Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa
Abstract
:1. Introduction
2. Results
2.1. Confirmation of K. pneumoniae Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Distribution of Antimicrobial Resistance Genes
2.4. MARI Analysis
2.5. Association between the Resistance Genes
3. Materials and Methods
3.1. Study Area Description
3.2. Collection of Samples and Isolation of Presumptive K. pneumoniae
3.3. Genomic DNA Extraction
3.4. Molecular Confirmation of K. pneumoniae
3.5. Antibiotics Susceptibility Testing
3.6. Multiple Antibiotics Resistance Index (MARI) Analysis
3.7. Molecular Detection of Resistance Genes
3.8. Statistical Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Initiatives for Addressing Antimicrobial Resistance in the Environment: Current Situation and Challenges. 2018. Available online: https://wellcome.ac.uk/sites/default/files/antimicrobial-resistance-environment-report.pdf (accessed on 11 June 2023).
- Adekanmbi, A.O.; Akinpelu, M.O.; Olaposi, V.; Oyelade, A.A. Extended spectrum beta-lactamase encoding gene-fingerprints in multidrug resistant Escherichia coli isolated from wastewater and sludge of a hospital treatment plant in Nigeria. Int. J. Environ. Stud. 2020, 78, 140–150. [Google Scholar] [CrossRef]
- Olufemi, O.; Id, A.; Ikhimiukor, O.O.; Knecht, C. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS ONE 2020, 15, e0229451. [Google Scholar] [CrossRef]
- Banjo, O.A.; Adekanmbi, A.O.; Oyelade, A.A. Occurrence of CTX-M, SHV and TEM β-lactamase genes in Extended Spectrum Beta-Lactamase (ESBL)-producing baacccteria recovered from wastewater of a privately-owned hospital in Nigeria and a hand-dug well within its vicinity. Gene Rep. 2020, 21, 100970. [Google Scholar] [CrossRef]
- Malik, B.; Bhattacharyya, S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 2019, 9, 9788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO|Antimicrobial Resistance: Global Report on Surveillance 2014. WHO [Internet]. 2016. Available online: http://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed on 2 November 2020).
- Department of Health Republic of South Africa. South Africa Antimicrobial Resistance National Strategy Framework 2017–2024; Department of Health: Pretoria, South Africa; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2018; pp. 1–23.
- Mirzaie, A.; Ranjbar, R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express 2021, 11, 122. [Google Scholar] [CrossRef]
- Reed, D.; Kemmerly, S.A. Infection Control and prevention: A review of hospital-acquired infections and the economic implications. Ochsner J. 2009, 9, 27–31. [Google Scholar]
- Hasan, M.; Hossain, M.K.; Rumi, N.A.; Rahman, M.S.; Hosen, M.A. Isolation and characterization of multiple drug-resistant bacteria from the waste of hospital and non-hospital environment. Asian J. Med. Biol. Res. 2020, 6, 460–468. [Google Scholar] [CrossRef]
- Weiss, A.; Dym, H. Review of Antibiotics and Indications for Prophylaxis. Dent. Clin. N. Am. 2012, 56, 235–244. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0011853211001091 (accessed on 28 September 2020). [CrossRef]
- Sato, S.; Aoyama, T.; Uejima, Y.; Furuichi, M.; Suganuma, E.; Takano, T.; Ikeda, M.; Mizoguchi, M.; Okugawa, S.; Moriya, K.; et al. Pyogenic liver abscess due to hypervirulent Klebsiella pneumoniae in a 14-year-old boy. J. Infect. Chemother. 2019, 25, 137–140. [Google Scholar] [CrossRef]
- Sapkota, A.R.; Curriero, F.C.; Gibson, K.E.; Schwab, K.J. Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environ. Health Perspect. 2007, 115, 1040–1045. [Google Scholar] [CrossRef] [Green Version]
- Hosu, M.C.; Vasaikar, S.; Okuthe, G.E.; Apalata, T. Molecular Detection of Antibiotic-Resistant Genes in Pseudomonas aeruginosa from Nonclinical Environment: Public Health Implications in Mthatha, Eastern Cape Province, South Africa. Int. J. Microbiol. 2021, 2021, 8861074. [Google Scholar] [CrossRef] [PubMed]
- Mapipa, Q.; Digban, T.O.; Nnolim, N.E.; Nwodo, U.U. Antibiogram profile and virulence signatures of Pseudomonas aeruginosa isolates recovered from selected agrestic hospital effluents. Sci. Rep. 2021, 11, 11800. [Google Scholar] [CrossRef] [PubMed]
- Brisse, S.; Verhoef, J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int. J. Syst. Evol. Microbiol. 2001, 51, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Zheng, W.; Zhang, X.; Yu, J.; Gao, Q.; Hou, Y.; Huang, X. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. Int. J. Food Microbiol. 2008, 125, 230–235. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Standard M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; Volume 40, pp. 50–51. [Google Scholar]
- Blasco, M.D.; Esteve, C.; Alcaide, E. Multiresistant waterborne pathogens isolated from water reservoirs and cooling systems. J. Appl. Microbiol. 2008, 105, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Osundiya, O.O.; Oladele, R.O.; Oduyebo, O.O. Multiple Antibiotic Resistance (MAR) Indices of Pseudomonas and Klebsiella species Isolates in Lagos University Teaching Hospital. Afr. J. Clin. Exp. Microbiol. 2013, 14, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Mapipa, Q.; Digban, T.O.; Nwodo, U.U. Antibiogram and detection of virulence genes among Klebsiella pneumoniae isolates from rustic hospital drains. Gene Rep. 2022, 26, 101440. [Google Scholar] [CrossRef]
- Cahill, N.; Connor, L.O.; Mahon, B.; Varley, Á.; Mcgrath, E.; Ryan, P.; Cormican, M.; Brehony, C.; Jolley, K.A.; Maiden, M.C.; et al. Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales? Sci. Total Environ. 2019, 672, 618–624. [Google Scholar] [CrossRef]
- King, T.L.B.; Schmidt, S.; Essack, S.Y. Antibiotic resistant Klebsiella spp. from a hospital, hospital effluents and wastewater treatment plants in the uMgungundlovu District, KwaZulu-Natal, South Africa. Sci. Total Environ. 2020, 712, 135550. [Google Scholar] [CrossRef]
- Lateef, A. The microbiology of a pharmaceutical effluent and its public health implications. World J. Microbiol. Biotechnol. 2004, 20, 167–171. [Google Scholar] [CrossRef]
- Peneş, N.O.; Muntean, A.A.; Moisoiu, A.; Muntean, M.M.; Chirca, A.; Bogdan, M.A.; Popa, M.I. An overview of resistance profiles ESKAPE pathogens from 2010–2015 in a tertiary respiratory center in Romania. Rom. J. Morphol. Embryol. 2017, 58, 909–922. [Google Scholar] [PubMed]
- Lagha, R.; Ben Abdallah, F.; ALKhammash, A.A.H.; Amor, N.; Hassan, M.M.; Mabrouk, I.; Alhomrani, M.; Gaber, A. Molecular characterization of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from King Abdulaziz Specialist Hospital at Taif City, Saudi Arabia. J. Infect. Public Health 2021, 14, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Chehelgerdi, A.F.K.M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infect. Drug Resist. 2019, 12, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Goñi-Urriza, M.; Capdepuy, M.; Arpin, C.; Raymond, N.; Pierre Caumette, C.Q. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl. Environ. Microbiol. 2000, 66, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Martínez, M.; Ruiz Del Castillo, B.; Lecea-Cuello, M.J.; Rodríguez-Baño, J.; Pascual, Á.; Martínez-Martínez, L. Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia coli and Klebsiella pneumoniae Producing Extended Spectrum β-Lactamases Collected in Two Multicenter Studies in Spain. Microb. Drug Resist. 2018, 24, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, Y.; Jiang, J.; Gong, Z.; Zhu, H.; Wang, K.; Zhou, Q.; Tian, Y.; Qin, A.; Yang, Z.; et al. Isolation and characterization of multidrug-resistant Klebsiella pneumoniae from raw cow milk in Jiangsu and Shandong provinces, China. Transbound. Emerg. Dis. 2020, 68, 1033–1039. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Zeng, L.; Yang, C.; Yin, L.; Wang, J.; Li, J.; Li, X.; Hu, K.; Zhang, X.; et al. Carbapenemase Production and Epidemiological Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Western Chongqing, China. Front. Cell. Infect. Microbiol. 2022, 11, 775740. [Google Scholar] [CrossRef]
- Berendsen, B.; Stolker, L.; De Jong, J.; Nielen, M.; Tserendorj, E.; Sodnomdarjaa, R.; Cannavan, A.; Elliott, C. Evidence of natural occurrence of the banned antibiotic chloramphenicol in herbs and grass. Anal. Bioanal. Chem. 2010, 397, 1955–1963. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, M.A.G.; Howlader, M.Z.H.; Kabir, Y. Detection of multidrug resistant (MDR) bacteria in untreated waste water disposals of hospitals in Dhaka City, Bangladesh. J. Glob. Antimicrob. Resist. 2017, 10, 120–125. [Google Scholar] [CrossRef]
- Al-agamy, M.H.; Aljallal, A.; Radwan, H.H.; Shibl, A.M. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. J. Infect. Public Health 2018, 11, 64–68. [Google Scholar] [CrossRef]
- Manikandan, C.; Amsath, A. Antibiotic susceptibility pattern of Klebsiella pneumoniae isolated from urine samples. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 330–337. [Google Scholar]
- Ngoi, S.T.; Teh, C.S.J.; Chong, C.W.; Abdul Jabar, K.; Tan, S.C.; Yu, L.H.; Leong, K.C.; Tee, L.H.; AbuBakar, S. In vitro efficacy of flomoxef against extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae associated with urinary tract infections in Malaysia. Antibiotics 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Ebomah, K.E.; Okoh, A.I. Detection of carbapenem-resistance genes in Klebsiella species recovered from selected environmental niches in the Eastern Cape Province, South Africa. Antibiotics 2020, 9, 425. [Google Scholar] [CrossRef]
- Prado, T.; Pereira, W.C.; Silva, D.M.; Seki, L.M.; Carvalho, A.P.D.A.; Asensi, M.D. Detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. Lett. Appl. Microbiol. 2008, 46, 136–141. [Google Scholar] [CrossRef]
- Ciccozzi, M.; Cella, E.; Lai, A.; De Florio, L.; Antonelli, F.; Fogolari, M.; Di Matteo, F.M.; Pizzicannella, M.; Colombo, B.; Dicuonzo, G.; et al. Phylogenetic Analysis of Multi-Drug Resistant Klebsiella pneumoniae Strains From Duodenoscope Biofilm: Microbiological Surveillance and Reprocessing Improvements for Infection Prevention. Front. Public Health 2019, 7, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjula, N.G.; Math, G.C.; Nagshetty, K.; Patil, S.A.; Gaddad, S.M.; Shivannavar, C.T. Antibiotic Susceptibility Pattern of ESβL Producing Klebsiella pneumoniae Isolated from Urine Samples of Pregnant Women in Karnataka. J. Clin. Diagn. Res. 2014, 8, 8–11. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Ilia, A.; Mpekoulis, G. Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater. Antibiotics 2019, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef]
- Tacão, M.; Correia, A.; Henriques, I. Resistance to broad-spectrum antibiotics in aquatic systems: Anthropogenic activities modulate the dissemination of blaCTX-M-like genes. Appl. Environ. Microbiol. 2012, 78, 4134–4140. [Google Scholar] [CrossRef] [Green Version]
- Mbelle, N.M.; Feldman, C.; Sekyere, J.O.; Maningi, N.E.; Modipane, L.; Essack, S.Y. Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical Klebsiella pneumoniae Isolated from Pretoria, South Africa. Sci. Rep. 2020, 10, 1232. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.L.; Da Silva, B.C.M.; Rezende, G.S.; Nakamura-Silva, R.; Pitondo-Silva, A.; Campanini, E.B.; Brito, M.C.A.; Da Silva, E.M.L.; De Melo Freire, C.C.; Da Cunha, A.F.; et al. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a brazilian intensive care unit. Front. Microbiol. 2019, 10, 3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mairi, A.; Pantel, A.; Sotto, A.; Lavigne, J.P.; Touati, A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.; Tay, M.; Tan, B.; Le, T.; Haller, L.; Chen, H.; Koh, T.H.; Barkham, T.M.S.; Thompson, J.R.; Gin, K.Y. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. Front. Microbiol. 2017, 8, 2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, M.A.; Elhag, W.I. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect. Dis. 2018, 18, 4–9. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Zafer, M.M.; Al-agamy, M.H.; El-mahallawy, H.A.; Amin, M.A.; Ashour, M.S.E. Antimicrobial Resistance Pattern and Their Beta-Lactamase Encoding Genes among Pseudomonas aeruginosa Strains Isolated from Cancer Patients. Biomed. Res. Int. 2014, 2014, 101635. [Google Scholar] [CrossRef] [Green Version]
- Diab, M.; Fam, N.; El-said, M.; Defrawy, E.E.I.E. Occurrence of VIM-2 Metallo-ß-Lactamases in imipenem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. Afr. J. Microbiol. Res. 2013, 7, 4465–4472. [Google Scholar] [CrossRef]
- Singh-moodley, A.; Perovic, O. Antimicrobial susceptibility testing in predicting the presence of carbapenemase genes in Enterobacteriaceae in South Africa. BMC Infect. Dis. 2016, 16, 536. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.O.; Ali, F.A.; Anoar, K.A. Detection of Metallo Β-Lactamase Enzyme in Some Gram Negative Bacteria Isolated from Burn Patients in Sulaimani City, IRAQ Khanda Abdulateef Anoar. Eur. Sci. J. 2014, 10, 485–496. [Google Scholar]
- Suzuki, Y.; Nazareno, P.J.; Nakano, R.; Mondoy, M.; Nakano, A.; Bugayong, M.P.; Bilar, J.; Perez, M.; Medina, E.J.; Saito-Obata, M.; et al. Environmental Presence and Genetic Characteristics of Carbapenemase-Producing Enterobacteriaceae from Hospital Sewage and River Water in the Philippines. Appl. Environ. Microbiol. 2020, 86, e01906-19. [Google Scholar] [CrossRef] [Green Version]
- Fadare, F.T.; Adefisoye, M.A.; Okoh, A.I. Occurrence, identification, and antibiogram signatures of selected Enterobacteriaceae from Tsomo and Tyhume rivers in the Eastern Cape Province, Republic of South Africa. PLoS ONE 2020, 15, e0238084. [Google Scholar] [CrossRef] [PubMed]
- Titilawo, Y.; Obi, L.; Okoh, A. Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: Implications for public health. Sci. Total Environ. 2015, 523, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.A.; Maani, E.V.; Lindell, A.H.; King, C.J.; McArthur, J.V. Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl. Environ. Microbiol. 2007, 73, 2199–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auerbach, E.A.; Seyfried, E.E.; McMahon, K.D. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res. 2007, 41, 1143–1151. [Google Scholar] [CrossRef]
- Ellington, M.J.; Kistler, J.; Livermore, D.M.; Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J. Antimicrob. Chemother. 2007, 59, 321–322. [Google Scholar] [CrossRef] [Green Version]
- Robicsek, A.; Strahilevitz, J.; Sahm, D.F.; Jacoby, G.A.; Hooper, D.C. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother. 2006, 50, 2872–2874. [Google Scholar] [CrossRef] [Green Version]
- Maynard, C.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J. Clin. Microbiol. 2004, 42, 5444–5452. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Gillespie, B.E.; Lewis, M.J.; Nguyen, L.T.; Headrick, S.I.; Schukken, Y.H.; Oliver, S.P. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet. Microbiol. 2007, 124, 319–328. [Google Scholar] [CrossRef]
- Falbo, V.; Carattoli, A.; Tosini, F.; Pezzella, C.; Dionisi, A.M.; Luzzi, I. Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob. Agents Chemother. 1999, 43, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Post, V.; Hall, R.M. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009, 53, 2667–2671. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 4089–4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotics Resistance Genes | Total Positive (%) |
---|---|
Beta-Lactam (n = 142 isolates screened) | |
blaTEM | 24 (16.90) |
blaSHV | 18 (12.67) |
blaOXA-1-like | 2 (1.40) |
blaCTX-M-1 | 13 (9.15) |
blaCTX-M-2 | 1 (0.70) |
blaCTX-M-9 | 4 (2.8) |
Tetracycline (n = 119 isolates screened) | |
tetA | 70 (58.82) |
tetB | 7 (5.88) |
tetC | 4 (3.36) |
tetD | 57 (47.89) |
tetK | 13 (10.92) |
tetM | 30 (25.21) |
Carbapenem (n = 51 tested) | |
IMP | 5 (9.8) |
VIM | 1 (1.9) |
KPC | 3 (5.8) |
NDM-1 | 2 (3.9) |
OXA-48 | 1 (1.9) |
Aminoglycoside (n = 69 tested) | |
strA | 18 (26.0) |
aadA | 43 (62.3) |
aac(3)-IIa(aacC2)a | 10 (14.4) |
Sulphonamides (n = 57 tested) | |
sul1 | 39 (68.4) |
sul2 | 38 (66.6) |
Quinolones (n = 83 tested) | |
qnrA | 13 (15.6) |
qnrB | 10 (12.0) |
Phenicol (n = 36 tested) | |
cat1 | 2 (5.6) |
cat11 | 11 (30.5) |
Antimicrobial Class | Antimicrobial Resistance Determinants Pattern | Total (%) |
---|---|---|
Beta-lactam | blaCTXM-1–blaTEM | 4 (3) |
blaCTXM-1–blaTEM–blaOXA-1 | 2 (1) | |
blaCTXM-1–blaSHV | 4 (3) | |
Carbapenem | blaIMP–blaNDM-1 | 1 (2) |
blaVIM–blaKPC | 1 (2) | |
blaIMP–blaOXA-48 | 1 (2) | |
Aminoglycosides | strA-aadA | 10 (15) |
strA–aadA–aac(3)-11a(aac(2)a | 3 (4) | |
aadA–aac(3)-11a(aac(2)a | 7 (10) | |
Sulfonamides | sul1-sul11 | 34 (60) |
Quinolones | qnrA-qnrB | 34 (41) |
Tetracycline | tetA-tetC | 4 (3) |
tetA-tetB | 4 (3) | |
tetA-tetD | 41 (35) | |
tetA-tetK | 12 (10) | |
tetA-tetM | 16 (13) | |
tetD-tetM | 7 (6) | |
tetB-tetD | 1 (1) | |
tetA-tetB-tetK | 1 (1) | |
tetA-tetD-tetM | 9 (8) | |
tetA-tetD-tetK | 9 (8) | |
tetA-tetB-tetD | 1 (1) | |
tetD-tetK-tetM | 1 (1) | |
tetA-tetC-tetM | 2 (2) | |
tetA-tetC-tetD | 1 (1) | |
tetA-tetD-tetK-tetM | 4 (3) |
Number of Antibiotics | Frequency (%) | MARI |
---|---|---|
1 | 3 (2) | 0.05 |
2 | 4 (2.8) | 0.09 |
3 | 18 (12.6) | 0.14 |
4 | 14 (9.8) | 0.19 |
5 | 12 (8.5) | 0.24 |
6 | 18 (12.6) | 0.29 |
7 | 13 (9.2) | 0.33 |
8 | 8 (5.6) | 0.38 |
9 | 15 (10.6) | 0.43 |
10 | 8 (5.6) | 0.47 |
11 | 9 (6.3) | 0.52 |
12 | 9 (6.3) | 0.57 |
13 | 2 (1.4) | 0.62 |
14 | 3 (2.1) | 0.67 |
15 | 3 (2.1) | 0.71 |
17 | 1 (0.7) | 0.80 |
19 | 1 (0.7) | 0.90 |
20 | 1 (0.7) | 0.95 |
21 | 1 (0.7) | 1.0 |
Genes | SHV | OXA-1 | CTXM-1 | CTXM-2 | CTXM-9 | tetA | tetB | tetC | tetD | tetK | tetM | IMP | VIM | KPC | NDM | OXA-48 | strA | aadA | aaC2 | sul1 | sul11 | qnrA | qnrB | cat1 | cat11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEM | − | +++ | − | +++ | +++ | +++ | ++ | +++ | +++ | − | − | +++ | +++ | +++ | +++ | +++ | − | + | + | − | − | − | + | +++ | + |
SHV | +++ | − | +++ | ++ | +++ | + | + | +++ | − | − | + | +++ | ++ | +++ | +++ | − | ++ | − | ++ | ++ | − | − | +++ | − | |
OXA-1 | ++ | − | − | +++ | − | − | +++ | ++ | +++ | − | − | − | − | − | +++ | +++ | + | +++ | +++ | ++ | + | − | + | ||
CTXM-1 | ++ | + | +++ | − | + | +++ | − | + | − | ++ | + | ++ | ++ | − | +++ | − | +++ | ++ | − | − | ++ | − | |||
CTXM-2 | − | +++ | − | − | +++ | ++ | +++ | − | − | − | − | − | +++ | +++ | + | +++ | +++ | ++ | + | − | ++ | ||||
CTXM-9 | +++ | − | − | +++ | + | +++ | − | − | − | − | − | ++ | +++ | − | +++ | +++ | + | − | − | − | |||||
tetA | +++ | +++ | − | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ | + | +++ | ++ | ++ | +++ | +++ | +++ | +++ | ||||||
tetB | − | +++ | − | +++ | − | − | − | − | − | + | +++ | − | +++ | +++ | − | − | − | − | |||||||
tetC | − | + | +++ | − | − | − | − | − | ++ | +++ | − | +++ | +++ | + | − | − | − | ||||||||
tetD | +++ | ++ | +++ | +++ | +++ | +++ | +++ | +++ | − | +++ | − | − | +++ | +++ | +++ | +++ | |||||||||
tetK | + | − | ++ | + | ++ | ++ | − | +++ | − | +++ | +++ | − | − | ++ | − | ||||||||||
tetM | +++ | +++ | +++ | +++ | +++ | − | − | ++ | − | − | + | ++ | +++ | ++ | |||||||||||
IMP | − | − | − | − | + | +++ | _ | +++ | +++ | − | − | − | − | ||||||||||||
VIM | − | − | − | +++ | +++ | + | +++ | +++ | ++ | + | − | ++ | |||||||||||||
KPC | − | − | +++ | +++ | − | +++ | +++ | + | − | − | − | ||||||||||||||
NDM | − | +++ | +++ | + | +++ | +++ | ++ | + | − | + | |||||||||||||||
OXA-48 | +++ | +++ | +++ | +++ | ++ | ++ | + | − | ++ | ||||||||||||||||
strA | ++ | − | ++ | ++ | − | ++ | − | ||||||||||||||||||
aadA | +++ | − | − | +++ | +++ | +++ | +++ | ||||||||||||||||||
aaC2 | +++ | +++ | − | − | + | − | |||||||||||||||||||
sul1 | − | +++ | +++ | +++ | +++ | ||||||||||||||||||||
sul11 | ++ | +++ | +++ | +++ | |||||||||||||||||||||
qnrA | − | ++ | − | ||||||||||||||||||||||
qnrB | + | − | |||||||||||||||||||||||
cat1 | ++ |
Target Strain | Target Gene | Primer Sequence (51–31) | PCR Cycling Condition | Product Size (bp) | Reference |
---|---|---|---|---|---|
Klebsiella genus | gyrA | F:CGCGTACTATACGCCATGAACGTA R:ACCGTTGATCACTTCGGTCAGG | ‘‘94 °C (5 min), 94 °C (30 s), 55 °C (45 s), 72 °C (45 s), 72 °C (10 min) × 35 cycles” | 441 | [16] |
K. pneumoniae | magA | F:ATTTGAAGAGGTTGCAAACGAT R: TTCACTCTGAAGTTTTCTTGTGTTC | ‘‘94 °C (5 min), 94 °C (30 s), 55 °C (30 s), 72 °C (45 s), 72 °C (10 min) × 30 cycles” | 130 | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, J.U.; Nwodo, U.U. Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics 2023, 12, 1139. https://doi.org/10.3390/antibiotics12071139
Okafor JU, Nwodo UU. Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics. 2023; 12(7):1139. https://doi.org/10.3390/antibiotics12071139
Chicago/Turabian StyleOkafor, Joan U., and Uchechukwu U. Nwodo. 2023. "Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa" Antibiotics 12, no. 7: 1139. https://doi.org/10.3390/antibiotics12071139
APA StyleOkafor, J. U., & Nwodo, U. U. (2023). Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics, 12(7), 1139. https://doi.org/10.3390/antibiotics12071139