Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review
Abstract
:1. Introduction
2. Results
2.1. Epidemiology of GN Microrganisms and Antibiotic Resistance
2.2. Bacteraemia (B)
2.2.1. Antibiotic Duration Therapy and Type in GN Bloodstream Infections
MDR and ESBL-p GN B and Treatment Options
XDR, PDR and CPR GN B and Treatment Options
The New Antibiotics against XDR, PDR, DTR and CR GN
Treatment of Ambler Class B β-Lactamases or MBL
The Future and in Development Drugs for GN
2.3. Antibiotic Duration Therapy in GN Pulmonary Infections
2.4. Antibiotic Therapy Duration in IAI
2.5. PK and PD in the Treatment of GN Infections
2.5.1. Time-Dependent Antimicrobials
2.5.2. Concentration-Dependent Antimicrobials
2.5.3. Therapeutic Drug Monitoring (TDM)
2.5.4. Antibiotic Interactions: Synergisms and Antagonisms
3. Materials and Methods
- (a)
- antibiotic duration therapy + MDR Gram-negative infection = 33 manuscripts
- (b)
- combination therapy + MDR Gram-negative infection = 156 manuscripts
- (c)
- monotherapy + MDR Gram-negative infection = 68
- (d)
- antibiotic duration therapy + XDR Gram-negative infection = 12 manuscripts
- (e)
- combination therapy + XDR Gram-negative infection = 60 manuscripts
- (f)
- monotherapy + XDR Gram-negative infection = 15 manuscripts
- (g)
- antibiotic duration therapy + PDR Gram-negative infection = 5 manuscripts
- (h)
- combination therapy + PDR Gram-negative infection = 15 manuscripts
- (i)
- monotherapy + PDR Gram-negative infection = 5 manuscripts
4. Discussion
4.1. Treatment Duration: Short Courses or Long Courses? Combination or Monotherapy?
4.2. What May Influence (Short vs. Long/Mono vs. Combination) Antibiotic Prescribing Practice?
Type of Microorganism | Presence of Risk Factor in Table 7 | Absence of Risk Factor in Table 7 |
---|---|---|
MDR Gram-negative |
|
|
ESBL-producing Gram-negative AmpC-producing Gram-negative |
|
|
CP-producing Gram-negative |
|
|
Microorganisms | Gold Standard | Combination with | Second Line | Combination with | New Drugs |
---|---|---|---|---|---|
MDR | Third-generation cephalosporins BLIBL Quinolones | + Quinolones + aminoglycosides | Quinolones III–IV generation Cephalosporins Cefepime/cefmetazolo Tigecycline # Colistin # | + aminoglycosides | Ceftazidime-avibactam Ceftolozane-tazobactam |
ESBL-positive Gram-negative | Carbapenems | + Fosfomicin + aminoglycosides + tigecycline | Ceftolozane/tazobactam | + Fosfomicin + aminoglycosides + tigecycline | See Table 4 |
AmpC-BL-producing | Carbapenems | Ceftolozane/tazobactam | + Fosfomicin + aminoglycosides | See Table 4 | |
XDR, PDR, DTR CP—Gram-negative | Ceftazidime-avibactam Imipenem-cilastatin-relebactam Meropenem-vaborbactam Cefidecorol meropenem) | + fosfomicin + aminoglycosides + colistin | Double carbapenem regimen (doripenem + meropenem) (ertapenem + | + Fosfomicin + aminoglycosides + colistin | Cefepime-taniborbactam Cefepime-zidebactam See Table 4 |
Amber class B β-lactamases (NDL, VIM) | Aztreonam-avibactam Ceftazidime-avibactam Meropenem-Vaborbactam | + fosfomicin § + aztreonam | Ceftazidime-avibactam Meropenem-vaborbactam | + Aztreonam | β-lactam–diazabicyclooctane β-lactamase inhibitor combinations β-lactam–boronate β-lactamase inhibitor Combinations. See Table 4 |
5. Conclusions and Taking Home Message and Commentary
- ✓
- B infections are prevalent and caused by MDR microorganisms. Moreover, the end of the last century has progressively seen an upsurge in XDR and PDR rates, responsible for concern towards the theoretical end of the antibiotic era.
- ✓
- The timely commencement of adequate and appropriate antibiotic therapy has a strong impact on patients’ outcomes.
- ✓
- A strategy of short-course therapy may represent—in the contemporary context—A reasonable and logical choice for treating B, considering the stratification of risk shown in Table 7. Indeed, it may present a few advantages in terms of (i) reduced risk of central catheter-associated complications, including bloodstream complications; (ii) antibiotic resistance development, antibiotic-associated organ toxicity, and drug interactions; (iii) decreased costs and increased efficacy; and (c) improved convenience and treatment compliance. Antibiotic characteristics may help to predict the length of effective therapy, such as the availability of bactericidal vs. bacteriostatic drugs or synergistic combinations and the capacity to control the source of infection.
- ✓
- ✓
- Clinicians have to remember that all treatment decisions are dynamic, requiring frequent—at least daily—reassessment in relation to the patient’s clinical response, and what is important is the timely commencement of an adequate and appropriate antibiotic therapy whose duration is eventually to be decided.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- De Waele, J.J.; Martin-Loeches, I. Optimal duration of antibiotic treatment in Gram-negative infections. Curr. Opin. Infect. Dis. 2018, 31, 606–611. [Google Scholar] [CrossRef]
- Reyes, S.; Morel, M.D.P.; Kostka, J.; Nicolau, D.P. Duration of antibiotic therapy for Enterobacterales and Pseudomonas aeruginosa: A review of recent evidence. Curr. Opin. Infect. Dis. 2021, 34, 693–700. [Google Scholar] [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Koletsi, P.K.; Bliziotis, I.A. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 2006, 55, 1619–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattanaupawan, P.; Ussavasodhi, P.; Aswapokee, N. Epidemiology of bacteraemia caused by uncommon non fermentative gram negative bacteria. BMC Infect. Dis. 2013, 13, 167. [Google Scholar]
- Adams-Sapper, S.; Sergeevna-Selezneva, J.; Tartof, S.; Raphaël, E.; Diep, B.A.; Perdreau-Remington, F.; Riley, L.W. Globally dispersed mobile drug-resistance genes in Gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital. J. Med. Microbiol. 2012, 61, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Luzzaro, F.; Ortisi, G.; Larosa, M.; Drago, M.; Brigante, G.; Gesu, G. Prevalence and epidemiology of microbial pathogens causing bloodstream infections: Results of the OASIS multicenter study. Diagn. Microbiol. Infect. Dis. 2011, 69, 363–369. [Google Scholar] [CrossRef]
- Michalopoulos, A.; Falagas, M.E.; Karatza, D.C.; Alexandropoulou, P.; Papadakis, E.; Gregorakos, L.; Chalevelakis, G.; Pappas, G. Epidemiologic, clinical characteristics, and risk factors for adverse outcome in multiresistant gram-negative primary bacteraemia of critically ill patients. Am. J. Infect. Control 2011, 39, 396–400. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Nordmann, P.; Poirel, L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother. 2015, 59, 5873–5884. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Patel, G.; Huprikar, S.; Calfee, D.P.; Jenkins, S.G. Decreased Susceptibility to Polymyxin B during Treatment for Carbapenem-Resistant Klebsiella pneumoniae Infection. J. Clin. Microbiol. 2009, 47, 1611–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, R.G.; Johnson, J.K.; Bork, J.T.; Heil, E.L. Treatment options for extended-spectrum beta-lactamase [ESBL] and AmpC-producing bacteria. Expert. Opin. Pharmacother. 2016, 17, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-L.; Lee, C.C.; Li, C.W.; Li, M.C.; Hsueh, P.R.; Lee, N.Y.; Ko, W.C. Fluoroquinolone therapy for bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J. Microbiol. Immunol. Infect. 2017, 50, 355–361. [Google Scholar]
- Endimiani, A.; Luzzaro, F.; Perilli, M.; Lombardi, G.; Colì, A.; Tamborini, A.; Amicosante, G.; Toniolo, A. Bacteraemia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: Treatment outcome of patients receiving imipenem or ciprofloxacin. Clin. Infect. Dis. 2004, 38, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, U.; Aggarwal, R. Extended spectrum ß lactamases [ESBL]—An emerging threat to clinical therapeutics. Indian. J. Med. Microbiol. 2004, 22, 75–80. [Google Scholar] [CrossRef]
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E. Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteraemia. Clin. Infect. Dis. 2015, 60, 1319–1325. [Google Scholar]
- Balakrishnan, I.; Awad-El-Kariem, F.M.; Aali, A.; Kumari, P.; Mulla, R.; Tan, B.; Brudney, D.; Ladenheim, D.; Ghazy, A.; Khan, I.; et al. Temocillin use in England: Clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC beta-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2011, 66, 2628–2631. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Shimizu, T.; Watanabe, H.; Doi, S.; Tanaka, M.; et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-beta-lactamase-producing Escherichia coli bacteraemia. Antimicrob. Agents Chemother. 2015, 59, 5107–5113. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.Y.; Lee, C.C.; Huang, W.H.; Tsui, K.C.; Hsueh, P.R.; Ko, W.C. Cefepime therapy for monomicrobial bacteraemia caused by cefepime-susceptible extended- spectrum beta-lactamase-producing enterobacteriaceae: MIC matters. Clin. Infect. Dis. 2013, 56, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Blanchette, L.M.; Kuti, J.L.; Nicolau, D.P.; Nailor, M.D. Clinical comparison of ertapenem and cefepime for treatment of infections caused by AmpC beta-lactamase-producing Enterobacteriaceae. Scand. J. Infect. Dis. 2014, 46, 803–808. [Google Scholar] [CrossRef]
- Hossain, A.; Ferraro, M.J.; Pino, R.M.; Dew, R.B., 3rd; Moland, E.S.; Lockhart, T.J.; Thomson, K.S.; Goering, R.V.; Hanson, N.D. Plasmid-Mediated Carbapenem-Hydrolyzing Enzyme KPC-2 in an Enterobacter sp. Antimicrob. Agents Chemother. 2004, 48, 4438–4440. [Google Scholar] [CrossRef] [Green Version]
- Daikos, G.L.; Tsaousi, S.; Tzouvelekis, L.S.; Anyfantis, I.; Psichogiou, M.; Argyropoulou, A.; Stefanou, I.; Sypsa, V.; Miriagou, V.; Nepka, M.; et al. Carbapenemase-Producing Klebsiella pneumoniae Bloodstream Infections: Lowering Mortality by Antibiotic Combination Schemes and the Role of Carbapenems. Antimicrob. Agents Chemother. 2014, 58, 2322–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Viale, P.; Viscoli, C.; Trecarichi, E.M.; Tumietto, F.; Marchese, A.; Spanu, T.; Ambretti, S.; Ginocchio, F.; Cristini, F.; et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Importance of Combination Therapy. Clin. Infect. Dis. 2012, 55, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Daikos, G.L.; Markogiannakis, A. Carbapenemase-producing Klebsiella pneumoniae: [when] might we still consider treating with carbapenems? Clin. Microbiol. Infect. 2011, 17, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzouvelekis, L.S.; Markogiannakis, A.; Piperaki, E.; Souli, M.; Daikos, G.L. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. 2014, 20, 862–872. [Google Scholar] [CrossRef] [Green Version]
- Gales, A.C.; Jones, R.N.; Sader, H.S. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: Results from the SENTRY Antimicrobial Surveillance Program (2006–09). J. Antimicrob. Chemother. 2011, 66, 2070–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiskirchen, D.E.; Crandon, J.L.; Nicolau, D.P. Impact of various conditions on the efficacy of dual carbapenem therapy against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2013, 41, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Rafailidis, P.I.; Ioannidou, E.; Alexiou, V.G.; Matthaiou, D.K.; Karageorgopoulos, D.E.; Kapaskelis, A.; Nikita, D.; Michalopoulos, A. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: A retrospective cohort study of 258 patients. Int. J. Antimicrob. Agents 2010, 35, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Michalopoulos, A.; Virtzili, S.; Rafailidis, P.; Chalevelakis, G.; Damala, M.; Falagas, M. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: A prospective evaluation. Clin. Microbiol. Infect. 2010, 16, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Karageorgopoulos, D.E.; Miriagou, V.; Tzouvelekis, L.S.; Spyridopoulou, K.; Daikos, G.L. Emergence of resistance to fosfomycin used as adjunct therapy in KPC Klebsiella pneumoniae bacteraemia: Report of three cases. J. Antimicrob. Chemother. 2012, 67, 2777–2779. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.L.; Papp-Wallace, K.M.; Hujer, A.M.; Domitrovic, T.N.; Hujer, K.M.; Hurless, K.N.; Tuohy, M.; Hall, G.; Bonomo, R.A. Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 1020–1029. [Google Scholar] [CrossRef] [Green Version]
- Bogan, C.; Kaye, K.S.; Chopra, T.; Hayakawa, K.; Pogue, J.M.; Lephart, P.R.; Bheemreddy, S.; Lazarovitch, T.; Zaidenstein, R.; Perez, F.; et al. Outcomes of carbapenem-resistant Enterobacteriaceae isolation: Matched analysis. Am. J. Infect. Control 2014, 42, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.C.; Burgess, D.S. Treatment of Klebsiella pneumoniae Carbapenemase (KPC) infections: A review of published case series and case reports. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, Z.A.; Paterson, D.L.; Potoski, B.A.; Kilayko, M.C.; Sandovsky, G.; Sordillo, E.; Polsky, B.; Adams-Haduch, J.M.; Doi, Y. Treatment outcome of bacteraemia due to KPC-producing Klebsiella pneumoniae: Superiority of combination antimicrobial regimens. Antimicrob. Agents Chemother. 2012, 56, 2108–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulik, C.C.; Nicolau, D.P. Double-Carbapenem Therapy for Carbapenemase-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2011, 55, 3002–3004. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, E.B.; Tam, V.H. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): An emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 2010, 65, 1119–1125. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Carmeli, Y.; Durante-Mangoni, E.; Mouton, J.W.; Tacconelli, E.; Theuretzbacher, U.; Mussini, C.; Leibovici, L. Combination therapy for carbapenem-resistant Gram-negative bacteria. J. Antimicrob. Chemother. 2014, 69, 2305–2309. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, I.; Giamarellou, H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert. Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- Petrosillo, N.; Giannella, M.; Lewis, R.; Viale, P. Treatment of carbapenem-resistant Klebsiella pneumoniae: The state of the art. Expert. Rev. Anti-Infect. Ther. 2013, 11, 159–177. [Google Scholar] [CrossRef]
- Sbrana, F.; Malacarne, P.; Viaggi, B.; Costanzo, S.; Leonetti, P.; Leonildi, A.; Casini, B.; Tascini, C.; Menichetti, F. Carbapenem-Sparing Antibiotic Regimens for Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae in Intensive Care Unit. Clin. Infect. Dis. 2012, 56, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Jernigan, M.G.; Press, E.G.; Nguyen, M.H.; Clancy, C.J.; Shields, R.K. The Combination of Doripenem and Colistin Is Bactericidal and Synergistic against Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2012, 56, 3395–3398. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Milstone, A.; Diener-West, M.; Nussenblatt, V.; Cosgrove, S.E.; Tamma, P.D. Short versus prolonged courses of antibiotic therapy for children with uncomplicated Gram-negative bacteraemia. J. Antimicrob. Chemother. 2014, 69, 779–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, Y.; Patterson, D.L. Strategies for reduction in duration of antibiotic use in hospitalised patients. Clin. Infect. Dis. 2011, 52, 1232–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, A.; Wilson, A.P.R.; Grassi, M.; Singer, M. Prospective audit of bacteraemia management in a university hospital ICU using a general strategy of short-course monotherapy. J. Antimicrob. Chemother. 2004, 54, 809–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santis, V.; Gresoiu, M.; Corona, A.; Wilson, A.P.R.; Singer, M. Bacteraemia incidence, causative organisms and resistance patterns, antibiotic strategies and outcomes in a single university hospital ICU: Continuing improvement between 2000 and 2013. J. Antimicrob. Chemother. 2015, 70, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havey, T.C.; Fowler, R.A.; Pinto, R.; Elligsen, M.; Daneman, N. Duration of Antibiotic Therapy for Critically Ill Patients with Bloodstream Infections: A Retrospective Cohort Study. Can. J. Infect. Dis. Med. Microbiol. 2013, 24, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Havey, T.C.; Fowler, R.A.; Daneman, N. Duration of antibiotic therapy for bacteraemia: A systematic review and meta-analysis. Crit Care 2011, 15, R267. [Google Scholar] [CrossRef] [Green Version]
- Michail, G.; Labrou, M.; Pitiriga, V.; Manousaka, S.; Sakellaridis, N.; Tsakris, A.; Pournaras, S. Activity of Tigecycline in Combination with Colistin, Meropenem, Rifampin, or Gentamicin against KPC-Producing Enterobacteriaceae in a Murine Thigh Infection Model. Antimicrob. Agents Chemother. 2013, 57, 6028–6033. [Google Scholar] [CrossRef] [Green Version]
- Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; et al. Ceftolozane/tazobactam: Place in therapy. Expert. Rev. Anti-Infect. Ther. 2018, 16, 307–320. [Google Scholar] [CrossRef]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents. 2020, 56, 106196. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Meunier, D.; Hopkins, K.L.; Hill, R.; Adkin, R.; Chaudhry, A.; Pike, R.; Staves, P.; Woodford, N. BSAC Resistance Surveillance Standing Committee. Activity of ceftolozane/tazobactam against surveillance and ‘problem’ Enterobacteriaceae, Pseudomonas aeruginosa and non-fermenters from the British Isles. J. Antimicrob. Chemother. 2017, 72, 2278–2289. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine) Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Satlin, M.J.; Elabor, A.; Saraiya, N.; McCreary, E.K.; Molnar, E.; El-Beyrouty, C.; Jones, B.M.; Dixit, D.; Heil, E.L.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: A Multicenter Study. Open. Forum Infect. Dis. 2018, 5, ofy280. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Carvalhaes, C.G.; Duncan, L.R.; Flamm, R.K.; Shortridge, D. Susceptibility trends of ceftolozane/tazobactam and comparators when tested against European Gram-negative bacterial surveillance isolates collected during 2012–18. J. Antimicrob. Chemother. 2020, 75, 2907–2913. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, S.C.J.; Trinh, T.D.; Zasowski, E.J.; Lagnf, A.M.; Simon, S.P.; Bhatia, S.; Melvin, S.M.; Steed, M.E.; Finch, N.A.; Morrisette, T.; et al. Real-World Experience with Ceftolozane-Tazobactam for Multidrug-Resistant Gram-Negative Bacterial Infections. Antimicrob. Agents Chemother. 2020, 64, e02291-19. [Google Scholar] [CrossRef]
- Sader, H.S.; Duncan, L.R.; Doyle, T.B.; Castanheira, M. Antimicrobial activity of ceftazidime/avibactam, ceftolozane/tazobactam and comparator agents against Pseudomonas aeruginosa from cystic fibrosis patients. JAC Antimicrob. Resist. 2021, 3, dlab126. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Shortridge, D.; Castanheira, M. Comparative activity of newer β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa from patients hospitalized with pneumonia in European medical centers in 2020. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Castaldo, N.; Cattelan, A.; Mussini, C.; Righi, E.; Tascini, C.; Menichetti, F.; Mastroianni, C.M.; Tumbarello, M.; Grossi, P.; et al. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: A multicentre nationwide clinical experience. Int. J. Antimicrob. Agents 2019, 53, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Dhar, S.; et al. Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2020, 71, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Daikos, G.L.; da Cunha, C.A.; Rossolini, G.M.; Stone, G.G.; Baillon-Plot, N.; Tawadrous, M.; Irani, P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics 2021, 10, 1126. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase-Producing, K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; DE Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase–producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindblad, R.; Rödjer, S.; Adriansson, M.; Andreasson, B.; Bäckström, B.; Johansson, P.; Karlsson, K.; Rhedin, C.; Turesson, I. Empiric monotherapy for febrile neutropenia--a randomized study comparing meropenem with ceftazidime. Scand. J. Infect. Dis. 1998, 30, 237–243. [Google Scholar] [PubMed]
- Soriano, A.; Carmeli, Y.; Omrani, A.S.; Moore, L.S.P.; Tawadrous, M.; Irani, P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect. Dis. Ther. 2021, 10, 1989–2034. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.W.; de Jonge, B.L.; Kazmierczak, K.M.; Karlowsky, J.A.; Sahm, D.F. In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 4743–4749. [Google Scholar] [CrossRef] [Green Version]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [CrossRef]
- Vena, A.; Giacobbe, D.R.; Castaldo, N.; Cattelan, A.; Mussini, C.; Luzzati, R.; De Rosa, F.G.; Del Puente, F.; Mastroianni, C.M.; Cascio, A.; et al. Clinical Experience with Ceftazidime-Avibactam for the Treatment of Infections due to Multidrug-Resistant Gram-Negative Bacteria Other than Carbapenem-Resistant Enterobacterales. Antibiotics 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Piérard, D.; Stone, G.G. In vitro antimicrobial susceptibility of clinical respiratory isolates to ceftazidime-avibactam and comparators (2016–2018). BMC Infect. Dis. 2021, 21, 600. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar]
- Jorgensen, S.C.J.; Trinh, T.D.; Zasowski, E.J.; Lagnf, A.M.; Bhatia, S.; Melvin, S.M.; E Steed, M.; Simon, S.P.; Estrada, S.J.; Morrisette, T.; et al. Real-World Experience with Ceftazidime-Avibactam for Multidrug-Resistant Gram-Negative Bacterial Infections. Open. Forum Infect. Dis. 2019, 6, ofz522. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compain, F.; Arthur, M. Impaired Inhibition by Avibactam and Resistance to the Ceftazidime-Avibactam Combination Due to the D 179 Y Substitution in the KPC-2 β-Lactamase. Antimicrob. Agents Chemother. 2017, 61, e00451-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbella, L.; Boán, J.; San-Juan, R.; Fernández-Ruiz, M.; Carretero, O.; Lora, D.; Hernández-Jiménez, P.; Ruiz-Ruigómez, M.; Rodríguez-Goncer, I.; Silva, J.T.; et al. Effectiveness of ceftazidime-avibactam for the treatment of infections due to Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2022, 59, 106517. [Google Scholar] [CrossRef]
- Tsolaki, V.; Mantzarlis, K.; Mpakalis, A.; Malli, E.; Tsimpoukas, F.; Tsirogianni, A.; Papagiannitsis, C.; Zygoulis, P.; Papadonta, M.-E.; Petinaki, E.; et al. Ceftazidime-Avibactam To Treat Life-Threatening Infections by Carbapenem-Resistant Pathogens in Critically Ill Mechanically Ventilated Patients. Antimicrob. Agents Chemother. 2020, 64, e02320-19. [Google Scholar] [CrossRef]
- Noval, M.; Banoub, M.; Claeys, K.C.; Heil, E. The Battle Is on: New Beta-Lactams for the Treatment of Multidrug-Resistant Gram-Negative Organisms. Curr. Infect. Dis. Rep. 2020, 22, 1. [Google Scholar] [CrossRef]
- Losito, A.R.; Raffaelli, F.; Del Giacomo, P.; Tumbarello, M. New Drugs for theTreatment of Pseudomonas aeruginosa Infections with Limited TreatmentOptions: A Narrative Review. Antibiotics 2022, 11, 579. [Google Scholar] [CrossRef]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Quale, J.; Landman, D. Activity of Meropenem Combined with RPX7009, a Novel β-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City. Antimicrob. Agents Chemother. 2015, 59, 4856–4860. [Google Scholar] [CrossRef] [Green Version]
- Novelli, A.; Del Giacomo, P.; Rossolini, G.M.; Tumbarello, M. Meropenem/vaborbactam: A next generation β-lactam β-lactamase inhibitor combination. Expert. Rev. Anti-Infect. Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef]
- Sabet, M.; Tarazi, Z.; Griffith, D.C. Activity of Meropenem-Vaborbactam against Pseudomonas aeruginosa and Acinetobacter baumannii in a Neutropenic Mouse Thigh Infection Model. Antimicrob. Agents Chemother. 2018, 63, e01665-18. [Google Scholar] [CrossRef] [Green Version]
- Carvalhaes, C.G.; Shortridge, D.; Sader, H.S.; Castanheira, M. Activity of Meropenem-Vaborbactam against Bacterial Isolates Causing Pneumonia in Patients in U.S. Hospitals during 2014 to 2018. Antimicrob. Agents Chemother. 2020, 64, e02177-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortridge, D.; Carvalhaes, C.; Deshpande, L.; Castanheira, M. Activity of meropenem/vaborbactam and comparators against Gram-negative isolates from Eastern and Western European patients hospitalized with pneumonia including ventilator-associated pneumonia (2014–19). J. Antimicrob. Chemother. 2021, 76, 2600–2605. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Livermore, D.M.; Warner, M.; Mushtaq, S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2013, 68, 2286–2290. [Google Scholar] [CrossRef] [Green Version]
- Lob, S.H.; Karlowsky, J.A.; Young, K.; Motyl, M.R.; Hawser, S.; Kothari, N.D.; Sahm, D.F. In vitro activity of imipenem-relebactam against resistant phenotypes of Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples—SMART Surveillance Europe 2015–2017. J. Med. Microbiol. 2020, 69, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Jamrozy, D.; Mushtaq, S.; Nichols, W.W.; Young, K.; Woodford, N. AmpC β-lactamase induction by avibactam and relebactam. J. Antimicrob. Chemother. 2017, 72, 3342–3348. [Google Scholar] [CrossRef] [Green Version]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City. Antimicrob. Agents Chemother. 2015, 59, 5029–5031. [Google Scholar] [CrossRef] [Green Version]
- Lob, S.H.; Karlowsky, J.A.; Young, K.; Motyl, M.R.; Hawser, S.; Kothari, N.D.; Gueny, M.E.; Sahm, D.F. Activity of imipenem/relebactam against MDR Pseudomonas aeruginosa in Europe: SMART 2015–17. J. Antimicrob. Chemother. 2019, 74, 2284–2288. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. In Vitro Activity of Imipenem-Relebactam against Clinical Isolates of Gram-Negative Bacilli Isolated in Hospital Laboratories in the United States as Part of the SMART 2016 Program. Antimicrob. Agents Chemother. 2018, 62, e00169-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Hawser, S.P.; Magnet, S.; Young, K.; Motyl, M.R.; Sahm, D.F. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J. Antimicrob. Chemother. 2018, 73, 1872–1879. [Google Scholar] [CrossRef]
- Lob, S.H.; Hackel, M.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program) Antimicrob. Agents Chemother. 2017, 61, e02209-16. [Google Scholar] [CrossRef] [Green Version]
- Karlowsky, J.A.; Lob, S.H.; Raddatz, J.; DePestel, D.D.; Young, K.; Motyl, M.R.; Sahm, D.F. In Vitro Activity of Imipenem/Relebactam and Ceftolozane/Tazobactam Against Clinical Isolates of Gram-negative Bacilli With Difficult-to-Treat Resistance and Multidrug-resistant Phenotypes—Study for Monitoring Antimicrobial Resistance Trends, United States 2015–2017. Clin. Infect. Dis. 2021, 72, 2112–2120. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. In vitro activity of imipenem/relebactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples: SMART Surveillance United States 2015–2017. J. Glob. Antimicrob. Resist. 2020, 21, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Walkty, A.; Karlowsky, J.A.; Baxter, M.R.; Adam, H.J.; Golden, A.; Lagace-Wiens, P.; Zhanel, G.G. In vitro activity of imipenem-relebactam against various resistance phenotypes/genotypes of Enterobacterales and Pseudomonas aeruginosa isolated from patients across Canada as part of the CANWARD study, 2016-2019. Diagn. Microbiol. Infect. Dis. 2021, 101, 115418. [Google Scholar] [CrossRef]
- Lob, S.H.; DePestel, D.D.; DeRyke, C.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. Ceftolozane/tazobactam and imipenem/relebactam cross-susceptibility among clinical isolates of Pseudomonas aeruginosa from patients with respiratory tract infections in ICU and non-ICU wards —SMART United States 2017–2019. Open. Forum Infect. Dis. 2021, 8, ofab320. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Font, M.A.; Cabot, G.; López-Argüello, S.; Zamorano, L.; Juan, C.; Moyá, B.; Oliver, A. Comparative analysis of in vitro dynamics and mechanisms of ceftolozane/tazobactam and imipenem/relebactam resistance development in Pseudomonas aeruginosa XDR high-risk clones. J. Antimicrob. Chemother. 2022, 77, 957–968. [Google Scholar] [CrossRef]
- Reyes, S.; Abdelraouf, K.; Nicolau, D.P. In vivo activity of human-simulated regimens of imipenem alone and in combination with relebactam against Pseudomonas aeruginosa in the murine thigh infection model. J. Antimicrob. Chemother. 2020, 75, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients with Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Yamano, Y. In Vitro Activity of Cefiderocol Against a Broad Range of Clinically Important Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S544–S551. [Google Scholar] [CrossRef] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 2018, 62, e01968-17. [Google Scholar] [CrossRef] [Green Version]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Bleibtreu, A.; Dortet, L.; Bonnin, R.A.; Wyplosz, B.; Sacleux, S.-C.; Mihaila, L.; Dupont, H.; Junot, H.; Bunel, V.; Grall, N.; et al. Susceptibility Testing Is Key for the Success of Cefiderocol Treatment: A Retrospective Cohort Study. Microorganisms 2021, 9, 282. [Google Scholar] [CrossRef]
- Yao, J.; Wang, J.; Chen, M.; Cai, Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front. Med. 2021, 8, 741940. [Google Scholar] [CrossRef]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef]
- Mantzarlis, K.; Deskata, K.; Papaspyrou, D.; Leontopoulou, V.; Tsolaki, V.; Zakynthinos, E.; Makris, D. Incidence and Risk Factors for Blood Stream Infection in Mechanically Ventilated COVID-19 Patients. Antibiotics 2022, 11, 1053. [Google Scholar] [CrossRef]
- Yasmin, M.; Fouts, D.E.; Jacobs, M.R.; Haydar, H.; Marshall, S.H.; White, R.; Dsouza, R.; Lodise, T.P.; Rhoads, D.D.; Hujer, A.M.; et al. Monitoring Ceftazidime-Avibactam and Aztreonam Concentrations in the Treatment of a Bloodstream Infection Caused by a Multidrug-Resistant Enterobacter sp. Carrying Both Klebsiella pneumoniae Carbapenemase–4 and New Delhi Metallo-β-Lactamase–1. Clin. Infect. Dis. 2020, 71, 1095–1098. [Google Scholar] [CrossRef]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase–Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-β-lactamases: The quiet before the storm? Clin. Microbiol. Rev. 2005, 18, 306–325. [Google Scholar] [CrossRef] [Green Version]
- Saravolatz, L.D.; E Stein, G. Plazomicin: A New Aminoglycoside. Clin. Infect. Dis. 2020, 70, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; I Kritsotakis, E.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- Bassetti, M.; Di Pilato, V.; Giani, T.; Vena, A.; Rossolini, G.M.; Marchese, A.; Giacobbe, D.R. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Futur. Microbiol. 2020, 15, 1489–1505. [Google Scholar] [CrossRef] [PubMed]
- Tsivkovski, R.; Totrov, M.; Lomovskaya, O. Biochemical Characterization of QPX7728, a New Ultrabroad-Spectrum β-Lactamase Inhibitor of Serine and Metallo-β-Lactamases. Antimicrob. Agents Chemother. 2020, 64, e00130-20. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Nguyen, N.Q.; Jacobs, M.R.; Bethel, C.R.; Barnes, M.D.; Kumar, V.; Bajaksouzian, S.; Rudin, S.D.; Rather, P.N.; Bhavsar, S.; et al. Strategic approaches to overcome resistance against Gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: Activity of three novel diazabicyclooctanes WCK 5153, zidebactam (WCK 5107), and WCK 4234. J. Med. Chem. 2018, 61, 4067–4086. [Google Scholar] [CrossRef]
- Mushtaq, S.; Vickers, A.; Woodford, N.; Haldimann, A.; Livermore, D.M. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2019, 74, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Asempa, T.E.; Motos, A.; Abdelraouf, K.; Bissantz, C.; Zampaloni, C.; Nicolau, D.P. Meropenem-nacubactam activity against AmpC-overproducing and KPC-expressing Pseudomonas aeruginosa in a neutropenic murine lung infection model. Int. J. Antimicrob. Agents 2020, 55, 105838. [Google Scholar] [CrossRef]
- Asempa, T.E.; Motos, A.; Abdelraouf, K.; Bissantz, C.; Zampaloni, C.; Nicolau, D.P. Efficacy of Human-Simulated Epithelial Lining Fluid Exposure of Meropenem-Nacubactam Combination against Class A Serine β-Lactamase-Producing Enterobacteriaceae in the Neutropenic Murine Lung Infection Model. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Monogue, M.L.; Giovagnoli, S.; Bissantz, C.; Zampaloni, C.; Nicolau, D.P. In Vivo Efficacy of Meropenem with a Novel Non-β-Lactam–β-Lactamase Inhibitor, Nacubactam, against Gram-Negative Organisms Exhibiting Various Resistance Mechanisms in a Murine Complicated Urinary Tract Infection Model. Antimicrob. Agents Chemother. 2018, 62, e02596-17. [Google Scholar] [CrossRef] [Green Version]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef]
- McLeod, S.; Carter, N.; Hackel, M.; Badal, R.; Mueller, J.; Tommasi, R.; Miller, A. The Novel β-lactamase Inhibitor ETX1317 Effectively Restores the Activity of Cefpodoxime against Extended Spectrum β-lactamase (ESBL)- and Carbapenemase-Expressing Enterobacteriaceae Isolated from Recent Urinary Tract Infections, Poster 603. ASM Microbe 2018. Available online: https://www.ihma.com/app/uploads/Entasis_P63_Novel-B-Lactamase_ASM-2018_FINAL.pdf (accessed on 22 December 2022).
- Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.L.; et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01963-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloezen, W.; Melchers, R.J.; Georgiou, P.-C.; Mouton, J.W.; Meletiadis, J. Activity of Cefepime in Combination with the Novel β-Lactamase Inhibitor Taniborbactam (VNRX-5133) against Extended-Spectrum-β-Lactamase-Producing Isolates in In Vitro Checkerboard Assays. Antimicrob. Agents Chemother. 2021, 65, e02338-20. [Google Scholar] [CrossRef]
- Hernández-García, M.; García-Castillo, M.; Ruiz-Garbajosa, P.; Bou, G.; Siller-Ruiz, M.; Pitart, C.; Gracia-Ahufinger, I.; Mulet, X.; Pascual, A.; Tormo, N.; et al. In Vitro Activity of Cefepime-Taniborbactam against Carbapenemase-Producing Enterobacterales and Pseudomonas aeruginosa Isolates Recovered in Spain. Antimicrob. Agents Chemother. 2022, 66, e02161-21. [Google Scholar] [CrossRef]
- Meletiadis, J.; Paranos, P.; Georgiou, P.-C.; Vourli, S.; Antonopoulou, S.; Michelaki, A.; Vagiakou, E.; Pournaras, S. In vitro comparative activity of the new beta-lactamase inhibitor taniborbactam with cefepime or meropenem against Klebsiella pneumoniae and cefepime against Pseudomonas aeruginosa metallo-beta-lactamase-producing clinical isolates. Int. J. Antimicrob. Agents 2021, 58, 106440. [Google Scholar] [CrossRef]
- Safety and Efficacy Study of Cefepime/VNRX-5133 in Patients with Complicated Urinary Tract Infections. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03840148 (accessed on 30 March 2022).
- Lasko, M.J.; Nicolau, D.P.; Asempa, T.E. Clinical exposure–response relationship of cefepime/taniborbactam against Gram-negative organisms in the murine complicated urinary tract infection model. J. Antimicrob. Chemother. 2022, 77, 443–447. [Google Scholar] [CrossRef]
- Bhagwat, S.S.; Legakis, N.J.; Skalidis, T.; Loannidis, A.; Goumenopoulos, C.; Joshi, P.R.; Shrivastava, R.; Palwe, S.R.; Periasamy, H.; Patel, M.V.; et al. In vitro activity of cefepime/zidebactam (WCK 5222) against recent Gram-negative isolates collected from high resistance settings of Greek hospitals. Diagn. Microbiol. Infect. Dis. 2021, 100, 115327. [Google Scholar] [CrossRef]
- Mushtaq, S.; Garello, P.; Vickers, A.; Woodford, N.; Livermore, D.M. Activity of cefepime/zidebactam (WCK 5222) against ‘problem’ antibiotic-resistant Gram-negative bacteria sent to a national reference laboratory. J. Antimicrob. Chemother. 2021, 76, 1511–1522. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Bouchillon, S.K.; Sahm, D.F. In Vitro Activity of WCK 5222 (Cefepime-Zidebactam) against Worldwide Collected Gram-Negative Bacilli Not Susceptible to Carbapenems. Antimicrob. Agents Chemother. 2020, 64, e01432-20. [Google Scholar] [CrossRef] [PubMed]
- Study of Cefepime-Zidebactam (FEP-ZID) in Complicated Urinary Tract Infection (cUTI) or Acute Pyelonephritis (AP). Available online: https://clinicaltrials.gov/ct2/show/NCT04979806 (accessed on 30 March 2022).
- Isler, B.; Harris, P.; Stewart, A.G.; Paterson, D.L. An update on cefepime and its future role in combination with novel beta-lactamase inhibitors for MDR Enterobacterales and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2021, 76, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Klompas, M.; Luyt, C.-E. Ventilator-associated pneumonia in adults: A narrative review. Intensiv. Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [Green Version]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratala, J.; et al. Management of adults with hospital acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American thoracic society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator Associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar]
- Leone, M.; Bouadma, L.; Bouhemad, B.; Brissaud, O.; Dauger, S.; Gibot, S.; Hraiech, S.; Jung, B.; Kipnis, E.; Launey, Y.; et al. Brief summary of French guidelines for the prevention, diagnosis and treatment of hospital-acquired pneumonia in ICU. Ann. Intensive Care 2018, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Chastre, J.; Wolff, M.; Fagon, J.Y.; Chevret, S.; Thomas, F.; Wermert, D.; Clementi, E.; Gonzalez, J.; Jusserand, D.; Asfar, P.; et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: A randomized trial. JAMA 2003, 290, 2588–2598. [Google Scholar] [CrossRef] [PubMed]
- Capellier, G.; Mockly, H.; Charpentier, C.; Annane, D.; Blasco, G.; Desmettre, T.; Roch, A.; Faisy, C.; Cousson, J.; Limat, S.; et al. Early-Onset Ventilator-Associated Pneumonia in Adults Randomized Clinical Trial: Comparison of 8 versus 15 Days of Antibiotic Treatment. PLoS ONE 2012, 7, e41290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrick, T.L.; McElearney, S.T.; Smith, R.L.; Evans, H.L.; Pruett, T.L.; Sawyer, R.G. Duration of Antibiotic Therapy for Ventilator-Associated Pneumonia Caused by Non-Fermentative Gram-Negative Bacilli. Surg. Infect. 2007, 8, 589–598. [Google Scholar] [CrossRef]
- Klompas, M.; Li, L.; Menchaca, J.T.; Gruber, S.; Centers for Disease Control and Prevention Epicenters Program. Ultra short course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings. Clin. Infect. Dis. 2016, 64, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.X.; Wong, G.W. Superinfection associated with prolonged antibiotic use in non-ventilator associated hospital-acquired pneumonia. Int. J. Clin. Pharm. 2021, 43, 1555–1562. [Google Scholar] [CrossRef]
- Sartelli, M.; Catena, F.; Abu-Zidan, F.M.; Ansaloni, L.; Biffl, W.L.; Boermeester, M.A.; Ceresoli, M.; Chiara, O.; Coccolini, F.; De Waele, J.J.; et al. Management of intra-abdominal infections: Recommendations by the WSES 2016 consensus conference. World J. Emerg. Surg. 2017, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Montravers, P.; Lepape, A.; Dubreuil, L.; Gauzit, R.; Pean, Y.; Benchimol, D.; Dupont, H. Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: Results of the French prospective, observational EBIIA study. J. Antimicrob. Chemother. 2009, 63, 785–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takesue, Y.; Uchino, M.; Ikeuchi, H.; Ueda, T.; Nakajima, K. Is fixed short-course antimicrobial therapy justified for patients who are critically ill with intra-abdominal infections? J. Anus Rectum Colon. 2019, 3, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Leone, S.; Damiani, G.; Pezone, I.; Kelly, M.E.; Cascella, M.; Alfieri, A.; Pace, M.C.; Fiore, M. New antimicrobial options for the management of complicated intra-abdominal infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Van Rossem, C.C.; Schreinemacher, M.H.F.; Van Geloven, A.A.W.; Bemelman, W.A. for the Snapshot Appendicitis Collaborative Study Group Antibiotic Duration After Laparoscopic Appendectomy for Acute Complicated Appendicitis. JAMA Surg. 2016, 151, 323–329. [Google Scholar] [CrossRef]
- Basoli, A.; Chirletti, P.; Cirino, E.; D’Ovidio, N.G.; Doglietto, G.B.; Giglio, D.; Giulini, S.M.; Malizia, A.; Taffurelli, M.; Petrovic, J.; et al. A prospective, double-blind, multicenter, randomized trial comparing ertapenem 3 vs >or=5 days in community-acquired intraabdominal infection. J. Gastrointest. Surg. 2008, 12, 592–600. [Google Scholar] [CrossRef]
- Patel, K.; Maguigan, K.L.; Loftus, T.J.; Mohr, A.M.; Shoulders, B.R. Optimal Antibiotic Duration for Bloodstream Infections Secondary to Intraabdominal Infection. J. Surg. Res. 2020, 260, 82–87. [Google Scholar] [CrossRef]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef] [Green Version]
- Hassinger, T.E.; Guidry, C.A.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; Napolitano, L.M.; et al. Longer-Duration Antimicrobial Therapy Does Not Prevent Treatment Failure in High-Risk Patients with Complicated Intra-Abdominal Infections. Surg. Infect. 2017, 18, 659–663. [Google Scholar] [CrossRef]
- Montravers, P.; Tubach, F.; Lescot, T.; Veber, B.; Esposito-Farèse, M.; Seguin, P.; Paugam, C.; Lepape, A.; Meistelman, C.; Cousson, J.; et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomised clinical trial. Intensiv. Care Med. 2018, 44, 300–310. [Google Scholar] [CrossRef]
- Udy, A.A.; Roberts, J.A.; Boots, R.J.; Paterson, D.L.; Lipman, J. Augmented renal clearance: Implications for antibacterial dosing in the critically ill. Clin. Pharmacokinet. 2010, 49, 1–16. [Google Scholar] [CrossRef]
- Hobbs, A.L.V.; Shea, K.M.; Roberts, K.M.; Daley, M.J. Implications of Augmented Renal Clearance on Drug Dosing in Critically Ill Patients: A Focus on Antibiotics. Pharmacother. J. Hum. Pharmacol. Drug. Ther. 2015, 35, 1063–1075. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [PubMed] [Green Version]
- Jager, N.G.L.; van Hest, R.M.; Lipman, J.; Taccone, F.S.; Roberts, J.A. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert. Rev. Clin. Pharmacol. 2016, 9, 961–979. [Google Scholar] [CrossRef] [PubMed]
- Pajot, O.; Burdet, C.; Couffignal, C.; Massias, L.; Armand-Lefevre, L.; Foucrier, A.; Da Silva, D.; Lasocki, S.; Laouénan, C.; Mentec, H.; et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J. Antimicrob. Chemother. 2015, 70, 1487–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, D.; Corona, A.; DE Rosa, F.G.; Gervasoni, C.; Kocic, D.; Marriott, D.J. The management of anti-infective agents in intensive care units: The potential role of a ‘fast’ pharmacology. Expert. Rev. Clin. Pharmacol. 2020, 13, 355–366. [Google Scholar] [CrossRef]
- Cattaneo, D.; Gervasoni, C.; Corona, A. The Issue of Pharmacokinetic-Driven Drug-Drug Interactions of Antibiotics: A Narrative Review. Antibiotics 2022, 11, 1410. [Google Scholar] [CrossRef] [PubMed]
- Torella, J.P.; Chait, R.; Kishony, R. Optimal drug synergy in antimicrobial treatments. PLoS Comput. Biol. 2010, 6, e1000796. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Van Hal, S.; Tong, S.Y.C.; Davis, J.S. Combination Antibiotic Treatment of Serious Methicillin-Resistant Staphylococcus aureus Infections. Semin. Respir. Crit. Care Med. 2015, 36, 003–016. [Google Scholar] [CrossRef] [Green Version]
- Sjövall, F.; Perner, A.; Møller, M.H. Empirical mono- versus combination antibiotic therapy in adult intensive care patients with severe sepsis—A systematic review with meta-analysis and trial sequential analysis. J. Infect. 2016, 74, 331–344. [Google Scholar] [CrossRef]
- Coats, J.; Rae, N.; Nathwani, D. What is the evidence for the duration of antibiotic therapy in Gram-negative bacteraemia caused by urinary tract infection? A systematic review of the literature. J. Glob. Antimicrob. Resist. 2013, 1, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Uno, S.; Hase, R.; Kobayashi, M.; Shiratori, T.; Nakaji, S.; Hirata, N.; Hosokawa, N. Short-course antimicrobial treatment for acute cholangitis with Gram-negative bacillary bacteraemia. Int. J. Infect. Dis. 2017, 55, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, A.; Bertolini, G.; Ricotta, A.M.; Wilson, A.J.P.; Singer, M. Variability of treatment duration for bacteraemia in the critically ill: A multinational survey. J. Antimicrob. Chemother. 2003, 52, 849–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monogue, M.L.; Nicolau, D.P. Antibacterial activity of ceftolozane/tazobactam alone and in combination with other antimicrobial agents against MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018, 73, 942–952. [Google Scholar] [CrossRef] [Green Version]
- Avery, L.M.; Sutherland, C.A.; Nicolau, D.P. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 893–897. [Google Scholar] [CrossRef]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. An Evidence-Based Multidisciplinary Approach Focused on Creating Algorithms for Targeted Therapy of Infection-Related Ventilator-Associated Complications (IVACs) Caused by Pseudomonas aeruginosa and Acinetobacter baumannii in Critically Ill Adult Patients. Antibiotics 2021, 11, 33. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Kalil, A.C. Antibiotic Combination Therapy for Patients With Gram-Negative Septic Shock. Crit. Care Med. 2017, 45, 1933–1936. [Google Scholar] [CrossRef]
- Bornard, L.; Dellamonica, J.; Hyvernat, H.; Girard-Pipau, F.; Molinari, N.; Sotto, A.; Roger, P.-M.; Bernardin, G.; Pulcini, C. Impact of an assisted reassessment of antibiotic therapies on the quality of prescriptions in an intensive care unit. Med. Mal. Infect. 2011, 41, 480–485. [Google Scholar] [CrossRef]
- Leuthner, K.D.; Doem, G.V. Antimicrobial stweardship programs. J. Clin. Microbiol. 2013, 51, 3916–3920. [Google Scholar] [CrossRef] [Green Version]
- Yahav, D.; Franceschini, E.; Koppel, F.; Turjeman, A.; Babich, T.; Bitterman, R.; Neuberger, A.; Ghanem-Zoubi, N.; Santoro, A.; Eliakim-Raz, N.; et al. Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative bacteraemia: A Noninferiority Randomized Controlled Trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.; Pérez-Rodríguez, M.T.; Suárez, M.; Val, N.; Martínez-Lamas, L.; Nodar, A.; Longueira, R.; Crespo, M. Short- versus long-course therapy in gram-negative bacilli bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasan, M.N. Gram-Negative Bloodstream Infection: Implications of Antimicrobial Resistance on Clinical Outcomes and Therapy. Antibiotics 2020, 9, 922. [Google Scholar] [CrossRef] [PubMed]
- Menashe, G.; Borer, A.; Yagupsky, P.; Peled, N.; Gilad, J.; Fraser, D.; Riesenberg, K.; Schlaeffer, F. Clinical significance and impact on mortality of extended-spectrum beta lactamase producing Enterobacteriaceae isolates in nosocomial bacteraemia. Scand. J. Infect. Dis. 2001, 33, 188–193. [Google Scholar] [PubMed]
- Patil, V.C.; Patil, H.V.; Ramteerthkar, M.N.; Kulkarni, R.D. Central venous catheter-related bloodstream infections in the intensive care unit. Indian. J. Crit. Care Med. 2011, 15, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Fabre, V.; Amoah, J.; Cosgrove, S.E.; Tamma, P.D. Antibiotic Therapy for Pseudomonas aeruginosa Bloodstream Infections: How Long Is Long Enough? Clin. Infect. Dis. 2019, 69, 2011–2014. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.N.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Optimal duration of antimicrobial therapy for uncomplicated Gram-negative bloodstream infections. Infection 2017, 45, 613–620. [Google Scholar] [CrossRef]
- Corona, A.; Bertolini, G.; Lipman, J.; Wilson, A.P.; Singer, M. Antibiotic use and impact on outcome from bacteraemic critical illness: The BActeraemia Study in Intensive Care [BASIC]. J. Antimicrob. Chemother. 2010, 65, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Chotiprasitsakul, D.; Han, J.H.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Conley, A.T.; Tolomeo, P.; Wise, J.; Tamma, P.D. Antibacterial Resistance Leadership Group Comparing the Outcomes of Adults With Enterobacteriaceae bacteraemia Receiving Short-Course Versus Prolonged-Course Antibiotic Therapy in a Multicenter, Propensity Score-Matched Cohort. Clin. Infect. Dis. 2018, 66, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Giannella, M.; Pascale, R.; Toschi, A.; Ferraro, G.; Graziano, E.; Furii, F.; Bartoletti, M.; Tedeschi, S.; Ambretti, S.; Lewis, R.E.; et al. Treatment duration for Escherichia coli bloodstream infection and outcomes: Retrospective single-centre study. Clin. Microbiol. Infect. 2018, 24, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruigómez, M.; Fernández-Ruiz, M.; San-Juan, R.; López-Medrano, F.; Orellana, M.; Corbella, L.; Rodríguez-Goncer, I.; Jiménez, P.H.; Aguado, J.M. Impact of duration of antibiotic therapy in central venous catheter-related bloodstream infection due to Gram-negative bacilli. J. Antimicrob. Chemother. 2020, 75, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
Prevalence | ||
---|---|---|
Microorganisms | Nosocomial (*) | Community Acquired (§) |
Pseudomonas spp. | 8–25.3% | |
Pseudomonas aeruginosa | 24–27.8% | 2.8–5.9% |
Acinetobacter spp. | 2.2–41.5% | 0.3% |
Acinetobacter baumanii calcoaceticus complex | 32.7–36% | |
Acinetobacter lwoffii | 4.9% | |
Stenotrophomonas spp. | 19.9% | |
Stenotrophomonas maltophilia | 1.4–8.9% | 0.5% |
Burkholderia pseudomallei | 2.70% | 0.7–4.8% |
Escherichia coli | 24–44% | 29.8–63.5% |
Klebsiella spp. | 3.4–7.6% | |
Klebsiella pneumoniae | 22.5–40% | 3.7–17.6% |
Klebsiella oxytocha | 1.4% | 1.1% |
Enterobacter spp. | 5% | 1.8–1.9% |
Citrobacter spp. | 1.3–1.7% | / |
Proteus mirabilis | 1.5–7% | 1.8–2.6% |
Serratia marcescens | 1.9–11.1% | 0.5–1.4% |
Neisserira meningitidis | / | 0.1–4.7% |
Salmonella typhi | / | 29.6–51.1% |
Shigella spp. | / | 0.1% |
Haemophylus influenzae | / | 9.8% |
Microorganisms | MDR | XDR | PDR | CP-R | ESBL Producer |
---|---|---|---|---|---|
Pseudomonas spp. | 17.4–26.6% | ||||
Pseudomonas aeruginosa | 15.7–39.6% | 8.9–23%% | 2–5.9% | 4.5–35% | 17–90% |
Klebiella spp. | Case-reports-3.9/4.3% | 6.7–8.5% | 2.5–100.0% 18% | ||
Klebsiella pneumoniae | 2–44.6% | 7–26.6% | <1–50% | ||
Klebsiella oxytoca | 2% | 3% | <1% | ||
Escherichia coli | 2–50% | 7.7–11.5% | 5–6.2% | 0.1–12.1% | 0 |
Acinetobacter spp. | 31–70/90% | 12.29% | 56.6–77% | ||
Acinetobacter calcoaceticus baumanii complex | 15–40% | 14.2–20% | 90–99% | ||
Enterobacter spp. | 2–28.7% | 16% | 2.4–6.7% | 0.9–1.7% | |
Enterobacter cloacae | 6–22% | ||||
Peoteus mirabilis | 3.8% | 15.7% | 0.7–1.7 | 4.6% | |
Stenotrophomonas maltophilia | 17–30.5% | 39.4% | / | / | 0 |
Serratia spp. | 30% | 4.7–6.2% | 1.5% | 0.3–1.5% | 0 |
Citrobacter spp. | 34.5% | 1% | <1% | 0.5–1% | 0 |
Antimicrobial Agents | Class | Mechanism of Actions | Susceptibility |
---|---|---|---|
Ceftaroline-avibactam | Inhibitors of serine-β-lactamases | ||
Imipenem-cilastatin-relebactam (formally MK-7655) | Serine lactamase inhibitor reversible, covalent non-β-lactam, β-lactamase inhibitor | Inhibitors of serine-β-lactamases | CP-EnB |
Eravacycline | A novel synthetic fluorocycline | With a potency two to four times greater than tigecycline | CRE |
Aztreonam WCK4234 Ceftazidime + WO2013/030735 meropenem WCK 5153 Aztreonam + FPI-1465 Ceftazidime | Diazabicyclooctanones + (monobactam or ceftazidime or meropenem) | Oxacillinase-producing strains of Acinetobacter baumannii. Antibacterial activity against Pseudomonas aeruginosa and Escherichia coli ESBLs and class A, B, and D carbapenemases. | |
Meropenem + CB618.40/CB-618 | Diazabicyclooctanones + meropenem | Enterobacteriaceae expressing the KPC-2, KPC-3, FOX-5, OXA-48, SHV-11, SHV-27, and/or TEM-1 β-lactamases | |
Meropenem-RPX700 Biapenem-RPX7009 | Boronic acid β-lactamases inhibitor + carbapenems | Many class A and C serine-β-lactamases | |
Benzo(b)thiophene-2-boronic acid | Boronic acid β-lactamases inhibitor + ceftazidime | Many class A and C serine-β-lactamases | |
Cefepime + AA1101 | Cefepime + novel sulfones/clavam | ||
Imipenem + MG96077 | Phosphonates + imipenem | Reducing >90% of the MICs of Pseudomonas aeruginosa and Klebsiella pneumoniae at 4 mg/L resistant to imipenem. | |
Imipenem + MK-8712 Aztreonam + siderophore-monobactam Meropenem Ceftazidime + Syn2190 Cefpirome | Carbapenems + monobactams | Circumvent certain β-lactamases inhibit certain AmpC β-lactamase activity against Acinetobacter spp., which include those with some blaOXAs, P. aeruginosa, Burkholderia spp., and Enterobacteriaceae lower MIC values to the susceptible range against P. aeruginosa demonstrated activity in mouse systemic and urinary tract infection models using P. aeruginosa | |
S-649266 3′-thiobenzoyl-cephalosporin FSI-1671 and FSI-1686 | Novel siderophore cephalosporin Novel 3′-thiobenzoyl-cephalosporin + meropenem Novel carbapenems | A novel catechol-substituted siderophore cephalosporin demonstrated activity against P. aeruginosa, S. maltophilia, K. pneumoniae, and A. baumannii Combined with meropenem, may have activity against P. aeruginosa, S. maltophilia, and Chryseobacterium meningosepticum demonstrated inhibitory activity against class A, B, C, and D β-lactamases. Active against MDR Acinetobacter baumannii, Enterobacteriaceae, and some Pseudomonas aeruginosa active against carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa | |
Bisthiazolidine ME 1071 (a maleic acid) Biapenem-ME1071 | Metallo-β-lactamase-specific inhibitors | Active against Acinetobacter baumannii, Klebsiella pneumoniae, and Providencia rettgeri producing blaNDM-1. The combination with ceftazidime increased its susceptibility to Pseudomonas aeruginosa expressing blaIMP and blaVIM. Decreased MICs for Enterobacteriaceae with blaIMP and blaVIM, but not blaNDM. |
Changes | Effect on Drug PK |
---|---|
Impaired absorption | Reduced bioavailability of orally administered antibiotics |
Hypoalbuminemia | Increased Vd and clearance of highly bound (>80%) antibiotics with increased risk of failing to attain PK/PD targets |
Obesity | Increased Vd and changes in hepatic metabolism and renal excretion, especially in hydrophilic antimicrobials (e.g., β-lactams, vancomycin). Lack of specific dosing recommendations for antibiotics in obese patients |
Renal failure | Impaired clearance of hydrophilic antibiotics with augmented risk of joining over-therapeutic plasma concentrations and undergoing drug-related toxicity (β-lactams, aminoglycosides) |
Hyperfiltration | Increased clearance of hydrophilic antibiotics with increased risk of reaching sub-therapeutic plasma concentrations (β-lactams) |
Modified fluid balance (increased capillary leakage) | Increasing extracellular fluid volume causing the augmentation of the drug Vd and reducing plasma drug concentrations, particularly in case of the hydrophilic antibiotics with low Vd (aminoglycosides, β-lactams) |
Clearance related to CVVH (DF) | CRRT (continuous renal replacement therapy) is associated with increased Vd and clearance of hydrophilic antibiotics |
Factors Influencing Decisions |
---|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona, A.; De Santis, V.; Agarossi, A.; Prete, A.; Cattaneo, D.; Tomasini, G.; Bonetti, G.; Patroni, A.; Latronico, N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics 2023, 12, 1262. https://doi.org/10.3390/antibiotics12081262
Corona A, De Santis V, Agarossi A, Prete A, Cattaneo D, Tomasini G, Bonetti G, Patroni A, Latronico N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics. 2023; 12(8):1262. https://doi.org/10.3390/antibiotics12081262
Chicago/Turabian StyleCorona, Alberto, Vincenzo De Santis, Andrea Agarossi, Anna Prete, Dario Cattaneo, Giacomina Tomasini, Graziella Bonetti, Andrea Patroni, and Nicola Latronico. 2023. "Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review" Antibiotics 12, no. 8: 1262. https://doi.org/10.3390/antibiotics12081262
APA StyleCorona, A., De Santis, V., Agarossi, A., Prete, A., Cattaneo, D., Tomasini, G., Bonetti, G., Patroni, A., & Latronico, N. (2023). Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics, 12(8), 1262. https://doi.org/10.3390/antibiotics12081262