Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China
Abstract
:1. Introduction
2. Results
2.1. Phenotypic DST Results
2.2. Predictive Value of WGS Genotypic DST
2.3. Distributions of Drug Resistance-Associated Mutations
- RFP: Of the 73 RFP-resistant strains, six did not have any mutations. Forty-two strains were detected with the rpoB_p. Ser450Leu site, which had the highest mutation frequency.
- INH: Among the 124 INH-resistant strains, no mutations were detected in 22 strains. The katG_p. Ser315Thr site was detected in 85 strains, which had the highest mutation frequency.
- EMB: Of the 63 EMB-resistant strains, 37 did not contain any mutations. Eleven strains were detected with the embB_p. Met306Val site, which had the highest mutation frequencies.
- LFX: Among the 60 LFX-resistant strains, mutations were not detected in 24. In 15 strains, gyrA_p. mutations were detected at the Asp94Gly site, showing the highest frequency, followed by gyrA_p. Ala90Val (11 strains) and gyrA_p. Asp94Asn (7 strains).
- MFX: For MFX-resistant strains, gyrA_p. Ala90Val and Asp94Gly were the two sites with the highest mutation rates, with three and eight strains in the drug-resistant group, respectively, and 11 and 10 strains in the sensitive group, respectively.
- SM: Out of 159 SM-resistant strains, no mutations was detected in 63 strains; Out of the detected mutant strains, 72 strains showed mutations in the rpsL_p. Lys43Arg site.
- AK: Of the five resistant strains, no mutation was detected in two strains, and the rrs_n.1401A>G mutation was detected in three strains.
- KM: No mutations were detected in 22 of the 28 KM-resistant strains. Three, two, and one strains were detected with mutations at rrs_n.1401A>G, eis_c.-37G>T, and eis_c.-10G>A, respectively.
- CM: Among the 53 resistant strains, no mutations were detected in 50 strains and three were detected with mutated rrs_n.1401A>G.
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Ethics Statement
4.3. Specimen Collection
4.4. Phenotypic DST
4.5. WGS Genotypic DST
4.5.1. DNA Isolation and Purification
4.5.2. Library Construction and Genome Sequencing
4.5.3. Quality Control and Sample Selection
4.5.4. Identification of Drug Resistance-Associated Mutations
4.6. Statistics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe 2023, 4, e20. [Google Scholar] [CrossRef]
- Ategyeka, P.M.; Muhoozi, M.; Naturinda, R.; Kageni, P.; Namugenyi, C.; Kasolo, A.; Kisaka, S.; Kiwanuka, N. Prevalence and factors associated with reported adverse-events among patients on multi-drug-resistant tuberculosis treatment in two referral hospitals in Uganda. BMC Infect. Dis. 2023, 23, 149. [Google Scholar] [CrossRef]
- Atif, M.; Ahmed, W.; Iqbal, M.N.; Ahmad, N.; Ahmad, W.; Malik, I.; Al-Worafi, Y.M. Frequency and Factors Associated with Adverse Events among Multi-Drug Resistant Tuberculosis Patients in Pakistan: A Retrospective Study. Front. Med. 2022, 8, 790718. [Google Scholar] [CrossRef]
- Alvis-Zakzuk, N.J.; Carrasquilla M de los, Á.; Gómez, V.J.; Robledo, J.; Alvis-Guzmán, N.R.; Hernández, J.M. Diagnostic accuracy of three technologies for the diagnosis of multi-drug resistant tuberculosis. Biomédica 2017, 37, 397–407. [Google Scholar] [CrossRef]
- Merker, M.; Egbe, N.F.; Ngangue, Y.R.; Vuchas, C.; Kohl, T.A.; Dreyer, V.; Kuaban, C.; Noeske, J.; Niemann, S.; Sander, M.S. Transmission patterns of rifampicin resistant Mycobacterium tuberculosis complex strains in Cameroon: A genomic epidemiological study. BMC Infect. Dis. 2021, 21, 891. [Google Scholar] [CrossRef]
- Chitpim, N.; Jittikoon, J.; Udomsinprasert, W.; Mahasirimongkol, S.; Chaikledkaew, U. Cost-utility analysis of molecular testing for tuberculosis diagnosis in suspected pulmonary tuberculosis in Thailand. In ClinicoEconomics and Outcomes Research; Talylor Francis Group: Abingdon, UK, 2022; pp. 61–73. [Google Scholar]
- Tram, T.T.B.; Ha, V.T.N.; Trieu, L.P.T.; Ashton, P.M.; Crawford, E.D.; Thu, D.D.A.; Le Quang, N.; Thwaites, G.E.; Walker, T.M.; Anscombe, C.; et al. FLASH-TB: An Application of Next-Generation CRISPR to Detect Drug Resistant Tuberculosis from Direct Sputum. J. Clin. Microbiol. 2023, 61, e01634-22. [Google Scholar] [CrossRef]
- Syed, R.R.; Catanzaro, D.G.; Colman, R.E.; Cooney, C.G.; Linger, Y.; Kukhtin, A.V.; Holmberg, R.C.; Norville, R.; Crudu, V.; Ciobanu, N.; et al. Clinical Evaluation of the XDR-LFC Assay for the Molecular Detection of Isoniazid, Rifampin, Fluoroquinolone, Kanamycin, Capreomycin, and Amikacin Drug Resistance in a Prospective Cohort. J. Clin. Microbiol. 2023, 61, e01478-22. [Google Scholar] [CrossRef]
- Malinga, L.; Brand, J.; van Rensburg, C.J.; Cassell, G.; van der Walt, M. Investigation of isoniazid and ethionamide cross-resistance by whole genome sequencing and association with poor treatment outcomes of multidrug-resistant tuberculosis patients in South Africa. Int. J. Mycobacteriol. 2016, 5, S36–S37. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, V.; Kivelä, P.; Haanperä, M.; Soini, H.; Vasankari, T. Multidrug-resistant tuberculosis in Finland: Treatment outcome and the role of whole-genome sequencing. ERJ Open Res. 2022, 8, 00214-2022. [Google Scholar] [CrossRef]
- Penn-Nicholson, A.; Georghiou, S.B.; Ciobanu, N.; Kazi, M.; Bhalla, M.; David, A.; Conradie, F.; Ruhwald, M.; Crudu, V.; Rodrigues, C.; et al. Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: A cross-sectional multicentre diagnostic accuracy study. Lancet Infect. Dis. 2022, 22, 242–249. [Google Scholar] [CrossRef]
- Yadav, R.N.; Bhalla, M.; Kumar, G.; Sah, G.C.; Dewan, R.K.; Singhal, R. Diagnostic utility of GenoType MTBDRsl assay for the detection of moxifloxacin-resistant mycobacterium tuberculosis, as compared to phenotypic method and whole-genome sequencing. Int. J. Mycobacteriol. 2022, 11, 183–189. [Google Scholar] [PubMed]
- Wu, S.H.; Xiao, Y.X.; Hsiao, H.C.; Jou, R. Development and Assessment of a Novel Whole-Gene-Based Targeted Next-Generation Sequencing Assay for Detecting the Susceptibility of Mycobacterium tuberculosis to 14 Drugs. Microbiol. Spectr. 2022, 10, e02605-22. [Google Scholar] [CrossRef] [PubMed]
- Porto, D.A.F.D.; Monteserin, J.; Campos, J.; Sosa, E.J.; Matteo, M.; Serral, F.; Yokobori, N.; Benevento, A.F.; Poklepovich, T.; Pardo, A.; et al. Five-year microevolution of a multidrug-resistant Mycobacterium tuberculosis strain within a patient with inadequate compliance to treatment. BMC Infect. Dis. 2021, 21, 394. [Google Scholar]
- Olawoye, I.B.; Uwanibe, J.N.; Kunle-Ope, C.N.; Davies-Bolorunduro, O.F.; Abiodun, T.A.; Audu, R.A.; Salako, B.L.; Happi, C.T. Whole genome sequencing of clinical samples reveals extensively drug resistant tuberculosis (XDR TB) strains from the Beijing lineage in Nigeria, West Africa. Sci. Rep. 2021, 11, 17387. [Google Scholar] [CrossRef]
- Tekin, K.; Albay, A.; Simsek, H.; Sig, A.K.; Guney, M. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drug-resistant Tuberculosis Cases. Eurasian J. Med. 2017, 49, 183. [Google Scholar] [CrossRef]
- Srinivasan, V.; Ha, V.T.N.; Vinh, D.N.; Thai, P.V.K.; Ha, D.T.M.; Lan, N.H.; Hai, H.T.; Walker, T.M.; A Thu, D.D.; Dunstan, S.J.; et al. Sources of Multidrug Resistance in Patients with Previous Isoniazid-Resistant Tuberculosis Identified Using Whole Genome Sequencing: A Longitudinal Cohort Study. Clin. Infect. Dis. 2020, 71, e532–e539. [Google Scholar] [CrossRef] [Green Version]
- Bainomugisa, A.; Lavu, E.; Pandey, S.; Majumdar, S.; Banamu, J.; Coulter, C.; Marais, B.; Coin, L.; Graham, S.M.; du Cros, P. Evolution and spread of a highly drug resistant strain of Mycobacterium tuberculosis in Papua New Guinea. BMC Infect. Dis. 2022, 22, 437. [Google Scholar] [CrossRef]
- Tamilzhalagan, S.; Shanmugam, S.; Selvaraj, A.; Suba, S.; Suganthi, C.; Moonan, P.K.; Surie, D.; Sathyanarayanan, M.K.; Gomathi, N.S.; Jayaba, L.; et al. Whole-Genome Sequencing to Identify Missed Rifampicin and Isoniazid Resistance among Tuberculosis Isolates—Chennai, India, 2013–2016. Front. Microbiol. 2021, 12, 720436. [Google Scholar] [CrossRef]
- Moreno-Molina, M.; Comas, I.; Furió, V. The future of TB resistance diagnosis: The essentials on whole genome sequencing and rapid testing methods. Arch. Bronconeumol. 2019, 55, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Shea, J.; Halse, T.A.; Kohlerschmidt, D.; Lapierre, P.; Modestil, H.A.; Kearns, C.H.; Dworkin, F.F.; Rakeman, J.L.; Escuyer, V.; Musser, K.A. Low-level rifampin resistance and rpoB mutations in Mycobacterium tuberculosis: An analysis of whole-genome sequencing and drug susceptibility test data in New York. J. Clin. Microbiol. 2021, 59, e01885-20. [Google Scholar] [CrossRef]
- Yu, M.C.; Hung, C.S.; Huang, C.K.; Wang, C.H.; Liang, Y.C.; Lin, J.C. Differential Impact of the rpoB Mutant on Rifampin and Rifabutin Resistance Signatures of Mycobacterium tuberculosis Is Revealed Using a Whole-Genome Sequencing Assay. Microbiol. Spectr. 2022, 10, e00754-22. [Google Scholar] [CrossRef] [PubMed]
- Finci, I.; Albertini, A.; Merker, M.; Andres, S.; Bablishvili, N.; Barilar, I.; Cáceres, T.; Crudu, V.; Gotuzzo, E.; Hapeela, N.; et al. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: A multicentre observational study. Lancet Microbe 2022, 3, e672–e682. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tan, G.; Sha, W.; Liu, H.; Yang, J.; Guo, Y.; Shen, X.; Wu, Z.; Shen, H.; Yu, F. Use of Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Complex Drug Resistance from Early Positive Liquid Cultures. Teo JWP, ed. Microbiol. Spectr. 2022, 10, e02516-21. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Gui, X.; Wu, Z.; Zhang, Y.; Yan, L. Prediction of drug resistance profile of multidrug-resistant Mycobacterium tuberculosis (MDR-MTB) isolates from newly diagnosed case by whole genome sequencing (WGS): A study from a high tuberculosis burden country. BMC Infect. Dis. 2022, 22, 499. [Google Scholar] [CrossRef]
- Kamolwat, P.; Nonghanphithak, D.; Chaiprasert, A.; Smithtikarn, S.; Pungrassami, P.; Faksri, K. Diagnostic performance of whole-genome sequencing for identifying drug-resistant TB in Thailand. Int. J. Tuberc. Lung Dis. 2021, 25, 754–760. [Google Scholar] [CrossRef]
- Tania, T.; Sudarmono, P.; Kusumawati, R.L.; Rukmana, A.; Pratama, W.A.; Regmi, S.M.; Kaewprasert, O.; Chaiprasert, A.; Chongsuvivatwong, V.; Faksri, K. Whole-genome sequencing analysis of multidrug-resistant Mycobacterium tuberculosis from Java, Indonesia. J. Med. Microbiol. 2020, 69, 1013–1019. [Google Scholar] [CrossRef]
- Kardan-Yamchi, J.; Kazemian, H.; Battaglia, S.; Abtahi, H.; Foroushani, A.R.; Hamzelou, G.; Cirillo, D.M.; Ghodousi, A.; Feizabadi, M.M. Whole genome sequencing results associated with minimum inhibitory concentrations of 14 anti-tuberculosis drugs among rifampicin-resistant isolates of Mycobacterium tuberculosis from Iran. J. Clin. Med. 2020, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kumar, C.; Shrivastava, K.; Chauhan, V.; Singh, A.; Arora, R.; Giri, A.; Cabibbe, A.M.; Sharma, N.K.; Spitaleri, A.; et al. Whole genome sequencing of isoniazid monoresistant clinical isolates of Mycobacterium tuberculosis reveals novel genetic polymorphisms. Tuberculosis 2022, 133, 102173. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Wang, J.; Chen, S.; Wu, B.; Zhou, L.; Pan, A.; Wang, W.; Wang, X. Longitudinal analysis of prevalence and risk factors of rifampicin-resistant tuberculosis in Zhejiang, China. BioMed Res. Int. 2020, 2020, 3159482. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Phelan, J.E.; O’sullivan, D.M.; Machado, D.; Ramos, J.; Oppong, Y.E.A.; Campino, S.; O’grady, J.; McNerney, R.; Hibberd, M.L.; Viveiros, M.; et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, T.M.; Miotto, P.; Köser, C.U.; Fowler, P.W.; Knaggs, J.; Iqbal, Z.; Hunt, M.; Chindelevitch, L.; Farhat, M.R.; Cirillo, D.M.; et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe 2022, 3, e265–e273. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R. R: A Language and Environment for Statistical Computing; R Core Team R: Vienna, Austria, 2013. [Google Scholar]
- Chen, T.; Chen, X.; Zhang, S.; Zhu, J.; Tang, B.; Wang, A.; Dong, L.; Zhang, Z.; Yu, C.; Sun, Y.; et al. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genom. Proteom. Bioinform. 2021, 19, 578–583. [Google Scholar] [CrossRef] [PubMed]
- CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022, 50, D27–D38. [Google Scholar] [CrossRef] [PubMed]
Drug | Resistance (n, %) |
---|---|
RFP | 73 (6.60) |
INH | 124 (11.22) |
EMB | 63 (5.70) |
LFX | 60 (5.43) |
MFX | 28 (2.53) |
SM | 159 (14.39) |
AK | 5 (0.05) |
KM | 28 (2.53) |
CM | 53 (4.80) |
Drug | Phenotypically Resistant (n, %) | Phenotypically Sensitive (n, %) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | ||
---|---|---|---|---|---|---|---|---|
Genetically Resistant | Genetically Sensitive | Genetically Resistant | Genetically Sensitive | |||||
RFP | 67 (91.8) | 6 (8.2) | 10 (1.0) | 1022 (99.0) | 91.78 | 99.03 | 87.01 | 99.42 |
INH | 102 (82.3) | 22 (17.7) | 16 (1.6) | 965 (98.4) | 82.26 | 98.37 | 86.44 | 97.77 |
EMB | 26 (41.3) | 37 (58.7) | 21 (2.0) | 1021 (98.0) | 41.27 | 97.98 | 55.32 | 96.50 |
LFX | 36 (60.0) | 24 (40.0) | 9 (0.6) | 1036 (99.4) | 60.00 | 99.14 | 80.00 | 97.74 |
MFX | 15 (53.6) | 13 (46.4) | 30 (2.8) | 1047 (97.2) | 53.57 | 97.21 | 33.33 | 98.77 |
SM | 96 (60.4) | 63 (39.6) | 11 (1.2) | 935 (98.8) | 60.38 | 98.84 | 89.72 | 93.69 |
AK | 3 (60.0) | 2 (40.0) | 0 (0) | 1100 (100.0) | 60.00 | 100.00 | 100.00 | 99.82 |
KM | 6 (21.4) | 22 (78.6) | 0 (0) | 1077 (100.0) | 21.43 | 100.00 | 100.00 | 98.00 |
CM | 3 (5.7) | 50 (94.3) | 3 (0.3) | 1049 (99.7) | 5.66 | 99.71 | 50.00 | 95.50 |
Phenotypic DST | Group | n/% # | RFP | INH | INH | EMB | EMB | SM | SM | SM | MFX | MFX | LFX | LFX | AK | AK | KM | KM | CM | CM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rpoB | inhA | katG | embA | embB | gid | rpsL | rrs | gyrA | gyrB | gyrA | gyrB | eis | rrs | eis | rrs | rrs | tlyA | |||
Resistant | A | n | 5 | 104 | 7 | 0 | 26 | 48 | 0 | 0 | 0 | 26 | 0 | 56 | 5 | 0 | 0 | 0 | 0 | 0 |
% | 6.9 | 83.9 | 5.6 | 0 | 41.4 | 30.2 | 0 | 0 | 0 | 92.9 | 0 | 93.3 | 100 | 0 | 0 | 0 | 0 | 0 | ||
B | n | 1 | 7 | 25 | 62 | 11 | 105 | 78 | 149 | 13 | 2 | 24 | 4 | 0 | 2 | 25 | 25 | 50 | 53 | |
% | 1.3 | 5.6 | 20.2 | 98.4 | 17.5 | 66.0 | 49.1 | 93.7 | 46.4 | 7.1 | 40.0 | 6.7 | 0 | 40.0 | 89.3 | 89.3 | 94.3 | 100 | ||
C | n | 55 | 10 | 16 | 0 | 20 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
% | 75.4 | 8.1 | 12.9 | 0 | 31.6 | 2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
D | n | 12 | 3 | 76 | 1 | 6 | 2 | 81 | 10 | 15 | 0 | 36 | 0 | 0 | 3 | 3 | 3 | 3 | 0 | |
% | 16.4 | 2.4 | 61.3 | 1.6 | 9.5 | 1.3 | 50.9 | 6.3 | 53.6 | 0 | 60.0 | 0 | 0 | 60.0 | 10.7 | 10.7 | 5.7 | 0 | ||
Total | n | 73 | 124 | 124 | 63 | 63 | 159 | 159 | 159 | 28 | 28 | 60 | 60 | 5 | 5 | 28 | 28 | 53 | 53 | |
% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Sensitive | A | n | 979 | 910 | 245 | 1 | 757 | 216 | 1 | 0 | 0 | 989 | 0 | 959 | 965 | 0 | 0 | 0 | 0 | 0 |
% | 94.9 | 92.8 | 25.0 | 0.1 | 72.6 | 22.8 | 0.1 | 0 | 0 | 91.8 | 0 | 91.8 | 87.7 | 0 | 0 | 0 | 0 | 0 | ||
B | n | 43 | 58 | 733 | 1041 | 264 | 725 | 940 | 945 | 1049 | 86 | 1038 | 84 | 135 | 1100 | 942 | 1077 | 1052 | 1052 | |
% | 4.2 | 5.9 | 74.7 | 99.9 | 25.4 | 76.6 | 99.4 | 99.9 | 97.4 | 8.0 | 99.3 | 8.0 | 12.3 | 100 | 87.5 | 100 | 100 | 100 | ||
C | n | 10 | 13 | 1 | 0 | 15 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 135 | 0 | 0 | 0 | |
% | 0.9 | 1.3 | 0.1 | 0 | 1.4 | 0.1 | 0 | 0 | 0 | 0.2 | 0 | 0.2 | 0 | 0 | 12.5 | 0 | 0 | 0 | ||
D | n | 0 | 0 | 2 | 0 | 6 | 4 | 5 | 1 | 28 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
% | 0 | 0 | 0.2 | 0 | 0.6 | 0.5 | 0.5 | 0.1 | 2.6 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Total | n | 1032 | 981 | 981 | 1042 | 1042 | 946 | 946 | 946 | 1077 | 1077 | 1045 | 1045 | 1100 | 1100 | 1077 | 1077 | 1052 | 1052 | |
% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Lu, Y.; Zhu, Y.; Wu, K.; Chen, S.; Zhou, L.; Wang, F.; Peng, Y.; Li, X.; Pan, J.; et al. Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China. Antibiotics 2023, 12, 1257. https://doi.org/10.3390/antibiotics12081257
Zhang M, Lu Y, Zhu Y, Wu K, Chen S, Zhou L, Wang F, Peng Y, Li X, Pan J, et al. Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China. Antibiotics. 2023; 12(8):1257. https://doi.org/10.3390/antibiotics12081257
Chicago/Turabian StyleZhang, Mingwu, Yewei Lu, Yelei Zhu, Kunyang Wu, Songhua Chen, Lin Zhou, Fei Wang, Ying Peng, Xiangchen Li, Junhang Pan, and et al. 2023. "Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China" Antibiotics 12, no. 8: 1257. https://doi.org/10.3390/antibiotics12081257
APA StyleZhang, M., Lu, Y., Zhu, Y., Wu, K., Chen, S., Zhou, L., Wang, F., Peng, Y., Li, X., Pan, J., Chen, B., Liu, Z., & Wang, X. (2023). Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China. Antibiotics, 12(8), 1257. https://doi.org/10.3390/antibiotics12081257