Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective
Abstract
:1. Introduction
2. The Emergence of NAP1/Ribotype 027
3. C. difficile Epidemiology in North America
4. C. difficile Epidemiology in Europe
5. C. difficile Epidemiology in the Rest of the World
6. Evolving CDI Treatments
6.1. Fidaxomicin
6.2. Antibody-Mediated Therapy
6.3. Fecal Microbiota Transplant (FMT)
6.4. Emerging Therapies
7. Conclusions
Nation/Region | Prevalent Strains | Reference |
---|---|---|
United States | Ribotypes 027, 106, 014/020, 002, 001 | CDC 2020 [28], Lessa et al. [119], Kim et al. [29], Guh et al. [30] |
Canada | Ribotypes 027, 106, 014/020 | Katz et al. [13], Du et al. [13], Carlson et al. [39] |
Europe | Ribotypes 014/020, 078, 027, 001 | ECDPC 2022 [46], Freeman et al. [47] |
Australia | Ribotypes 014/020, 126, 078/126 | Hong et al. [56], Putsathit et al. [58] |
Asia | Ribotypes 017, 018, 014/020, 001, 002, 010, 046, 126, 084 | Collins et al. [81] |
South America | Ribotypes 027, 106, 012, 046, 014/020 | Diniz et al. [64], Salazar et al. [120] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balsells, E.; Shi, T.; Leese, C.; Lyell, I.; Burrows, J.; Wiuff, C.; Campbell, H.; Kyaw, M.H.; Nair, H. Global burden of Clostridium difficile infections: A systematic review and meta-analysis. J. Glob. Health 2019, 9, 010407. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G.; Gerding, D.N. Clinical recognition and diagnosis of Clostridium difficile infection. Clin. Infect. Dis. 2008, 46 (Suppl. S1), S12–S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, S.; Pardi, D.S.; Aronson, S.L.; Kammer, P.P.; Orenstein, R.; St Sauver, J.L.; Harmsen, W.S.; Zinsmeister, A.R. The epidemiology of community-acquired Clostridium difficile infection: A population-based study. Am. J. Gastroenterol. 2012, 107, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.K.; Brensinger, C.M.; Wu, Q.; Lewis, J.D. Increasing Incidence of Multiply Recurrent Clostridium difficile Infection in the United States: A Cohort Study. Ann. Intern. Med. 2017, 167, 152–158. [Google Scholar] [CrossRef]
- Zhang, S.; Palazuelos-Munoz, S.; Balsells, E.M.; Nair, H.; Chit, A.; Kyaw, M.H. Cost of hospital management of Clostridium difficile infection in United States-a meta-analysis and modelling study. BMC Infect. Dis. 2016, 16, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. FDA. FDA Approves First Fecal Microbiota Product: Rebyota Approved for the Prevention of Recurrence of Clostridioides Difficile Infection in Adults. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-fecal-microbiota-product (accessed on 30 November 2022).
- McDonald, L.C.; Killgore, G.E.; Thompson, A.; Owens, R.C.; Kazakova, S.V.; Sambol, S.P.; Johnson, S.; Gerding, D.N. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 2005, 353, 2433–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muto, C.A.; Pokrywka, M.; Shutt, K.; Mendelsohn, A.B.; Nouri, K.; Posey, K.; Roberts, T.; Croyle, K.; Krystofiak, S.; Patel-Brown, S.; et al. A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect. Control. Hosp. Epidemiol. 2005, 26, 273–280. [Google Scholar] [CrossRef] [Green Version]
- See, I.; Mu, Y.; Cohen, J.; Beldavs, Z.G.; Winston, L.G.; Dumyati, G.; Holzbauer, S.; Dunn, J.; Farley, M.M.; Lyons, C.; et al. NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin. Infect. Dis. 2014, 58, 1394–1400. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.P.; Notermans, D.W.; van Benthem, B.H.; Brazier, J.S.; Wilcox, M.H.; Rupnik, M.; Monnet, D.L.; van Dissel, J.T.; Kuijper, E.J.; Group, E.S. Clostridium difficile infection in Europe: A hospital-based survey. Lancet 2011, 377, 63–73. [Google Scholar] [CrossRef]
- Goorhuis, A.; Bakker, D.; Corver, J.; Debast, S.B.; Harmanus, C.; Notermans, D.W.; Bergwerff, A.A.; Dekker, F.W.; Kuijper, E.J. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin. Infect. Dis. 2008, 47, 1162–1170. [Google Scholar] [CrossRef] [Green Version]
- Louie, T.J.; Cannon, K.; Byrne, B.; Emery, J.; Ward, L.; Eyben, M.; Krulicki, W. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S132–S142. [Google Scholar] [CrossRef]
- Du, T.; Choi, K.B.; Silva, A.; Golding, G.R.; Pelude, L.; Hizon, R.; Al-Rawahi, G.N.; Brooks, J.; Chow, B.; Collet, J.C.; et al. Characterization of Healthcare-Associated and Community-Associated Clostridioides difficile Infections among Adults, Canada, 2015–2019. Emerg. Infect. Dis. 2022, 28, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.; Micic, D.; Natarajan, M.; Winters, S.; Kiel, M.J.; Walk, S.T.; Santhosh, K.; Mogle, J.A.; Galecki, A.T.; LeBar, W.; et al. Clostridium difficile ribotype 027: Relationship to age, detectability of toxins A or B in stool with rapid testing, severe infection, and mortality. Clin. Infect. Dis. 2015, 61, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Miyajima, F.; Roberts, P.; Ellison, L.; Pickard, D.J.; Martin, M.J.; Connor, T.R.; Harris, S.R.; Fairley, D.; Bamford, K.B.; et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 2013, 45, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Akerlund, T.; Persson, I.; Unemo, M.; Norén, T.; Svenungsson, B.; Wullt, M.; Burman, L.G. Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J. Clin. Microbiol. 2008, 46, 1530–1533. [Google Scholar] [CrossRef] [Green Version]
- Barbut, F.; Decré, D.; Lalande, V.; Burghoffer, B.; Noussair, L.; Gigandon, A.; Espinasse, F.; Raskine, L.; Robert, J.; Mangeol, A.; et al. Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J. Med. Microbiol. 2005, 54, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warny, M.; Pepin, J.; Fang, A.; Killgore, G.; Thompson, A.; Brazier, J.; Frost, E.; McDonald, L.C. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005, 366, 1079–1084. [Google Scholar] [CrossRef]
- Curry, S.R.; Marsh, J.W.; Muto, C.A.; O’Leary, M.M.; Pasculle, A.W.; Harrison, L.H. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J. Clin. Microbiol. 2007, 45, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacCannell, D.R.; Louie, T.J.; Gregson, D.B.; Laverdiere, M.; Labbe, A.C.; Laing, F.; Henwick, S. Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J. Clin. Microbiol. 2006, 44, 2147–2152. [Google Scholar] [CrossRef] [Green Version]
- Merrigan, M.; Venugopal, A.; Mallozzi, M.; Roxas, B.; Viswanathan, V.K.; Johnson, S.; Gerding, D.N.; Vedantam, G. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J. Bacteriol. 2010, 192, 4904–4911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linder, J.A.; Huang, E.S.; Steinman, M.A.; Gonzales, R.; Stafford, R.S. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am. J. Med. 2005, 118, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Johnson, S.; Rupnik, M.; Aktories, K. Clostridium difficile binary toxin CDT: Mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014, 5, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePestel, D.D.; Aronoff, D.M. Epidemiology of Clostridium difficile infection. J. Pharm. Pract. 2013, 26, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Walk, S.T.; Micic, D.; Jain, R.; Lo, E.S.; Trivedi, I.; Liu, E.W.; Almassalha, L.M.; Ewing, S.A.; Ring, C.; Galecki, A.T.; et al. Clostridium difficile ribotype does not predict severe infection. Clin. Infect. Dis. 2012, 55, 1661–1668. [Google Scholar] [CrossRef]
- Venugopal, A.A.; Riederer, K.; Patel, S.M.; Szpunar, S.; Jahamy, H.; Valenti, S.; Shemes, S.P.; Khatib, R.; Johnson, L.B. Lack of association of outcomes with treatment duration and microbiologic susceptibility data in Clostridium difficile infections in a non-NAP1/BI/027 setting. Scand. J. Infect. Dis. 2012, 44, 243–249. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Emerging Infections Program, Healthcare-Associated Infections–Community Interface Surveillance Report, Clostridioides Difficile Infection (CDI). 2020. Available online: https://www.cdc.gov/hai/eip/Annual-CDI-Report-2020.html#anchor_36138 (accessed on 28 May 2023).
- Kim, D.Y.; Cheknis, A.K.; Serna-Perez, F.; Lin, M.Y.; Hayden, M.K.; Moore, N.M.; Harrington, A.; Tesic, V.; Beavis, K.G.; Gerding, D.N.; et al. 403. Strain Epidemiology of Clostridioides difficile across Three Geographically Distinct Medical Centers in Chicago. Open. Forum Infect. Dis. 2022, 9 (Suppl. S2), ofac492-481. [Google Scholar] [CrossRef]
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef]
- Lim, S.K.; Stuart, R.L.; Mackin, K.E.; Carter, G.P.; Kotsanas, D.; Francis, M.J.; Easton, M.; Dimovski, K.; Elliott, B.; Riley, T.V.; et al. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin. Infect. Dis. 2014, 58, 1723–1730. [Google Scholar] [CrossRef] [Green Version]
- Gentry, C.A.; Williams, R.J.; Campbell, D. Continued decline in the prevalence of the Clostridioides difficile BI/NAP1/027 strain across the United States Veterans Health Administration. Diagn. Microbiol. Infect. Dis. 2021, 100, 115308. [Google Scholar] [CrossRef]
- Pépin, J.; Valiquette, L.; Alary, M.E.; Villemure, P.; Pelletier, A.; Forget, K.; Pépin, K.; Chouinard, D. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: A changing pattern of disease severity. Cmaj 2004, 171, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Slimings, C.; Riley, T.V. Antibiotics and healthcare facility-associated Clostridioides difficile infection: Systematic review and meta-analysis 2020 update. J. Antimicrob. Chemother. 2021, 76, 1676–1688. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, S.V.; Baggs, J.; McDonald, L.C.; Yi, S.H.; Hatfield, K.M.; Guh, A.; Reddy, S.C.; Jernigan, J.A. Association Between Antibiotic Use and Hospital-onset Clostridioides difficile Infection in US Acute Care Hospitals, 2006–2012: An Ecologic Analysis. Clin. Infect. Dis. 2020, 70, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, K.R.; Yi, S.H.; Garcia, E.P.; Zahn, M.; Epson, E. Reduction in Clostridium difficile infection rates following a multifacility prevention initiative in Orange County, California: A controlled interrupted time series evaluation. Infect. Control. Hosp. Epidemiol. 2019, 40, 872–879. [Google Scholar] [CrossRef] [PubMed]
- McDermott, L.A.; Thorpe, C.M.; Goldstein, E.J.C.; Shcuetz, A.N.; Johnson, S.; Gerding, D.N.; Gluck, L.; Bourdas, D.; Carroll, K.C.; Lancaster, C.K.; et al. 1669. A US-based national surveillance study for the susceptibility and epidemiology of Clostridioides diffilce associated diarrheal isolates with special reference to ridinilazole: 2020–2021. Open. Forum Infect. Dis. 2022, 9 (Suppl. S2), ofac492-1299. [Google Scholar] [CrossRef]
- Katz, K.C.; Golding, G.R.; Choi, K.B.; Pelude, L.; Amaratunga, K.R.; Taljaard, M.; Alexandre, S.; Collet, J.C.; Davis, I.; Du, T.; et al. The evolving epidemiology of Clostridium difficile infection in Canadian hospitals during a postepidemic period (2009–2015). Cmaj 2018, 190, E758–E765. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.J.; Blasingame, D.; Gonzales-Luna, A.J.; Alnezary, F.; Garey, K.W. Clostridioides difficile ribotype 106: A systematic review of the antimicrobial susceptibility, genetics, and clinical outcomes of this common worldwide strain. Anaerobe 2020, 62, 102142. [Google Scholar] [CrossRef]
- Suárez-Bode, L.; Barrón, R.; Pérez, J.L.; Mena, A. Increasing prevalence of the epidemic ribotype 106 in healthcare facility-associated and community-associated Clostridioides difficile infection. Anaerobe 2019, 55, 124–129. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Dutka, C.W.; Nichol, K.A.; Laing, N.M.; Golding, G.R.; Zhanel, G.G. Antimicrobial susceptibility of Clostridioides difficile isolated from diarrhoeal stool specimens of Canadian patients: Summary of results from the Canadian Clostridioides difficile (CAN-DIFF) surveillance study from 2013 to 2017. J. Antimicrob. Chemother. 2020, 75, 1824–1832. [Google Scholar] [CrossRef]
- Saha, S.; Kapoor, S.; Tariq, R.; Schuetz, A.N.; Tosh, P.K.; Pardi, D.S.; Khanna, S. Increasing antibiotic resistance in Clostridioides difficile: A systematic review and meta-analysis. Anaerobe 2019, 58, 35–46. [Google Scholar] [CrossRef]
- Gargis, A.S.; Karlsson, M.; Paulick, A.L.; Anderson, K.F.; Adamczyk, M.; Vlachos, N.; Kent, A.G.; McAllister, G.; McKay, S.L.; Halpin, A.L.; et al. Reference Susceptibility Testing and Genomic Surveillance of Clostridioides difficile, United States, 2012–2017. Clin. Infect. Dis. 2023, 76, 890–896. [Google Scholar] [CrossRef]
- Schwanbeck, J.; Riedel, T.; Laukien, F.; Schober, I.; Oehmig, I.; Zimmermann, O.; Overmann, J.; Groß, U.; Zautner, A.E.; Bohne, W. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J. Antimicrob. Chemother. 2019, 74, 6–10. [Google Scholar] [CrossRef]
- Kuehne, S.A.; Dempster, A.W.; Collery, M.M.; Joshi, N.; Jowett, J.; Kelly, M.L.; Cave, R.; Longshaw, C.M.; Minton, N.P. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. J. Antimicrob. Chemother. 2018, 73, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Clostridioides (Clostridium) Difficile Infections—Annual Epidemiological Report for 2016–2017. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/clostridiodes-difficile-infections-annual-epidemiological-report-2016-2017 (accessed on 16 November 2022).
- Freeman, J.; Vernon, J.; Morris, K.; Nicholson, S.; Todhunter, S.; Longshaw, C.; Wilcox, M.H.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect. 2015, 21, 248.e9–248.e16. [Google Scholar] [CrossRef] [Green Version]
- Janezic, S.; Rupnik, M. Genomic diversity of Clostridium difficile strains. Res. Microbiol. 2015, 166, 353–360. [Google Scholar] [CrossRef]
- Roldan, G.A.; Cui, A.X.; Pollock, N.R. Assessing the Burden of Clostridium difficile Infection in Low- and Middle-Income Countries. J. Clin. Microbiol. 2018, 56, e01747-17. [Google Scholar] [CrossRef] [Green Version]
- Eyre, D.W.; Davies, K.A.; Davis, G.; Fawley, W.N.; Dingle, K.E.; De Maio, N.; Karas, A.; Crook, D.W.; Peto, T.E.A.; Walker, A.S.; et al. Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clin. Infect. Dis. 2018, 67, 1035–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, D.R.; Squire, M.M.; Collins, D.A.; Riley, T.V. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Front. Microbiol. 2016, 7, 2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, M.H.; Shetty, N.; Fawley, W.N.; Shemko, M.; Coen, P.; Birtles, A.; Cairns, M.; Curran, M.D.; Dodgson, K.J.; Green, S.M.; et al. Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin. Infect. Dis. An. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 1056–1063. [Google Scholar] [CrossRef] [Green Version]
- Dingle, K.E.; Didelot, X.; Quan, T.P.; Eyre, D.W.; Stoesser, N.; Golubchik, T.; Harding, R.M.; Wilson, D.J.; Griffiths, D.; Vaughan, A.; et al. Effects of control interventions on Clostridium difficile infection in England: An observational study. Lancet Infect. Dis. 2017, 17, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.; Vernon, J.; Pilling, S.; Morris, K.; Nicolson, S.; Shearman, S.; Clark, E.; Palacios-Fabrega, J.A.; Wilcox, M.; The Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: The extended ClosER study. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 169–177. [Google Scholar] [CrossRef] [Green Version]
- (ACSQHC) Australian Commission on Safety and Quality in Health Care. Clostridium difficile Infection 2018 Data Snapshot. Available online: https://www.safetyandquality.gov.au/publications-and-resources/resource-library/clostridium-difficile-infection-2018-data-snapshot#:~:text=to%2Dperson%20contact.-,C.,around%206%2C000%20cases%20of%20CDI (accessed on 1 August 2020).
- Hong, S.; Putsathit, P.; George, N.; Hemphill, C.; Huntington, P.G.; Korman, T.M.; Kotsanas, D.; Lahra, M.; McDougall, R.; Moore, C.V.; et al. Laboratory-Based Surveillance of Clostridium difficile Infection in Australian Health Care and Community Settings, 2013 to 2018. J. Clin. Microbiol. 2020, 58, e01552-20. [Google Scholar] [CrossRef] [PubMed]
- Shaw, H.A.; Preston, M.D.; Vendrik, K.E.W.; Cairns, M.D.; Browne, H.P.; Stabler, R.A.; Crobach, M.J.T.; Corver, J.; Pituch, H.; Ingebretsen, A.; et al. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin. Microbiol. Infect. 2020, 26, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Putsathit, P.; Hong, S.; George, N.; Hemphill, C.; Huntington, P.G.; Korman, T.M.; Kotsanas, D.; Lahra, M.; McDougall, R.; McGlinchey, A.; et al. Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015–2018. J. Antimicrob. Chemother. 2021, 76, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Borren, N.Z.; Ghadermarzi, S.; Hutfless, S.; Ananthakrishnan, A.N. The emergence of Clostridium difficile infection in Asia: A systematic review and meta-analysis of incidence and impact. PLoS ONE 2017, 12, e0176797. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, Y.; Moon, H.W.; Lim, C.S.; Lee, K.; Chong, Y. Emergence of Clostridium difficile ribotype 027 in Korea. Korean J. Lab. Med. 2011, 31, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Sawabe, E.; Kato, H.; Osawa, K.; Chida, T.; Tojo, N.; Arakawa, Y.; Okamura, N. Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: A shift in the predominant type over a five-year period. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 695–703. [Google Scholar] [CrossRef]
- Cheng, V.C.; Yam, W.C.; Lam, O.T.; Tsang, J.L.; Tse, E.Y.; Siu, G.K.; Chan, J.F.; Tse, H.; To, K.K.; Tai, J.W.; et al. Clostridium difficile isolates with increased sporulation: Emergence of PCR ribotype 002 in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1371–1381. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.B.; Gu, S.L.; Shen, P.; Lv, T.; Fang, Y.H.; Tang, L.L.; Li, L.J. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J. Med. Microbiol. 2018, 67, 52–59. [Google Scholar] [CrossRef]
- Azimirad, M.; Krutova, M.; Yadegar, A.; Shahrokh, S.; Olfatifar, M.; Aghdaei, H.A.; Fawley, W.N.; Wilcox, M.H.; Zali, M.R. Clostridioides difficile ribotypes 001 and 126 were predominant in Tehran healthcare settings from 2004 to 2018: A 14-year-long cross-sectional study. Emerg. Microbes Infect. 2020, 9, 1432–1443. [Google Scholar] [CrossRef]
- Diniz, A.N.; de Oliveira Júnior, C.A.; Vilela, E.G.; Figueiredo, H.C.P.; Rupnik, M.; Wilcox, M.H.; Fawley, W.N.; Blanc, D.S.; Faria Lobato, F.C.; Silva, R.O.S. Molecular epidemiology of Clostridioides (previously Clostridium) difficile isolates from a university hospital in Minas Gerais, Brazil. Anaerobe 2019, 56, 34–39. [Google Scholar] [CrossRef]
- Vaishnavi, C.; Singh, M.; Mahmood, S.; Kochhar, R. Prevalence and molecular types of Clostridium difficile isolates from faecal specimens of patients in a tertiary care centre. J. Med. Microbiol. 2015, 64, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Putsathit, P.; Maneerattanaporn, M.; Piewngam, P.; Kiratisin, P.; Riley, T.V. Prevalence and molecular epidemiology of Clostridium difficile infection in Thailand. New Microbes New Infect. 2017, 15, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.A.; Gasem, M.H.; Habibie, T.H.; Arinton, I.G.; Hendriyanto, P.; Hartana, A.P.; Riley, T.V. Prevalence and molecular epidemiology of Clostridium difficile infection in Indonesia. New Microbes New Infect. 2017, 18, 34–37. [Google Scholar] [CrossRef]
- Rajabally, N.; Kullin, B.; Ebrahim, K.; Brock, T.; Weintraub, A.; Whitelaw, A.; Bamford, C.; Watermeyer, G.; Thomson, S.; Abratt, V.; et al. A comparison of Clostridium difficile diagnostic methods for identification of local strains in a South African centre. J. Med. Microbiol. 2016, 65, 320–327. [Google Scholar] [CrossRef]
- Kullin, B.; Brock, T.; Rajabally, N.; Anwar, F.; Vedantam, G.; Reid, S.; Abratt, V. Characterisation of Clostridium difficile strains isolated from Groote Schuur Hospital, Cape Town, South Africa. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, P.M.; Marriott, C.; Liu, W.E.; Jian, Z.J.; Gao, Q.; Ling, T.K.; Chow, V.; So, E.; Chan, R.; Hardy, K.; et al. Molecular epidemiology of Clostridium difficile infection in a major chinese hospital: An underrecognized problem in Asia? J. Clin. Microbiol. 2013, 51, 3308–3313. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.; Luo, Y.; Huang, C.; Cai, J.; Ye, J.; Zheng, Y.; Wang, L.; Zhao, P.; Liu, A.; Fang, W.; et al. Molecular Epidemiology of Clostridium difficile Infection in Hospitalized Patients in Eastern China. J. Clin. Microbiol. 2017, 55, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imwattana, K.; Knight, D.R.; Kullin, B.; Collins, D.A.; Putsathit, P.; Kiratisin, P.; Riley, T.V. ribotype 017—characterization, evolution and epidemiology of the dominant strain in Asia. Emerg. Microbes Infect. 2019, 8, 796–807. [Google Scholar] [CrossRef] [Green Version]
- al-Barrak, A.; Embil, J.; Dyck, B.; Olekson, K.; Nicoll, D.; Alfa, M.; Kabani, A. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can. Commun. Dis. Rep. 1999, 25, 65–69. [Google Scholar] [PubMed]
- Lyerly, D.M.; Saum, K.E.; MacDonald, D.K.; Wilkins, T.D. Effects of Clostridium difficile toxins given intragastrically to animals. Infect. Immun. 1985, 47, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Putsathit, P.; Kiratisin, P.; Ngamwongsatit, P.; Riley, T.V. Clostridium difficile infection in Thailand. Int. J. Antimicrob. Agents 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Camacho-Ortiz, A.; Galindo-Fraga, A.; Rancel-Cordero, A.; Macías, A.E.; Lamothe-Molina, P.; Ponce de León-Garduño, A.; Sifuentes-Osornio, J. Factors associated with Clostridium difficile disease in a tertiary-care medical institution in Mexico: A case-control study. Rev. Investig. Clin. 2009, 61, 371–377. [Google Scholar]
- van Rossen, T.M.; van Prehn, J.; Koek, A.; Jonges, M.; van Houdt, R.; van Mansfeld, R.; Kuijper, E.J.; Vandenbroucke-Grauls, C.M.J.E.; Budding, A.E. Simultaneous detection and ribotyping of Clostridioides difficile, and toxin gene detection directly on fecal samples. Antimicrob. Resist. Infect. Control. 2021, 10, 23. [Google Scholar] [CrossRef]
- Jafari, N.V.; Songane, M.; Stabler, R.A.; Elawad, M.; Wren, B.W.; Allan, E.; Bajaj-Elliott, M. Host immunity to Clostridium difficile PCR ribotype 017 strains. Infect. Immun. 2014, 82, 4989–4996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaghan, T.M.; Biswas, R.; Satav, A.; Ambalkar, S.; Kashyap, R.S. Clostridioides difficile epidemiology in India. Anaerobe 2022, 74, 102517. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.A.; Sohn, K.M.; Wu, Y.; Ouchi, K.; Ishii, Y.; Elliott, B.; Riley, T.V.; Tateda, K.; for the Clostridioides difficile Asia-Pacific Study Group. Clostridioides difficile infection in the Asia-Pacific region. Emerg. Microbes Infect. 2020, 9, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appaneal, H.J.; Caffrey, A.R.; LaPlante, K.L. What Is the Role for Metronidazole in the Treatment of Clostridium difficile Infection? Results From a National Cohort Study of Veterans With Initial Mild Disease. Clin. Infect. Dis. An. Off. Publ. Infect. Dis. Soc. Am. 2019, 69, 1288–1295. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.K.; OPT-80-003 Clinical Study Group. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Crook, D.W.; Esposito, R.; Poirier, A.; Somero, M.S.; Weiss, K.; Sears, P.; Gorbach, S.; Group, O.-C.S. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: A double-blind, non-inferiority, randomised controlled trial. Lancet Infect. Dis. 2012, 12, 281–289. [Google Scholar] [CrossRef]
- Guery, B.; Menichetti, F.; Anttila, V.J.; Adomakoh, N.; Aguado, J.M.; Bisnauthsing, K.; Georgopali, A.; Goldenberg, S.D.; Karas, A.; Kazeem, G.; et al. Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): A randomised, controlled, open-label, phase 3b/4 trial. Lancet Infect. Dis. 2018, 18, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Mikamo, H.; Tateda, K.; Yanagihara, K.; Kusachi, S.; Takesue, Y.; Miki, T.; Oizumi, Y.; Gamo, K.; Hashimoto, A.; Toyoshima, J.; et al. Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative Phase III study in Japan. J. Infect. Chemother. 2018, 24, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Watt, M.; McCrea, C.; Goldenberg, S.D.; De Nigris, E. Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients aged ≥60 years (EXTEND): Analysis of cost-effectiveness. J. Antimicrob. Chemother. 2018, 73, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, e1029–e1044. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Lowy, I.; Molrine, D.C.; Leav, B.A.; Blair, B.M.; Baxter, R.; Gerding, D.N.; Nichol, G.; Thomas, W.D.; Leney, M.; Sloan, S.; et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 2010, 362, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. FDA Briefing Document: Bezlotoxumab Injection. Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC). Available online: https://www.fda.gov/media/98708/download (accessed on 27 May 2023).
- Shahani, L.; Koirala, J. Use of intravenous immunoglobulin in severe Clostridium difficile-associated diarrhea. Hosp. Pract. 2015, 43, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Shaaban, H.; Spira, R.; Slim, J.; Boghossian, J. Intravenous immunoglobulin in the treatment of severe clostridium difficile colitis. J. Glob. Infect. Dis. 2014, 6, 82–85. [Google Scholar] [CrossRef]
- Förster, B.; Chung, P.K.; Crobach, M.J.T.; Kuijper, E.J. Application of Antibody-Mediated Therapy for Treatment and Prevention of Clostridium difficile Infection. Front. Microbiol. 2018, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Negm, O.H.; MacKenzie, B.; Hamed, M.R.; Ahmad, O.A.J.; Shone, C.C.; Humphreys, D.P.; Ravi Acharya, K.; Loscher, C.E.; Marszalowska, I.; Lynch, M.; et al. Protective antibodies against Clostridium difficile are present in intravenous immunoglobulin and are retained in humans following its administration. Clin. Exp. Immunol. 2017, 188, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.R.; Kahn, S.; Kashyap, P.; Laine, L.; Rubin, D.; Atreja, A.; Moore, T.; Wu, G. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology 2015, 149, 223–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madoff, S.E.; Urquiaga, M.; Alonso, C.D.; Kelly, C.P. Prevention of recurrent Clostridioides difficile infection: A systematic review of randomized controlled trials. Anaerobe 2020, 61, 102098. [Google Scholar] [CrossRef] [PubMed]
- Hvas, C.L.; Dahl Jørgensen, S.M.; Jørgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology 2019, 156, 1324–1332.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, J.W.; Arora, R.; Schlackman, J.L.; Shutt, K.A.; Curry, S.R.; Harrison, L.H. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J. Clin. Microbiol. 2012, 50, 4078–4082. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.P.; LaMont, J.T. Clostridium difficile—More difficult than ever. N. Engl. J. Med. 2008, 359, 1932–1940. [Google Scholar] [CrossRef]
- Kelly, C.P. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin. Microbiol. Infect. 2012, 18 (Suppl. S6), 21–27. [Google Scholar] [CrossRef] [Green Version]
- Baunwall, S.M.D.; Lee, M.M.; Eriksen, M.K.; Mullish, B.H.; Marchesi, J.R.; Dahlerup, J.F.; Hvas, C.L. Faecal microbiota transplantation for recurrent. EClinicalMedicine 2020, 29–30, 100642. [Google Scholar] [CrossRef]
- Lagier, J.C.; Delord, M.; Million, M.; Parola, P.; Stein, A.; Brouqui, P.; Raoult, D. Dramatic reduction in Clostridium difficile ribotype 027-associated mortality with early fecal transplantation by the nasogastric route: A preliminary report. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1597–1601. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Bloom, P.P.; Torres Soto, M.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.B.; Hohmann, E.L. Drug-Resistant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef]
- Solari, P.R.; Fairchild, P.G.; Noa, L.J.; Wallace, M.R. Tempered enthusiasm for fecal transplant. Clin. Infect. Dis. 2014, 59, 319. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.R.; Yen, E.F.; Grinspan, A.M.; Kahn, S.A.; Atreja, A.; Lewis, J.D.; Moore, T.A.; Rubin, D.T.; Kim, A.M.; Serra, S. Fecal microbiota transplantation is highly effective in real-world practice: Initial results from the FMT National Registry. Gastroenterology 2021, 160, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.; Golan, Y.; Khanna, S.; Bobilev, D.; Erpelding, N.; Fratazzi, C.; Carini, M.; Menon, R.; Ruisi, M.; Norman, J.M.; et al. VE303, a Defined Bacterial Consortium, for Prevention of Recurrent Clostridioides difficile Infection: A Randomized Clinical Trial. JAMA 2023, 329, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Feuerstadt, P.; Louie, T.J.; Lashner, B.; Wang, E.E.L.; Diao, L.; Bryant, J.A.; Sims, M.; Kraft, C.S.; Cohen, S.H.; Berenson, C.S.; et al. SER-109, an Oral Microbiome Therapy for Recurrent. N. Engl. J. Med. 2022, 386, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kao, D.; Wong, K.; Franz, R.; Cochrane, K.; Sherriff, K.; Chui, L.; Lloyd, C.; Roach, B.; Bai, A.D.; Petrof, E.O.; et al. The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: A phase 1, open-label, single-group trial. Lancet Gastroenterol. Hepatol. 2021, 6, 282–291. [Google Scholar] [CrossRef]
- Nale, J.Y.; Redgwell, T.A.; Millard, A.; Clokie, M.R.J. Efficacy of an Optimised Bacteriophage Cocktail to Clear Clostridium difficile in a Batch Fermentation Model. Antibiotics 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Meader, E.; Mayer, M.J.; Steverding, D.; Carding, S.R.; Narbad, A. Evaluation of bacteriophage therapy to control Clostridium difficile and toxin production in an in vitro human colon model system. Anaerobe 2013, 22, 25–30. [Google Scholar] [CrossRef]
- Mondal, S.I.; Akter, A.; Draper, L.A.; Ross, R.P.; Hill, C. Characterization of an Endolysin Targeting. Int. J. Mol. Sci. 2021, 22, 5690. [Google Scholar] [CrossRef]
- Hargreaves, K.R.; Clokie, M.R. Clostridium difficile phages: Still difficult? Front. Microbiol. 2014, 5, 184. [Google Scholar] [CrossRef] [Green Version]
- Sangster, W.; Hegarty, J.P.; Stewart, D.B. Phage tail-like particles kill Clostridium difficile and represent an alternative to conventional antibiotics. Surgery 2015, 157, 96–103. [Google Scholar] [CrossRef]
- Heuler, J.; Fortier, L.C.; Sun, X. Clostridioides difficile phage biology and application. FEMS Microbiol. Rev. 2021, 45, fuab012. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.M.; Seekatz, A.M.; Mullish, B.H.; Moore-Gillon, C.C.E.R.; Dawson, L.F.; Ahmed, A.; Kao, D.; Chan, W.C. Innovations in target discovery and potential for therapeutic success. Expert. Opin. Ther. Targets 2021, 25, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Venhorst, J.; van der Vossen, J.M.B.M.; Agamennone, V. Battling Enteropathogenic Clostridia: Phage Therapy for. Front. Microbiol. 2022, 13, 891790. [Google Scholar] [CrossRef]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Salazar, C.L.; Reyes, C.; Cienfuegos-Gallet, A.V.; Best, E.; Atehortua, S.; Sierra, P.; Correa, M.M.; Fawley, W.N.; Paredes-Sabja, D.; Wilcox, M.; et al. Subtyping of Clostridium difficile PCR ribotypes 591, 106 and 002, the dominant strain types circulating in Medellin, Colombia. PLoS ONE 2018, 13, e0195694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nation/Region | Incidence of CDI | Reference |
---|---|---|
United States | Incidence of 101.3 [CA (51.2) and HA (50.1)] cases per 100,000 persons in 2020; incidence of 148.55 [CA (65.81) and HA (82.74)] cases per 100,000 persons in 2015 | CDC 2020 [28] |
Canada | National rate of HA-CDI decreased from 5.9 to 4.3 per 10,000 patient days from 2009 to 2015 | Katz et al. [38] |
Europe | Mean incidence of CDI was 3.48 cases per 10,000 patient days in 2016–2017; 60.9% HA, 32.7% CA, and 6.7 rCDI | ECDC 2022 [46] |
Australia | HA-CDI 3.94 per 10,000 patient bed days in 2013 and 4.05 per 10,000 patient bed days in 2018 | ACSQHC 2020 [55] |
Asia | Pooled incidence rate at 5.3 per 10,000 patient days | Collins et al. [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Monaghan, T.; Yadegar, A.; Louie, T.; Kao, D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics 2023, 12, 1141. https://doi.org/10.3390/antibiotics12071141
Liu C, Monaghan T, Yadegar A, Louie T, Kao D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics. 2023; 12(7):1141. https://doi.org/10.3390/antibiotics12071141
Chicago/Turabian StyleLiu, Crystal, Tanya Monaghan, Abbas Yadegar, Thomas Louie, and Dina Kao. 2023. "Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective" Antibiotics 12, no. 7: 1141. https://doi.org/10.3390/antibiotics12071141
APA StyleLiu, C., Monaghan, T., Yadegar, A., Louie, T., & Kao, D. (2023). Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics, 12(7), 1141. https://doi.org/10.3390/antibiotics12071141