - | 8–>16 | 3 |
His526Gln | - | >16 | 1 |
His526Arg | - | >16 | 4 |
His526Tyr | - | >16 | 7 |
Ser531Leu | - | 8–>16 | 83 |
rpoB: Thr480Ile rpoB: Ins CCG TTC GGG TTC ATC GAA | >16 | 2 | |
Ser531Trp | - | >16 | 1 |
Leu533Pro | - | 1–16 | 7 |
Ile572Phe | - | 2–4 | 2 |
Genes | Type of Mutations | Additional Mutation | MIC Range for Isoniazid (μg/mL) | No. of Isolates |
---|---|---|---|---|
katG | Arg249Leu | - | >4 | 1 |
Glu289Gly | inhA: C(-15)T | 0.25 | 1 | |
Gln295Pro | inhA: G(-17)T | >4 | 1 | |
Leu298Ser | - | 0.5 | 2 | |
Ser315Asn | - | >4 | 1 | |
Ser315Thr | - | 0.5–>4 | 86 | |
inhA: G(-9)A, C(-15)T | >4 | 8 | ||
katG: Ala243Asp | 2 | 1 | ||
inhA: C(-15)T ahpC: G(-48)A | >4 | 1 | ||
Ile317Thr | - | 0.25 | 1 | |
Ala373Cys | inhA: C(-15)T | 4 | 1 | |
Thr380Ile | inhA: C(-15)T | 0.5–2 | 2 | |
Trp412stop | - | >4 | 1 | |
Gln439Leu | inhA: C(-15)T | 1 | 1 | |
Ile456Ans | inhA: C(-15)T | 1 | 1 | |
inhA | T(-8)A | - | 1 | 1 |
T(-8)C | - | 0.25–2 | 4 | |
G(-9)A | katG: Ser315Thr | >4 | 1 | |
C(-15)T | - | 0.12–>4 | 35 | |
katG: Glu289Gly, Ser315Thr, Ala373Cys, Thr380Ile, Gln439Leu, Ile456Asn | 0.25–>4 | 13 | ||
ahpC: G(-51)A, C(-52)A, del(-79)CA | 0.25–>4 | 3 | ||
katG: Ser315Thr, ahpC: G(-48)A | >4 | 1 | ||
G(-17)T | katG: Gln295Pro | >4 | 1 | |
ahpC | G(-48)A | - | 4 | 1 |
inhA: C(-15)T, katG: Ser315Thr | >4 | 1 | ||
G(-51)A | inhA: C(-15)T | >4 | 1 | |
C(-52)A | - | 2 | 1 | |
inhA: C(-15)T | 0.25 | 1 | ||
C(-52)T | - | >4 | 1 | |
del(-79) CA | inhA: C(-15)T | 1 | 1 | |
C(-81)T | - | 1 | 1 | |
ins(-88) GT | - | >4 | 1 |
Type of Mutations | Additional Mutation | MIC Range for Ethambutol (μg/mL) | No. of Isolates |
---|---|---|---|
Ser297Ala | - | 2 | 1 |
Met306Ile | - | 4–32 | 23 |
Asp328Gly, Gly406Asp | 8–16 | 3 | |
Met306Leu | - | 16 | 1 |
Met306Val | - | 4–32 | 30 |
Tyr319Asp | - | 8 | 1 |
Tyr319Asn | Asp354Ala | 4 | 1 |
Tyr319Ser | - | 8 | 1 |
Asp354Ala | - | 32 | 1 |
Asn399Thr | - | 4–32 | 2 |
Pro404Ser | - | 4 | 1 |
Gly406Ala | - | 4–32 | 3 |
Gly406Asp | - | 4–16 | 5 |
Gly406Ser | - | 2 | 1 |
Val493Ala | - | 1 | 1 |
Gln497Lys | - | 8–16 | 3 |
Gln497Pro | - | 4–8 | 2 |
Gln497Arg | - | 4–32 | 10 |
Glu504Asp | - | 8 | 1 |
Genes | Type of Mutations | Additional Mutation | MIC Range for Ofloxacin (μg/mL) | No. of Isolates |
---|---|---|---|---|
gyrA | His70Arg | - | 4 | 1 |
gyrB: Arg485Cys, Thr539Pro | >32 | 1 | ||
Ala90Val | - | 4–>32 | 15 | |
gyrA: Asp94Asn, Asp94Ala | >32 | 2 | ||
gyrB: Arg485Cys, Thr539Pro | >32 | 2 | ||
Ser91Pro | - | 4–16 | 6 | |
Asp94Ala | - | 4–16 | 5 | |
gyrB: Asp500His, Asp500Asn, Thr539Pro | 16–>32 | 3 | ||
Asp94Gly | - | 8–>32 | 25 | |
gyrB: Asp500Val, Thr539Asn, Gly551Arg | 16–>32 | 6 | ||
Asp94His | - | 16 | 1 | |
gyrB: Ser486Tyr | >32 | 1 | ||
Asp94Asn | - | 16–32 | 6 | |
gyrB: Arg485Leu, Asp500Asn | 32–>32 | 2 | ||
Asp94Tyr | - | 8–16 | 3 | |
gyrB | Arg485Cys | - | 4 | 1 |
gyrA: Ala90Val | >32 | 1 | ||
gyrA: His70Arg, gyrB: Thr539Pro | >32 | 1 | ||
Arg485Leu | gyrA: Asp94His | 32 | 1 | |
Ser486Phe | - | 2–8 | 3 | |
Ser486Tyr | gyrA: Asp94His | >32 | 1 | |
Asp500His | gyrA: Asp94Ala | >32 | 1 | |
Asp500Asn | - | 4–8 | 2 | |
gyrA: Ala90Val, Asp94Asn, Asp94Ala | >32 | 3 | ||
Asp500Val | gyrA: Asp94Gly | >32 | 1 | |
Asn538Asp | - | 4 | 1 | |
Thr539Asn | - | 4 | 1 | |
gyrA: Asp94Gly | >32 | 1 | ||
Thr539Pro | gyrA: Asp94Ala | 16 | 1 | |
Glu540Asp | - | 1–2 | 2 | |
Gly551Arg | gyrA: Asp94Gly | 16–32 | 4 |
No. of Mutated Codons in | gyrA | ||||
---|---|---|---|---|---|
0 | 1 | 2 | Total | ||
gyrB | 0 | 78 | 63 | 3 | 144 |
1 | 11 | 14 | - | 25 | |
2 | - | 1 | - | 1 | |
Total | 89 | 78 | 3 | 170 |
Genes | Type of Mutations | Additional Mutation | MIC Range for Amikacin (μg/mL) | No. of Isolates |
---|---|---|---|---|
rrs | A514C | - | 0.25 | 1 |
eis: G(-37)T | 1 | 1 | ||
A514G | eis: G(-37)T | 0.25 | 1 | |
C517T | - | 0.25–2 | 4 | |
A907T | rrs: A908T | 0.5 | 1 | |
A908T | - | <0.12 | 1 | |
rrs: A907T | 0.5 | 1 | ||
A1337C | - | 1 | 1 | |
A1401G | - | >16 | 24 | |
C1402T | - | 1 | 1 | |
eis | G(-10)A | - | 0.5–1 | 2 |
C(-14)T | - | 1 | 1 | |
G(-37)T | - | 0.5–>16 | 5 | |
rrs: A514G, A514C | 0.25–1 | 2 |
Genes | Type of Mutations | Additional Mutation | MIC Range for Streptomycin (μg/mL) | No. of Isolates |
---|---|---|---|---|
rpsL | Lys43Met | - | >32 | 2 |
Lys43Arg | - | >32 | 22 | |
rrs: A1401G | >32 | 5 | ||
Arg86Pro | - | 2 | 1 | |
Lys88Gln | rrs: A1401G | 4 | 1 | |
Lys88Arg | - | 8–>32 | 7 | |
rrs | A514C | - | 2–8 | 2 |
A514G | - | 0.5 | 1 | |
C517T | - | 8–>32 | 4 | |
A907T | rrs: A908T | >32 | 1 | |
A908T | rrs: A907T | >32 | 2 | |
A1337C | - | 1 | 1 | |
A1401G | - | <0.25–16 | 18 | |
rpsL: Lys43Arg, Lys88Gln | 4–>32 | 5 | ||
rpsL: Lys43Arg | >32 | 1 | ||
C1402T | - | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.-M.; Park, S.; Lim, N.-R.; Lee, N.; Jung, J.; Sung, N.; Kim, S. Molecular Analysis of Anti-Tuberculosis Drug Resistance of Mycobacterium tuberculosis Isolated in the Republic of Korea. Antibiotics 2023, 12, 1324. https://doi.org/10.3390/antibiotics12081324
Jeon S-M, Park S, Lim N-R, Lee N, Jung J, Sung N, Kim S. Molecular Analysis of Anti-Tuberculosis Drug Resistance of Mycobacterium tuberculosis Isolated in the Republic of Korea. Antibiotics. 2023; 12(8):1324. https://doi.org/10.3390/antibiotics12081324
Chicago/Turabian StyleJeon, Se-Mi, Sanghee Park, Na-Ra Lim, Noori Lee, Jihee Jung, Nackmoon Sung, and Seonghan Kim. 2023. "Molecular Analysis of Anti-Tuberculosis Drug Resistance of Mycobacterium tuberculosis Isolated in the Republic of Korea" Antibiotics 12, no. 8: 1324. https://doi.org/10.3390/antibiotics12081324
APA StyleJeon, S. -M., Park, S., Lim, N. -R., Lee, N., Jung, J., Sung, N., & Kim, S. (2023). Molecular Analysis of Anti-Tuberculosis Drug Resistance of Mycobacterium tuberculosis Isolated in the Republic of Korea. Antibiotics, 12(8), 1324. https://doi.org/10.3390/antibiotics12081324