In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.L.; Clancy, M.; Honnold, C.; Singh, S.; Snesrud, E.; Onmus-Leone, F.; McGann, P.; Ong, A.C.; Kwak, Y.; Waterman, P.; et al. Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin. Infect. Dis. 2015, 61, 145–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, P.G.; Dammhayn, C.; Hackel, M.; Seifert, H. Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2010, 65, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Pournaras, S.; Dafopoulou, K.; Del Franco, M.; Zarkotou, O.; Dimitroulia, E.; Protonotariou, E.; Poulou, A.; Zarrilli, R.; Tsakris, A.; Greek study group on Acinetobacter Antimicrobial Resistance. Predominance of international clone 2 OXA-23-producing-Acinetobacter baumannii clinical isolates in Greece, 2015: Results of a nationwide study. Int. J. Antimicrob. Agents 2017, 49, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnacho-Montero, J.; Dimopoulos, G.; Poulakou, G.; Akova, M.; Cisneros, J.M.; De Waele, J.; Petrosillo, N.; Seifert, H.; Timsit, J.F.; Vila, J.; et al. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med. 2015, 41, 2057–2075. [Google Scholar] [CrossRef]
- Cisneros, J.M.; Rosso-Fernández, C.M.; Roca-Oporto, C.; De Pascale, G.; Jiménez-Jorge, S.; Fernández-Hinojosa, E.; Matthaiou, D.K.; Ramírez, P.; Díaz-Miguel, R.O.; Estella, A.; et al. Magic Bullet Working Group WP1. Colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia (Magic Bullet study): An investigator-driven, open-label, randomized, noninferiority controlled trial. Crit. Care. 2019, 23, 383. [Google Scholar] [CrossRef] [Green Version]
- Pormohammad, A.; Mehdinejadiani, K.; Gholizadeh, P.; Nasiri, M.J.; Mohtavinejad, N.; Dadashi, M.; Karimaei, S.; Safari, H.; Azimi, T. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb. Pathog. 2019, 139, 103887. [Google Scholar] [CrossRef]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating available treatment options for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections. Clin. Infect. Dis. 2023, 76 (Suppl. 2), S179–S193. [Google Scholar] [CrossRef]
- Choi, J.J.; McCarthy, M.W. Cefiderocol: A novel siderophore cephalosporin. Expert Opin. Investig. Drugs 2018, 27, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. 2017, 62, e01454-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In vitro activity of cefiderocol against U.S. and European Gram-negative clinical isolates collected in 2020 as part of the SENTRY antimicrobial surveillance program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Valverde, M.; Portillo-Calderón, I.; Recacha, E.; Pérez-Palacios, P.; Pascual, A. In vitro activity of cefiderocol compared to other antimicrobials against a collection of metallo-beta-lactamase-producing Gram-negative bacilli from Southern Spain. Microbiol Spectr. 2023, 11, e0493622. [Google Scholar] [CrossRef]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Kieffer, N.; Nordmann, P. Stability of cefiderocol against clinically significant broad-spectrum oxacillinases. Int. J. Antimicrob. Agents 2018, 52, 866–867. [Google Scholar] [CrossRef] [Green Version]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 13.0. Published on 1 January 2023. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf (accessed on 11 February 2023).
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2022. [Google Scholar]
- Ballesté-Delpierre, C.; Ramírez, Á.; Muñoz, L.; Longshaw, C.; Roca, I.; Vila, J. Assessment of in vitro cefiderocol susce,tibility and comparators against an epidemiologically diverse collection of Acinetobacter baumannii clinical isolates. Antibiotics 2022, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Sadek, M.; Nordmann, P. Contribution of PER-type and NDM-type β-Lactamases to cefiderocol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e0087721. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lei, T.; Yang, Y.; Zhang, L.; Liu, H.; Leptihn, S.; Yu, Y.; Hua, X. Structural basis of PER-1-mediated cefiderocol resistance and synergistic inhibition of PER-1 by cefiderocol in combination with avibactam or durlobactam in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0082822. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Miller, A.; Kresken, M. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 2616–2621. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Higgins, P.G.; Lehmann, M.; Seifert, H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2010, 35, 305. [Google Scholar] [CrossRef]
- Biniossek, L.; Gerson, S.; Xanthopoulou, K.; Zander, E.; Kaase, M.; Seifert, H.; Higgins, P.G. Novel Multiplex PCR for Detection of the Most Prevanlent Carbapenemase Genes in Gram-Negative Bacteria within Germany. In Proceedings of the 68th Annual Meeting of German Society of Hygiene and Microbiology (DGHM), Ulm, Germany, 11–14 September 2016. [Google Scholar]
- ISO 20776-1:2019; Clinical Laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test devices—Part 1. Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. International Organization for Standardization. Available online: https://www.iso.org/standard/70464.html (accessed on 3 February 2023).
Carbapenem Resistance Mechanism | No. of Isolates with Respective Mechanism a |
---|---|
blaOXA-23-like | 234 |
blaOXA-40-like | 56 |
blaOXA-58-like | 6 |
blaOXA-235-like | 2 |
blaNDM-1 | 6 |
blaIMP-26 | 1 |
upregulated blaOXA-51 | 13 |
Antimicrobial Agent | MIC (mg/L) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | MIC50 | MIC90 | MIC range | %S | %I | %R | |
Cefiderocol a,b | 17 | 49 | 16 | 128 | 38 | 8 c | 32 | 9 | 1 | 5 | 10 d | 0.5 | 4 | 0.06 -≥ 64 | 81.8 | - | 18.2 | |
Ceftazidime a | 1 | 7 | 6 | 6 | 16 | 277 d | ≥64 | ≥64 | 2 -≥ 64 | - | - | - | ||||||
Ceftazidime/avibactam a,e | 2 | 7 | 14 | 290 f | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - | - | ||||||||
Ceftolozane/tazobactam a,e | 2 | 5 | 8 | 33 | 265 f | ≥16/4 | ≥16/4 | 1/4 -≥ 16/4 | - | - | - | |||||||
Ciprofloxacin | 3 | 0 g | 1 | 309 h | ≥8 | ≥8 | 0.125 -≥ 8 | 0.0 | 1.0 | 99.0 | ||||||||
Colistin | 8 | 208 | 82 c | 1 | 14 h | 1 | 2 | 0.5 -≥ 8 | 95.2 | - | 4.8 | |||||||
Imipenem/relebactam e | 0 c | 16 | 297 f | ≥16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | - | 100.0 | |||||||||
Meropenem l | 0 c | 11 | 16 | 286 i | ≥32 | ≥32 | 8 -≥ 32 | 0.0 | 3.5 | 96.5 | ||||||||
Meropenem/vaborbactam a,e | 15 | 298 f | ≥16/8 | ≥16/8 | 8/8 -≥ 16/8 | - | - | - | ||||||||||
Minocycline a | 2 k | 5 | 25 | 34 | 52 | 46 | 51 | 98 f | 4 | ≥16 | ≤0.125 -≥ 16 | - | - | - | ||||
Piperacillin/tazobactam a,e | 1 | 1 | 1 | 1 | 309 j | ≥128/4 | ≥128/4 | 8 -≥ 128/4 | - | - | - |
Antimicrobial Agent | blaOXA-23-like (n = 227) | blaOXA-40-like (n = 54) | Other Carbapenemases (n = 32) d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC50 | MIC90 | MIC range | %S | %R | MIC50 | MIC90 | MIC range | %S | %R | MIC50 | MIC90 | MIC range | %S | %R | |
Cefiderocol a,b | 0.5 | 4 | 0.06 -≥ 64 | 82.4 | 17.6 | 0.5 | 1 | 0.06 -≥ 64 | 92.6 | 7.4 | 1 | 32 | 0.06 -≥ 64 | 59.4 | 40.6 |
Ceftazidime a | ≥64 | ≥64 | 2 -≥ 64 | - | - | ≥64 | ≥64 | 4 -≥ 64 | - | - | ≥64 | ≥64 | 4 -≥ 64 | - | - |
Ceftazidime/avibactam a | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 8/4 -≥ 16/4 | - | - |
Ceftolozane/tazobactam a | ≥16/4 | ≥16/4 | 1/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - |
Ciprofloxacin | ≥8 | ≥8 | 0.12 -≥ 8 | 0.4 c | 99.6 | ≥8 | ≥8 | 0.12 -≥ 8 | 1.9 c | 98.1 | ≥8 | ≥8 | ≥8 -≥ 8 | 0.0 | 100.0 |
Colistin | 1 | 2 | 0.5 -≥ 8 | 96.0 | 4.0 | 1 | 2 | 0.5 -≥ 8 | 92.6 | 7.4 | 1 | 2 | 0.5 -≥ 8 | 93.8 | 6.2 |
Imipenem/relebactam | ≥16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | 100.0 | ≥16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | 100.0 | 16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | 100.0 |
Meropenem | ≥32 | ≥32 | 8 -≥ 32 | 0.0 | 99.6 | ≥32 | ≥32 | 8 -≥ 32 | 0.0 | 98.1 | 16 | ≥32 | 8 -≥ 32 | 0.0 | 71.9 |
Meropenem/vaborbactam a | ≥16/8 | ≥16/8 | 8/8 -≥ 16/8 | - | - | ≥16/8 | ≥16/8 | 8/4 -≥ 16/8 | - | - | ≥16/8 | ≥16/8 | 8/4 -≥ 16/8 | - | - |
Minocycline a | 8 | ≥16 | 0.25 -≥ 16 | - | - | 4 | ≥16 | ≤0.12 -≥ 16 | - | - | 2 | ≥16 | ≤0.12 -≥ 16 | - | - |
Piperacillin/tazobactam a | ≥128/4 | ≥128/4 | ≥128/4 -≥ 128/4 | - | - | ≥128/4 | ≥128/4 | 8/4 -≥ 128/4 | - | - | ≥128/4 | ≥128/4 | 16/4 -≥ 128/4 | - | - |
Cefiderocol MIC | No. of Isolates with Respective MIC | Carbapenem Resistance Mechanism | No. of Isolates with Respective Mechanism |
---|---|---|---|
4 mg/L | 32 | upregulated blaOXA-51 | 2 |
blaOXA-23 | 16 | ||
blaOXA-23 + upregulated blaOXA-51 | 7 | ||
blaOXA-23+GES-11 | 1 | ||
blaOXA-23+GES-12 | 1 | ||
blaOXA-40-like | 3 | ||
blaNDM-1 | 1 | ||
blaOXA-23+NDM-1 | 1 | ||
8 mg/L | 9 | blaOXA-23 | 7 |
blaNDM-1 | 1 | ||
blaIMP-26 | 1 | ||
16 mg/L | 1 | blaOXA-23 | 1 |
32 mg/L | 5 | blaOXA-23 | 1 |
blaOXA-40-like+GES-11 | 1 | ||
upregulated blaOXA-51 | 1 | ||
blaOXA-23+NDM-1+PER-7 | 1 | ||
blaNDM-1 | 1 | ||
>32 mg/L | 10 | blaOXA-23 | 8 |
blaOXA-40-like | 1 | ||
blaOXA-23+NDM-1 | 1 |
Antimicrobial Agent | IC 1 (n = 26) | IC 2 (n = 196) | IC 5 (n = 44) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC50 | MIC90 | MIC range | %S | %R | MIC50 | MIC90 | MIC range | %S | %R | MIC50 | MIC90 | MIC range | %S | %R | |
Cefiderocol a,b | 0.5 | 32 | 0.06 -≥ 64 | 69.2 | 30.8 | 0.5 | 4 | 0.06 -≥ 64 | 83.7 | 16.3 | 0.5 | 1 | 0.06–4 | 95.5 | 4.5 |
Ceftazidime a | ≥64 | ≥64 | 4 -≥ 64 | - | - | ≥64 | ≥64 | 8 -≥ 64 | - | - | ≥64 | ≥64 | 4 -≥ 64 | - | - |
Ceftazidime/avibactam a | ≥16/4 | ≥16/4 | 4/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 4/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - |
Ceftolozane/tazobactam a | ≥16/4 | ≥16/4 | 2/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 4/4 -≥ 16/4 | - | - | ≥16/4 | ≥16/4 | 1/4 -≥ 16/4 | - | - |
Ciprofloxacin | ≥8 | ≥8 | 4 -≥ 8 | 0.0 | 100.0 | ≥8 | ≥8 | ≥8 -≥ 8 | 0.0 | 100.0 | ≥8 | ≥8 | ≥8 -≥ 8 | 0.0 | 100.0 |
Colistin | 1 | 2 | 0.5 -≥ 8 | 96.2 | 3.8 | 1 | 2 | 0.5 -≥ 8 | 94.9 | 5.1 | 2 | 2 | 1 -≥ 8 | 93.2 | 6.8 |
Imipenem/relebactam | ≥16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | 100.0 | ≥16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | 100.0 | 16/4 | ≥16/4 | 8/4 -≥ 16/4 | 0.0 | 100.0 |
Meropenem | ≥32 | ≥32 | 8 -≥ 32 | 0.0 | 96.2 | ≥32 | ≥32 | 8 -≥ 32 | 0.0 | 95.9 | ≥32 | ≥32 | 16 -≥ 32 | 0.0 | 100.0 |
Meropenem/vaborbactam a | ≥16/8 | ≥16/8 | 8/8 -≥ 16/8 | - | - | ≥16/8 | ≥16/8 | 8/8 -≥ 16/8 | - | - | ≥16/8 | ≥16/8 | ≥16/8 -≥ 16/8 | - | - |
Minocycline a | 2 | 4 | 0.25 -≥ 16 | - | - | 8 | ≥16 | 0.5 -≥ 16 | - | - | 1 | 4 | 0.25–8 | - | - |
Piperacillin/tazobactam a | ≥128/4 | ≥128/4 | 16/4 -≥ 128/4 | - | - | ≥128/4 | ≥128/4 | 32/4 -≥ 128/4 | - | - | ≥128/4 | ≥128/4 | ≥128/4 -≥ 128/4 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Wohlfarth, E.; Kresken, M. In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates. Antibiotics 2023, 12, 1172. https://doi.org/10.3390/antibiotics12071172
Seifert H, Müller C, Stefanik D, Higgins PG, Wohlfarth E, Kresken M. In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates. Antibiotics. 2023; 12(7):1172. https://doi.org/10.3390/antibiotics12071172
Chicago/Turabian StyleSeifert, Harald, Carina Müller, Danuta Stefanik, Paul G. Higgins, Esther Wohlfarth, and Michael Kresken. 2023. "In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates" Antibiotics 12, no. 7: 1172. https://doi.org/10.3390/antibiotics12071172
APA StyleSeifert, H., Müller, C., Stefanik, D., Higgins, P. G., Wohlfarth, E., & Kresken, M. (2023). In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates. Antibiotics, 12(7), 1172. https://doi.org/10.3390/antibiotics12071172