Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Identification of ESBL/AmpC-Producing E. coli
4.3. PCR Analysis for Resistance Genes and E. coli Phylogroup
4.4. Antimicrobial Susceptibility Testing
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 3 November 2022).
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Safia Chenouf, N.; Cunha, R.; Martins, C.; Pimenta, P.; Pereira, A.R.; Martínez-Álvarez, S.; Ramos, S.; Silva, V.; Igrejas, G.; et al. Antimicrobial Resistance Genes and Diversity of Clones among ESBL-and Acquired AmpC-Producing Escherichia coli Isolated from Fecal Samples of Healthy and Sick Cats in Portugal. Antibiotics 2021, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.E.; Pitout, J.D. Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet. Microbiol. 2014, 170, 10–18. [Google Scholar] [CrossRef]
- World Health Organization. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach: Implementation and Opportunities; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria and Repealing Implementing Decision 2013/652/EU. 2020. Available online: http://data.europa.eu/eli/dec_impl/2020/1729/oj (accessed on 7 November 2022).
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Javed, M.U.; Ijaz, M.; Fatima, Z.; Anjum, A.A.; Aqib, A.I.; Ali, M.M.; Rehman, A.; Ahmed, A.; Ghaffar, A. Frequency and antimicrobial susceptibility of methicillin and vancomycin-resistant Staphylococcus aureus from bovine milk. Pak. Vet. J. 2021, 41, 463–468. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, W.; Wu, J.; Liu, X.; Lin, J.; Ji, X.; Lin, H.; Wang, J.; Jiang, H.; Zhou, Q.; et al. Large-Scale Studies on Antimicrobial Resistance and Molecular Characterization of Escherichia coli from Food Animals in Developed Areas of Eastern China. Microbiol. Spectr. 2022, 10, e0201522. [Google Scholar] [CrossRef] [PubMed]
- Overgaauw, P.; Vinke, C.M.; Hagen, M.; Lipman, L. A One Health Perspective on the Human-Companion Animal Relationship with Emphasis on Zoonotic Aspects. Int. J. Environ. Res. Public Health 2020, 17, 3789. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats-A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Formenti, N.; Grassi, A.; Parisio, G.; Romeo, C.; Guarneri, F.; Birbes, L.; Pitozzi, A.; Scali, F.; Maisano, A.M.; Boniotti, M.B.; et al. Extended-Spectrum-β-Lactamase-and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors. Antibiotics 2021, 10, 1251. [Google Scholar] [CrossRef]
- Melo, L.C.; Oresco, C.; Leigue, L.; Netto, H.M.; Melville, P.A.; Benites, N.R.; Saras, E.; Haenni, M.; Lincopan, N.; Madec, J.Y. Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased companion animals in Brazil. Vet. Microbiol. 2018, 221, 59–66. [Google Scholar] [CrossRef] [PubMed]
- European Pet Food Federation. Available online: https://europeanpetfood.org/about/statistics/ (accessed on 30 November 2022).
- Zogg, A.L.; Simmen, S.; Zurfluh, K.; Stephan, R.; Schmitt, S.N.; Nüesch-Inderbinen, M. High Prevalence of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Among Clinical Isolates From Cats and Dogs Admitted to a Veterinary Hospital in Switzerland. Front. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccolo, F.L.; Belas, A.; Foti, M.; Fisichella, V.; Marques, C.; Pomba, C. Detection of multidrug resistance and extended-spectrum/plasmid-mediated AmpC beta-lactamase genes in Enterobacteriaceae isolates from diseased cats in Italy. J. Feline Med. Surg. 2020, 22, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Gargano, V.; Gambino, D.; Orefice, T.; Cirincione, R.; Castelli, G.; Bruno, F.; Interrante, P.; Pizzo, M.; Spada, E.; Proverbio, D.; et al. Can Stray Cats Be Reservoirs of Antimicrobial Resistance? Vet. Sci. 2022, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Dazio, V.; Nigg, A.; Schmidt, J.S.; Brilhante, M.; Mauri, N.; Kuster, S.P.; Brawand, S.G.; Schüpbach-Regula, G.; Willi, B.; Endimiani, A.; et al. Acquisition and carriage of multidrug-resistant organisms in dogs and cats presented to small animal practices and clinics in Switzerland. J. Vet. Intern. Med. 2021, 35, 970–979. [Google Scholar] [CrossRef]
- Coolen, J.P.M.; den Drijver, E.P.M.; Verweij, J.J.; Schildkraut, J.A.; Neveling, K.; Melchers, W.J.G.; Kolwijck, E.; Wertheim, H.F.L.; Kluytmans, J.A.J.W.; Huynen, M.A. Genome-wide analysis in Escherichia coli unravels a high level of genetic homoplasy associated with cefotaxime resistance. Microb. Genom. 2021, 7, 000556. [Google Scholar] [CrossRef]
- Silva, J.; Menezes, J.; Marques, C.; Pomba, C.F. Companion Animals-An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics 2022, 11, 533. [Google Scholar] [CrossRef]
- Weese, J.S.; O’Brien, T.; Bateman, S. Fecal shedding of extended-spectrum beta-lactamase-producing Enterobacterales in cats admitted to an animal shelter. J. Feline Med. Surg. 2022, 24, 1301–1304. [Google Scholar] [CrossRef]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef] [Green Version]
- Sfaciotte, R.; Parussolo, L.; Melo, F.D.; Wildemann, P.; Bordignon, G.; Israel, N.D.; Leitzke, M.; Wosiacki, S.R.; Salbego, F.Z.; da Costa, U.M.; et al. Identification and Characterization of Multidrug-Resistant Extended-Spectrum Beta-Lactamase-Producing Bacteria from Healthy and Diseased Dogs and Cats Admitted to a Veterinary Hospital in Brazil. Microb. Drug Resist. 2021, 27, 855–864. [Google Scholar] [CrossRef]
- Abbas, R.; Nawaz, Z.; Siddique, A.B.; Aslam, R.; Rafique, A.; Zahoor, M.A.; Qamar, M.U.; Ahmad, M.Z.; Jalees, M.M.; Qasim, M.; et al. Molecular detection of biofilm production among multidrug resistant isolates of Pseudomonas aeruginosa from meat samples. Pak. Vet. J. 2022, 42, 505–510. [Google Scholar]
- Liebana, E.; Carattoli, A.; Coque, T.M.; Hasman, H.; Magiorakos, A.P.; Mevius, D.; Peixe, L.; Poirel, L.; Schuepbach-Regula, G.; Torneke, K.; et al. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: An EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. 2013, 56, 1030–1037. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, P.; Huang, T.D.; Bouchahrouf, W.; Bauraing, C.; Berhin, C.; El Garch, F.; Glupczynski, Y.; ComPath Study Group. Characterization of ESBL-and AmpC-Producing Enterobacteriaceae from Diseased Companion Animals in Europe. Microb. Drug. Resist. 2015, 21, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Gracia, R.C.; Cortés-Cortés, G.; Lozano-Zarain, P.; Bello, F.; Martínez-Laguna, Y.; Torres, C. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet. J. 2015, 203, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Coolen, J.P.M.; den Drijver, E.P.M.; Kluytmans, J.A.J.W.; Verweij, J.J.; Lamberts, B.A.; Soer, J.A.C.J.; Verhulst, C.; Wertheim, H.F.L.; Kolwijck, E. Development of an algorithm to discriminate between plasmid- and chromosomal-mediated AmpC β-lactamase production in Escherichia coli by elaborate phenotypic and genotypic characterization. J. Antimicrob. Chemother. 2019, 74, 3481–3488. [Google Scholar] [CrossRef]
- Carattoli, A.; Lovari, S.; Franco, A.; Cordaro, G.; Di Matteo, P.; Battisti, A. Extended-spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob. Agents Chemother. 2005, 49, 833–835. [Google Scholar] [CrossRef] [Green Version]
- EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance (V 2.0 July 2017). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 7 November 2022).
- Miller, S.; Humphries, R.M. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae. Expert. Rev. Anti. Infect. Ther. 2016, 14, 705–717. [Google Scholar] [CrossRef]
- Vlek, A.L.; Frentz, D.; Haenen, A.; Bootsma, H.J.; Notermans, D.W.; Frakking, F.N.; de Greeff, S.C.; Leenstra, T.; ISIS-AR study group. Detection and epidemiology of carbapenemase producing Enterobacteriaceae in the Netherlands in 2013-2014. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1089–1096. [Google Scholar] [CrossRef]
- Tamma, P.D.; Huang, Y.; Opene, B.N.; Simner, P.J. Determining the Optimal Carbapenem MIC That Distinguishes Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 60, 6425–6429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, D.S.Y.; Altorf-van der Kuil, W.; Vlek, A.L.M.; Schouls, L.M.; Schoffelen, A.F. Routinely available antimicrobial susceptibility information can be used to increase the efficiency of screening for carbapenemase-producing Enterobacteriaceae. J. Med. Microbiol. 2020, 69, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Song, W.; Jeong, S.H. Molecular Characteristics of NDM-5-Producing Escherichia coli from a Cat and a Dog in South Korea. Microb. Drug Resist. 2020, 26, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.D.; Peak, L.; Tyson, G.H.; Reimschuessel, R.; Ceric, O.; Rankin, S.C. New Delhi Metallo-β-Lactamase-5–Producing Escherichia coli in Companion Animals, United States. Emerg. Infect. Dis. 2020, 26, 381–383. [Google Scholar] [CrossRef] [Green Version]
- Bortolami, A.; Zendri, F.; Maciuca, E.I.; Wattret, A.; Ellis, C.; Schmidt, V.; Pinchbeck, G.; Timofte, D. Diversity, Virulence, and Clinical Significance of Extended-Spectrum β-Lactamase- and pAmpC-Producing Escherichia coli From Companion Animals. Front. Microbiol. 2019, 10, 1260. [Google Scholar] [CrossRef] [Green Version]
- Giufrè, M.; Mazzolini, E.; Cerquetti, M.; Brusaferro, S.; CCM2015 One-Health ESBL-producing Escherichia coli Study Group. Extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in humans and from food-producing animals in Italy: A ‘One Health’ study. Int. J. Antimicrob. Agents 2021, 58, 106433. [Google Scholar] [CrossRef]
- Zhou, Y.; Ji, X.; Liang, B.; Jiang, B.; Li, Y.; Yuan, T.; Zhu, L.; Liu, J.; Guo, X.; Sun, Y. Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. Antibiotics 2022, 11, 1506. [Google Scholar] [CrossRef]
- Jakobsen, L.; Garneau, P.; Kurbasic, A.; Bruant, G.; Stegger, M.; Harel, J.; Jensen, K.S.; Brousseau, R.; Hammerum, A.M.; Frimodt-Møller, N. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J. Med. Microbiol. 2011, 60, 1502–1511. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Walther, B.; Tedin, K.; Lübke-Becker, A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet. Microbiol. 2017, 200, 71–78. [Google Scholar] [CrossRef]
- Ortiz-Díez, G.; Mengíbar, R.L.; Turrientes, M.C.; Artigao, M.B.; Gallifa, R.L.; Tello, A.M.; Pérez, C.F.; Santiago, T.A. Prevalence, incidence and risk factors for acquisition and colonization of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae from dogs attended at a veterinary hospital in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2023, 92, 101922. [Google Scholar] [CrossRef]
- Shnaiderman-Torban, A.; Navon-Venezia, S.; Kelmer, E.; Cohen, A.; Paitan, Y.; Arielly, H.; Steinman, A. Extended-Spectrum β-Lactamase-Producing Enterobacterales Shedding by Dogs and Cats Hospitalized in an Emergency and Critical Care Department of a Veterinary Teaching Hospital. Antibiotics 2020, 9, 545. [Google Scholar] [CrossRef]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef]
- Isolation of ESBL-, AmpC- and Carbapenemase-Producing E. coli from Caecal Samples (V 7 2019). Available online: https://www.eurl-ar.eu/CustomerData/Files/Folders/21-protocols/530_esbl-ampc-cpeprotocol-version-caecal-v7-09-12-19.pdf (accessed on 6 November 2022).
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monstein, H.J.; Ostholm-Balkhed, A.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Saladin, M.; Cao, V.T.; Lambert, T.; Donay, J.L.; Herrmann, J.L.; Ould-Hocine, Z.; Verdet, C.; Delisle, F.; Philippon, A.; Arlet, G. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS. Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, S.; Weill, F.X.; Cloeckaert, A.; Vrints, M.; Mairiaux, E.; Praud, K.; Dierick, K.; Wildemauve, C.; Godard, C.; Butaye, P.; et al. Clonal emergence of extended-spectrum beta-lactamase (CTX-M-2)-producing Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000 to 2003). J. Clin. Microbiol. 2006, 44, 2897–2903. [Google Scholar] [CrossRef] [Green Version]
- Jouini, A.; Vinué, L.; Slama, K.B.; Sáenz, Y.; Klibi, N.; Hammami, S.; Boudabous, A.; Torres, C. Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 2007, 60, 1137–1141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Ni, Y.; Jiang, Y.; Yuan, F.; Han, L.; Li, M.; Liu, H.; Yang, L.; Lu, Y. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J. Clin. Microbiol. 2005, 43, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmelnitsky, I.; Carmeli, Y.; Leavitt, A.; Schwaber, M.J.; Navon-Venezia, S. CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Agents Chemother. 2005, 49, 4745–4750. [Google Scholar] [CrossRef] [Green Version]
- Garrec, H.; Drieux-Rouzet, L.; Golmard, J.L.; Jarlier, V.; Robert, J. Comparison of nine phenotypic methods for detection of extended-spectrum beta-lactamase production by Enterobacteriaceae. J. Clin. Microbiol. 2011, 49, 1048–1057. [Google Scholar] [CrossRef] [Green Version]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corvec, S.; Prodhomme, A.; Giraudeau, C.; Dauvergne, S.; Reynaud, A.; Caroff, N. Most Escherichia coli strains overproducing chromosomal AmpC beta-lactamase belong to phylogenetic group A. J. Antimicrob. Chemother. 2007, 60, 872–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter-Getzlaff, S.; Polsfuss, S.; Poledica, M.; Hombach, M.; Giger, J.; Böttger, E.C.; Zbinden, R.; Bloemberg, G.V. Detection of AmpC beta-lactamase in Escherichia coli: Comparison of three phenotypic confirmation assays and genetic analysis. J. Clin. Microbiol. 2011, 49, 2924–2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; ISBN 978-1-68440-167-3. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Anpuanandam, K.; Selvarajah, G.T.; Choy, M.; Ng, S.W.; Kumar, K.; Ali, R.M.; Rajendran, S.K.; Ho, K.L.; Tan, W.S. Molecular detection and characterization of Domestic Cat Hepadnavirus (DCH) from blood and liver tissues of cats in Malaysia. BMC Vet. Res. 2021, 17, 9. [Google Scholar] [CrossRef]
Population Characteristics | No. (%) | No. ESBL/AmpC-Positive (%) | p Value a | |
---|---|---|---|---|
Sex | Male | 54 (55.7) | 5 (9.3) | 0.22 |
Female | 43 (44.3) | 1 (2.3) | ||
Age b | <2 years | 55 (57.9) | 3 (5.5) | 1 |
≥2 years | 40 (42.1) | 3 (7.5) | ||
Type of ownership | Stray | 50 (51.5) | 2 (4.0) | 0.43 |
Owned | 47 (48.5) | 4 (8.5) | ||
Clinical status | Healthy | 70 (72.2) | 2 (2.9) | 0.049 |
Unhealthy | 27 (27.8) | 4 (14.8) | ||
Clinical syndrome at admission | Gastrointestinal | 12 (44.4) | 2 (16.7) | nd |
Respiratory | 8 (29.6) | 1 (12.5) | ||
Urogenital | 2 (7.4) | 0 (0) | ||
Systemic | 2(7.4) | 1 (50) | ||
Dermatological | 1 (3.7) | 0 (0) | ||
Neurologic | 1 (3.7) | 0 (0) | ||
Traumatic | 1 (3.7) | 0 (0) | ||
Hospitalization | Yes | 10 (10.3) | 2 (20.0) | 0.11 |
No | 87 (89.7) | 4 (4.6) | ||
Previous antibiotic therapy | Yes | 25 (25.8) | 4 (16) | 0.037 |
No | 72 (74.2) | 2 (2.8) | ||
Antibiotic class used in treated cats c | Fluoroquinolones | 12 (48.0) | 0 (0) | nd |
β-Lactams and β-Lactamase inhibitors | 10 (40.0) | 1 (10.0) | ||
Cephalosporins | 7 (28.0) | 2 (28.6) | ||
Macrolide-nitroimidazole | 2 (8.0) | 1 (50.0) | ||
Tetracyclines | 2 (8.0) | 0 (0) |
Isolate ID | Animal Characteristics | Phenotype | Genetic Determinants of Resistance | Phylogenetic Group | Resistance Pattern | |||||
---|---|---|---|---|---|---|---|---|---|---|
Sex | Age | Ownership | Clinical Status | Hospitalization | Previous Antibiotic Therapy (Antibiotic) | |||||
46/1 | Female | 6 months | Stray | Healthy | No | No | ESBL/AmpC | blaCTX-M-1 group, campC hyperproducer | B2 | AMP, FAZ, FOV, POD, LEX, AUG2, DOX, TET |
51/1 | Male | 3 years | Stray | Healthy | No | No | ESBL | blaCTX-M-1 group, blaTEM | A | AMP, FAZ, FOV, POD, LEX, DOX, TET |
77/1 | Male | 13 years | Owned | Unhealthy | No | Yes (cephalosporin) | ESBL | blaCTX-M-1 group, blaTEM | B2 | AMP, FAZ, FOV, POD, LEX, DOX, TET, SXT |
137/1 | Male | 1 year | Owned | Unhealthy | Yes | Yes (cephalosporin) | ESBL | blaCTX-M-1 group, blaTEM, blaSHV | B2 | AMP, FAZ, FOV, POD, LEX, DOX, TET, SXT |
161/1 | Male | 7 years | Owned | Unhealthy | Yes | Yes (amoxicillin + clavulanic acid) | ESBL | blaCTX-M-1 group, blaTEM | B2 | AMP, FAZ, FOV, POD, LEX, AUG2, DOX, CHL, GEN, TET, SXT |
195/1 | Male | 10 months | Owned | Unhealthy | No | Yes (metronidazole and spiramycin) | Negative | blaCTX-M-1 group, blaTEM | F | AMP, FAZ, FOV, POD, LEX, DOX, TAZ, AUG2, P/T4, IMI, GEN, ENRO, MAR, ORB, PRA |
Antimicrobial Class | Antimicrobial Agent | No. Resistant | No. of Isolates at the Indicated MIC µg/mL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | |||
β-Lactam (penicillins) | AMP | 6/6 | 6 | ||||||||||
β-Lactam (cephalosporin I) | FAZ | 6/6 | 6 | ||||||||||
LEX | 6/6 | 6 | |||||||||||
β-Lactam (cephalosporin III) | FOV | 6/6 | 6 | ||||||||||
POD | 6/6 | 6 | |||||||||||
TAZ | 1/6 | 2 | 3 | 1 | |||||||||
β-Lactams and β-lactamase inhibitors | AUG2 | 3/6 | 1 | 2 | 3 | ||||||||
P/T4 | 1/6 | 4 | 1 | 1 | |||||||||
Aminoglycosides | AMI | 0/6 | 5 | 1 | |||||||||
GEN | 2/6 | 2 | 1 | 1 | 2 | ||||||||
Phenicol | CHL | 1/6 | 1 | 3 | 1 | 1 | |||||||
Fluoroquinolones | ENRO | 1/6 | 3 | 2 | 1 | ||||||||
MAR | 1/6 | 3 | 2 | 1 | |||||||||
ORB | 1/6 | 3 | 2 | 1 | |||||||||
PRA | 1/6 | 5 | 1 | ||||||||||
Tetracyclines | TET | 5/6 | 1 | 5 | |||||||||
DOX | 6/6 | 2 | 1 | 1 | 2 | ||||||||
Carbapenems | IMI | 1/6 | 5 | 1 | |||||||||
Folate pathway antagonists | SXT | 3/6 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratti, G.; Facchin, A.; Stranieri, A.; Giordano, A.; Paltrinieri, S.; Scarpa, P.; Maragno, D.; Gazzonis, A.; Penati, M.; Luzzago, C.; et al. Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats. Antibiotics 2023, 12, 1249. https://doi.org/10.3390/antibiotics12081249
Ratti G, Facchin A, Stranieri A, Giordano A, Paltrinieri S, Scarpa P, Maragno D, Gazzonis A, Penati M, Luzzago C, et al. Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats. Antibiotics. 2023; 12(8):1249. https://doi.org/10.3390/antibiotics12081249
Chicago/Turabian StyleRatti, Gabriele, Alessia Facchin, Angelica Stranieri, Alessia Giordano, Saverio Paltrinieri, Paola Scarpa, Deborah Maragno, Alessia Gazzonis, Martina Penati, Camilla Luzzago, and et al. 2023. "Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats" Antibiotics 12, no. 8: 1249. https://doi.org/10.3390/antibiotics12081249
APA StyleRatti, G., Facchin, A., Stranieri, A., Giordano, A., Paltrinieri, S., Scarpa, P., Maragno, D., Gazzonis, A., Penati, M., Luzzago, C., Dall’Ara, P., & Lauzi, S. (2023). Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats. Antibiotics, 12(8), 1249. https://doi.org/10.3390/antibiotics12081249