Role of Antimicrobial Resistance in Outcomes of Acute Endophthalmitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Selection
2.2. Data Collection
2.3. Intraocular Sampling and Treatment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Microorganism | Antimicrobial Agent Tested |
---|---|
Staphylococcus spp. | Penicillin, Erythromycin, Flucloxacillin, Cotrimoxazole, Tetracycline, and Vancomycin |
Enterobacterales | Amoxicillin, Cefuroxime, Gentamicin, Cotrimoxazole, Amoxicillin/clavulanate, Tobramycin, Chloramphenicol and Ciprofloxacin (if requested) |
Pseudomonas spp. | Ceftazidime, Gentamicin, Piperacillin/Tazobactam, Ciprofloxacin, and Tobramycin |
Acinetobacter spp. | Gentamicin, Cotrimoxazole, Tobramycin and Ciprofloxacin (if requested) |
Haemophilus spp. | Amoxicillin, Amoxicillin/clavulanate, Cotrimoxazole, Tetracycline, Cefuroxime and Chloramphenicol and Ciprofloxacin (if requested). In Addition, For Resistant Isolates Ceftriaxone and Chloramphenicol. |
Streptococcus pneumoniae | Oxacillin, Erythromycin, Cotrimoxazole, Vancomycin and Moxifloxacin (if requested) |
Beta-haemolytic streptococci | Penicillin, Erythromycin, Tetracycline, and Vancomycin |
Alpha-haemolytic streptococci | Penicillin, Ceftriaxone and Vancomycin |
Moraxella catarrhalis | Amoxicillin/clavulanate, Erythromycin, Cefuroxime, And Cotrimoxazole |
Moraxella lacunata | Penicillin, Amoxicillin/clavulanate and Cefuroxime |
Corynebacterium spp. | Penicillin, Tetracycline, Vancomycin, Chloramphenicol and Tobramycin |
References
- Chen, X.; Adelman, R.A. Microbial Spectrum and Resistance Patterns in Endophthalmitis: A 21-Year (1988–2008) Review in Northeast United States. J. Ocul. Pharmacol. Ther. 2012, 28, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Gentile, R.C.; Shukla, S.; Shah, M.; Ritterband, D.C.; Engelbert, M.; Davis, A.; Hu, D.-N. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: A 25-year review. Ophthalmology 2014, 121, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Endophthalmitis Vitrectomy Study Group. Results of the Endophthalmitis Vitrectomy Study: A Randomized Trial of Immediate Vitrectomy and of Intravenous Antibiotics for the Treatment of Postoperative Bacterial Endophthalmitis. Arch. Ophthalmol. 1995, 113, 1479–1496. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Flynn, H.W., Jr. Update on the prevention and treatment of endophthalmitis. Expert Rev. Ophthalmol. 2014, 9, 425–430. [Google Scholar] [CrossRef]
- Wu, X.-N.; Chen, Y.-H.; Sharief, L.; Al-Janabi, A.; Al Qassimi, N.; Lightman, S.; Tomkins-Netzer, O. Emerging Antibiotic Resistance Patterns Affect Visual Outcome Treating Acute Endophthalmitis. Antibiotics 2022, 11, 843. [Google Scholar] [CrossRef]
- Dave, V.P.; Pathengay, A.; Nishant, K.; Pappuru, R.R.; Sharma, S.; Sharma, P.; Narayanan, R.; Mathai, A.; Das, T. Clinical presentations, risk factors and outcomes of ceftazidime-resistant Gram-negative endophthalmitis. Clin. Exp. Ophthalmol. 2017, 45, 254–260. [Google Scholar] [CrossRef]
- Relhan, N.; Albini, T.A.; Pathengay, A.; Kuriyan, A.E.; Miller, D.; Flynn, H.W. Endophthalmitis caused by Gram-positive organisms with reduced vancomycin susceptibility: Literature review and options for treatment. Br. J. Ophthalmol. 2016, 100, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Shivaramaiah, H.S.; Relhan, N.; Pathengay, A.; Mohan, N.; Flynn, H.W. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: Clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am. J. Ophthalmol. Case Rep. 2018, 10, 211–214. [Google Scholar] [CrossRef]
- Stevenson, L.J.; Dawkins, R.C.H.; Sheorey, H.; McGuinness, M.B.; Hurley, A.H.; Allen, P.J. Gram-negative endophthalmitis: A prospective study examining the microbiology, clinical associations and visual outcomes following infection. Clin. Exp. Ophthalmol. 2020, 48, 813–820. [Google Scholar] [CrossRef]
- Moloney, T.P.; Park, J. Microbiological isolates and antibiotic sensitivities in culture-proven endophthalmitis: A 15-year review. Br. J. Ophthalmol. 2014, 98, 1492–1497. [Google Scholar] [CrossRef]
- Kent, D.G. Endophthalmitis in Auckland 1983–1991. Aust. N. Z. J. Ophthalmol. 1993, 21, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graffunder, E.M.; Preston, K.E.; Evans, A.M.; Venezia, R.A. Risk factors associated with extended-spectrum beta-lactamase-producing organisms at a tertiary care hospital. J. Antimicrob. Chemother. 2005, 56, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lautenbach, E.; Weiner, M.G.; Nachamkin, I.; Bilker, W.B.; Sheridan, A.; Fishman, N.O. Imipenem resistance among pseudomonas aeruginosa isolates: Risk factors for infection and impact of resistance on clinical and economic outcomes. Infect. Control Hosp. Epidemiol. 2006, 27, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine; Swann, M.M. Report [of the] Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine; HM Stationery Office: London, UK, 1969. [Google Scholar]
- Angulo, F.J.; Baker, N.L.; Olsen, S.J.; Anderson, A.; Barrett, T.J. Antimicrobial use in agriculture: Controlling the transfer of antimicrobial resistance to humans. Semin. Pediatr. Infect. Dis. 2004, 15, 78–85. [Google Scholar] [CrossRef]
- MacGowan, A.; Macnaughton, E. Antibiotic resistance. Medicine 2017, 45, 622–628. [Google Scholar] [CrossRef]
- Murphy, C.C.; Nicholson, S.; Quah, S.A.; Batterbury, M.; Neal, T.; Kaye, S.B. Pharmacokinetics of vancomycin following intracameral bolus injection in patients undergoing phacoemulsification cataract surgery. Br. J. Ophthalmol. 2007, 91, 1350–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NZ Stats. 2018 Census Place Summaries. Available online: https://www.stats.govt.nz/tools/2018-census-place-summaries/ (accessed on 1 June 2023).
- Lange, C.; Feltgen, N.; Junker, B.; Schulze-Bonsel, K.; Bach, M. Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 137–142. [Google Scholar] [CrossRef]
- Jabs, D.A.; Nussenblatt, R.B.; Rosenbaum, J.T. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am. J. Ophthalmol. 2005, 140, 509–516. [Google Scholar]
- BioMérieux. MALDI-TOF Mass Spectrometry: VITEK MS System; BioMérieux: Marcy-l’Étoile, France, 2021. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 1 July 2023).
- The European Committee on Antimicrobial Susceptibility Testing. New S, I and R Definitions. 2019. Available online: https://www.eucast.org/newsiandr (accessed on 1 July 2023).
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.; Polkinghorne, P.J. Controlled aspiration pressure in methods for collecting pure vitreous samples during vitreous biopsy. Retina 2003, 23, 426–427. [Google Scholar] [CrossRef]
- Michael, E.; Welch, S.; Niederer, R.L. Rapid treatment of endophthalmitis with intravitreal antibiotics is associated with better vision outcomes. Clin. Exp. Ophthalmol. 2023, 51, 137–143. [Google Scholar] [CrossRef]
- Clark, W.L.; Kaiser, P.K.; Flynn, H.W., Jr.; Belfort, A.; Miller, D.; Meisler, D.M. Treatment strategies and visual acuity outcomes in chronic postoperative Propionibacterium acnes endophthalmitis. Ophthalmology 1999, 106, 1665–1670. [Google Scholar] [CrossRef]
- Anand, A.R.; Therese, K.L.; Madhavan, H.N. Spectrum of aetiological agents of postoperative endophthalmitis and antibiotic susceptibility of bacterial isolates. Indian J. Ophthalmol. 2020, 48, 123–128. [Google Scholar]
- Asbell, P.A.; Sanfilippo, C.M.; Mah, F.S. Antibiotic susceptibility of bacterial pathogens isolated from the aqueous and vitreous humour in the Antibiotic Resistance Monitoring in Ocular micRoorganisms (ARMOR) Surveillance Study: 2009–2020 update. J. Glob. Antimicrob. Resist. 2022, 29, 236–240. [Google Scholar] [CrossRef]
- Thompson, I. Antimicrobial Stewardship in New Zealand; Health Quality & Safety Commission: Wellington, New Zealand, 2013. [Google Scholar]
- Ministry of Health. Antimicrobial Prescribing Guidance and Antibiograms. 2022. Available online: https://www.health.govt.nz/our-work/diseases-and-conditions/antimicrobial-resistance/antimicrobial-prescribing-guidance-and-antibiograms (accessed on 15 June 2023).
- Hawkey, P.M. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother. 2008, 62 (Suppl. S1), i1–i9. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Information Sheet: Antibiotic Resistance. 2017. Available online: https://www.mpi.govt.nz/dmsdocument/26341-Antibiotic-resistance-information-sheet (accessed on 1 July 2023).
- Hunyor, A.P.; Merani, R.; Darbar, A.; Korobelnik, J.F.; Lanzetta, P.; Okada, A.A. Topical antibiotics and intravitreal injections. Acta Ophthalmol. 2018, 96, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Storey, P.; Dollin, M.; Pitcher, J.; Reddy, S.; Vojtko, J.; Vander, J.; Hsu, J.; Garg, S.J.; Post-Injection Endophthalmitis Study Team. The role of topical antibiotic prophylaxis to prevent endophthalmitis after intravitreal injection. Ophthalmology 2014, 121, 283–289. [Google Scholar] [CrossRef]
- Kim, S.J.; Toma, H.S. Antimicrobial Resistance and Ophthalmic Antibiotics: 1-Year Results of a Longitudinal Controlled Study of Patients Undergoing Intravitreal Injections. Arch. Ophthalmol. 2011, 129, 1180–1188. [Google Scholar] [CrossRef] [Green Version]
- García-Sáenz, M.C.; Arias-Puente, A.; Rodríguez-Caravaca, G.; Bañuelos, J.B. Effectiveness of intracameral cefuroxime in preventing endophthalmitis after cataract surgery: Ten-year comparative study. J. Cataract Refract. Surg. 2010, 36, 203–207. [Google Scholar] [CrossRef]
- Barreau, G.; Mounier, M.; Marin, B.; Adenis, J.-P.; Robert, P.-Y. Intracameral cefuroxime injection at the end of cataract surgery to reduce the incidence of endophthalmitis: French study. J. Cataract Refract. Surg. 2012, 38, 1370–1375. [Google Scholar] [CrossRef]
- ESCRS Endophthalmitis Study Group. Prophylaxis of postoperative endophthalmitis following cataract surgery: Results of the ESCRS multicenter study and identification of risk factors. J. Cataract Refract. Surg. 2007, 33, 978–988. [Google Scholar] [CrossRef]
- Choi, E.Y.; Han, J.Y.; Lee, H.; Lee, S.C.; Koh, H.J.; Kim, S.S.; Kim, M. Impact of antibiotic resistance of pathogens and early vitrectomy on the prognosis of infectious endophthalmitis: A 10-year retrospective study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 805–813. [Google Scholar] [CrossRef]
- Jones, D.B. Emerging antibiotic resistance: Real and relative. Arch. Ophthalmol. 1996, 114, 91–92. [Google Scholar] [CrossRef]
- Eliopoulos, G.M.; Cosgrove, S.E.; Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis. 2003, 36, 1433–1437. [Google Scholar] [CrossRef]
- Callegan, M.C.; Engelbert, M.; Parke, D.W., 2nd; Jett, B.D.; Gilmore, M.S. Bacterial endophthalmitis: Epidemiology, therapeutics, and bacterium-host interactions. Clin. Microbiol. Rev. 2002, 15, 111–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, S.; Bhikoo, R.; Wang, N.; Siemerink, M.J.; Shew, W.; Polkinghorne, P.J.; Niederer, R.L. Better visual outcome associated with early vitrectomy in the management of endophthalmitis. Br. J. Ophthalmol. 2022, 106, 1145–1149. [Google Scholar] [CrossRef]
Microorganism | Count |
---|---|
Gram-positive | |
Abiotrophia defectiva | 1 |
Aerobic sporing bacillus | 2 |
Clostridium perfringens | 1 |
Coagulase-negative staphylococcus | 4 |
Corynebacterium Group G | 1 |
Corynebacterium jeikeium | 1 |
Enterococcus faecalis | 9 |
Enterococcus faecium | 1 |
Enterococcus hirae | 1 |
Gram-positive coccobacilli | 1 |
Granulicatella adiacens | 2 |
Lactococcus | 1 |
Moraxella species | 1 |
Methicillin-resistant Staphylococcus aureus | 4 |
Mycobacterium chelonae | 1 |
Propionibacterium acnes | 1 |
Rothia dentocariosa | 1 |
Staphylococcus aureus | 16 |
Staphylococcus epidermidis | 64 |
Staphylococcus lugdunensis | 4 |
Streptococcus agalactiae | 1 |
Streptococcus dysgalactiae | 1 |
Streptococcus Lancefield Group C | 2 |
Streptococcus Lancefield Group G | 2 |
Streptococcus mitis | 11 |
Streptococcus oralis | 5 |
Streptococcus parasanguinis | 1 |
Streptococcus pneumoniae | 6 |
Streptococcus pyogenes | 4 |
Streptococcus salivarius | 3 |
Streptococcus sanguinis | 6 |
Streptococcus viridans | 3 |
Total | 162 |
Gram-negative | |
Aggregatibacter actinomycetemcomitans | 2 |
Escherichia coli | 2 |
Haemophilus influenzae | 8 |
Klebsiella pneumoniae | 5 |
Morganella morganii | 1 |
Pseudomonas aeruginosa | 7 |
Serratia marcescens | 3 |
Stenotrophamonas maltophilia | 1 |
Total | 29 |
Fungal | |
Alternaria species | 1 |
Aspergillus fumigatus | 2 |
Candida albicans | 3 |
Candida parapsilosis | 3 |
Candida rugosa | 1 |
Fusarium solani | 1 |
Scedosporium apiospermum | 1 |
Total | 12 |
Year | Total Cases (n = 389) | Culture Positive | Any Resistance 1 | Multidrug Resistance 1 |
---|---|---|---|---|
2006 | 16 | 9 | 3 (33.3%) | 0 (0%) |
2007 | 22 | 13 | 5 (38.5%) | 1 (7.7%) |
2008 | 16 | 11 | 2 (18.2%) | 1 (9.1%) |
2009 | 12 | 10 | 7 (70.0%) | 0 (0%) |
2010 | 14 | 5 | 3 (60.0%) | 1 (20.0%) |
2011 | 28 | 9 | 3 (33.3%) | 1 (11.1%) |
2012 | 17 | 8 | 5 (62.5%) | 1 (12.5%) |
2013 | 20 | 9 | 6 (66.7%) | 1 (11.1%) |
2014 | 24 | 16 | 9 (56.3%) | 1 (6.3%) |
2015 | 20 | 7 | 4 (57.1%) | 0 (0%) |
2016 | 27 | 8 | 4 (50.0%) | 2 (25.0%) |
2017 | 29 | 19 | 7 (36.8%) | 4 (21.1%) |
2018 | 25 | 12 | 7 (58.3%) | 2 (16.7%) |
2019 | 41 | 18 | 7 (38.9%) | 1 (5.6%) |
2020 | 25 | 14 | 6 (42.9%) | 3 (21.4%) |
2021 | 30 | 23 | 6 (26.1%) | 3 (13.0%) |
2022 | 14 | 6 | 3 (50.0%) | 0 (0%) |
2023 | 11 | 10 | 2 (20.0%) | 0 (0%) |
Risk Factor | Univariate | Multivariate | ||
---|---|---|---|---|
Odds Ratio | p-Value | Odds Ratio | p-Value | |
Age | 0.971 | <0.001 | 0.977 | 0.028 |
Female | 0.587 | 0.101 | 0.800 | 0.637 |
Year of presentation | 0.986 | 0.687 | ||
Weekend presentation | 2.151 | 0.025 | 2.587 | 0.058 |
Presenting vision | 2.977 | 0.002 | 1.849 | 0.179 |
Hypopyon | 2.274 | 0.028 | 3.239 | 0.048 |
Red reflex | 0.400 | 0.014 | 1.921 | 0.258 |
Early vitrectomy | 1.159 | 0.659 | ||
Any resistance | 1.888 | 0.104 | 2.455 | 0.048 |
Multidrug resistance | 1.765 | 0.308 |
Risk Factor | Univariate | Multivariate | ||
---|---|---|---|---|
Odds Ratio | p-Value | Odds Ratio | p-Value | |
Age | 0.986 | 0.108 | 1.000 | 0.978 |
Female | 0.535 | 0.115 | 0.558 | 0.258 |
Year of presentation | 0.907 | 0.017 | 0.922 | 0.108 |
Weekend presentation | 0.883 | 0.794 | ||
Presenting vision | 2.965 | 0.013 | 1.527 | 0.405 |
Hypopyon | 1.531 | 0.319 | ||
Red reflex | 0.305 | 0.019 | 0.821 | 0.766 |
Early vitrectomy | 0.677 | 0.369 | ||
Any resistance | 0.952 | 0.912 | ||
Multidrug resistance | 2.684 | 0.084 | 2.733 | 0.124 |
Risk Factor | Univariate | Multivariate | ||
---|---|---|---|---|
Odds Ratio | p-Value | Odds Ratio | p-Value | |
Age | 0.989 | 0.042 | 0.993 | 0.286 |
Female | 0.828 | 0.354 | ||
Year of presentation | 0.972 | 0.185 | ||
Weekend presentation | 0.832 | 0.462 | ||
Presenting vision | 3.451 | <0.001 | 3.323 | <0.001 |
Hypopyon | 1.042 | 0.848 | ||
Red reflex | 0.362 | <0.001 | 0.900 | 0.717 |
Early vitrectomy | 0.729 | 0.142 | 0.565 | 0.020 |
Any resistance | 0.739 | 0.288 | ||
Multidrug resistance | 0.915 | 0.844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yap, A.; Muttaiyah, S.; Welch, S.; Niederer, R.L. Role of Antimicrobial Resistance in Outcomes of Acute Endophthalmitis. Antibiotics 2023, 12, 1246. https://doi.org/10.3390/antibiotics12081246
Yap A, Muttaiyah S, Welch S, Niederer RL. Role of Antimicrobial Resistance in Outcomes of Acute Endophthalmitis. Antibiotics. 2023; 12(8):1246. https://doi.org/10.3390/antibiotics12081246
Chicago/Turabian StyleYap, Aaron, Sharmini Muttaiyah, Sarah Welch, and Rachael L. Niederer. 2023. "Role of Antimicrobial Resistance in Outcomes of Acute Endophthalmitis" Antibiotics 12, no. 8: 1246. https://doi.org/10.3390/antibiotics12081246
APA StyleYap, A., Muttaiyah, S., Welch, S., & Niederer, R. L. (2023). Role of Antimicrobial Resistance in Outcomes of Acute Endophthalmitis. Antibiotics, 12(8), 1246. https://doi.org/10.3390/antibiotics12081246