Analysis, Occurrence and Exposure Evaluation of Antibiotic and Anthelmintic Residues in Whole Cow Milk from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Extraction Optimization
2.4. Recovery and Matrix Effect
- cpre: concentration of pre-spiked sample, µg/L.
- cpost: concentration of post-spiked sample, µg/L.
- cnon: concentration of non-spiked sample, µg/L.
- cstan: concentration of standard solution.
2.5. Instrumental Analysis
2.6. Quality Control and Quality Assurance
2.7. Estimated Daily Intakes of the Antibiotics and Anthelmintics via Whole Cow Milk Consumption
2.8. Statistical Analysis
3. Results and Discussion
3.1. Selection of Extraction Version
3.2. Extractant Volume
3.3. Dosage of Dehydrating Agent and NaCl
3.4. Buffer Salts Ratio Optimization
3.5. Purification Process Optimization
3.6. Method Verification
3.7. Concentrations of the Antibiotics and Anthelmintics in the Whole Cow Milk Samples
3.8. Estimated Daily Intake
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boontongto, T.; Santaladchaiyakit, Y.; Burakham, R. Alternative Green Preconcentration Approach Based on Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction and HPLC for Determination of Benzimidazole Anthelmintics in Milk Formulae. Chromatographia 2014, 77, 1557–1562. [Google Scholar] [CrossRef]
- Danaher, M.; De Ruyck, H.; Crooks, S.R.H.; Dowling, G.; O’Keeffe, M. Review of methodology for the determination of benzimidazole residues in biological matrices. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2007, 845, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Horvat, A.; Babić, S.; Pavlović, D.; Ašperger, D.; Pelko, S.; Kaštelan-Macan, M.; Petrović, M.; Mance, A. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trac-Trends Anal. Chem. 2012, 31, 61–84. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, X.; Wei, D.; Huang, Z.; Cheng, S.; Chen, J. Chemiluminescence imaging immunoassay for multiple aminoglycoside antibiotics in cow milk. Int. J. Food Sci. Technol. 2020, 55, 119–126. [Google Scholar] [CrossRef]
- CIVDC. Overview, Policy and Trend of Veterinary Drug Industry in China. China Institute of Veterinary Drug Control 2016. Available online: http://www.ivdc.org.cn/zxck/201708/t20170823_46901.htm (accessed on 2 February 2023). (In Chinese).
- Han, Y.; Yang, L.; Chen, X.; Cai, Y.; Zhang, X.; Qian, M.; Chen, X.; Zhao, H.; Sheng, M.; Cao, G.; et al. Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation. Sci. Total Environ. 2020, 709, 13609. [Google Scholar] [CrossRef]
- Havlíková, L.; Brabcová, I.; Šatínský, D.; Matysová, L.; Luskačová, A.; Osička, Z.; Solich, P. Optimisation of an HPLC method for the simultaneous determination of pyrantel pamoate, praziquantel, fenbendazole, oxfendazole and butylhydroxyanisole using a phenyl stationary phase. Anal. Methods 2012, 4, 1592–1597. [Google Scholar] [CrossRef]
- Karacaglar, N.N.Y.; Topcu, A.; Dudak, F.C.; Boyaci, I.H. Development of a green fluorescence protein (GFP)-based bioassay for detection of antibiotics and its application in milk. J. Food Sci. 2020, 85, 500–509. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Baxter, G.A.; Crooks, S.R.H.; Elliott, C.T. Biosensor immunoassay of ivermectin in bovine milk. J. Aoac Int. 2002, 85, 879–882. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, R.; Desjardins, L. Determination of abamectin, doramectin, emamectin, eprinomectin, ivermectin, and moxidectin in milk by liquid chromatography electrospray tandem mass specrometry. J. Aoac Int. 2006, 89, 1088–1094. [Google Scholar] [CrossRef] [Green Version]
- McKellar, Q.A.; Scott, E.W. The benzimidazole anthelmintic agents—A review. J. Vet. Pharmacol. Ther. 1990, 13, 223–247. [Google Scholar] [CrossRef]
- Vousdouka, V.I.; Papapanagiotou, E.P.; Angelidis, A.S.; Fletouris, D.J. Rapid ion-pair liquid chromatographic method for the determination of fenbendazole marker residue in fermented dairy products. Food Chem. 2017, 221, 884–890. [Google Scholar] [CrossRef]
- Grover, J.K.; Vats, V.; Uppal, G.; Yadav, S. Anthelmintics: A review. Trop. Gastroenterol. Off. J. Dig. Dis. Found. 2001, 22, 180–189. [Google Scholar]
- Li, J.; Yousif, M.; Li, Z.; Wu, Z.; Li, S.; Yang, H.; Wang, Y.; Cao, Z. Effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of preweaning dairy calves. J. Dairy Sci. 2019, 102, 2298–2307. [Google Scholar] [CrossRef] [Green Version]
- Regulation, C. Commission Regulation (EU) No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, 2010, 1–72. [Google Scholar]
- Liu, H.; Lin, T.; Lin, X.; Shao, J.; Li, Q. QuEChERS with Magnetic Hydrophilic-Lipophilic Balanced Adsorbent and Its Application in Multi-Class Veterinary Residues in Milk by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Chromatographia 2018, 81, 265–275. [Google Scholar] [CrossRef]
- Kurjogi, M.; Mohammad, Y.H.I.; Alghamdi, S.; Abdelrahman, M.; Satapute, P.; Jogaiah, S. Detection and determination of stability of the antibiotic residues in cow’s milk. PLoS ONE 2019, 14, e0223475. [Google Scholar] [CrossRef]
- Keegan, J.; Whelan, M.; Danaher, M.; Crooks, S.; Sayers, R.; Anastasio, A.; O’Kennedy, R. Benzimidazole carbamate residues in milk: Detection by Surface Plasmon Resonance-biosensor, using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction. Anal. Chim. Acta 2009, 654, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustamante-Rangel, M.; Milagros Delgado-Zamarreno, M.; Rodriguez-Gonzalo, E. Simple method for the determination of anthelmintic drugs in milk intended for human consumption using liquid chromatography-tandem mass spectrometry. J. Sci. Food Agric. 2022, 102, 322–329. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- FAO. Gateway to Dairy Production and Products; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; Available online: https://www.fao.org/dairy-production-products/production/en (accessed on 3 February 2023).
- NBS. Statistical Bulletin of the People’s Republic of China on National Economic and Social Development 2019; National Bureau of Statistics of China: Beijing, China, 2020. Available online: http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html (accessed on 2 February 2023). (In Chinese)
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol. Environ. Saf. 2018, 157, 150–158. [Google Scholar] [CrossRef]
- Li, Y.; Gan, Z.; Liu, Y.; Chen, S.; Su, S.; Ding, S.; Tran, N.H.; Chen, X.; Long, Z. Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS. Sci. Total Environ. 2020, 719, 137516. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Rodriguez-Carrasco, Y.; Tolosa, J.; Graziani, G.; Gaspari, A.; Ritieni, A. Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. J. Dairy Sci. 2020, 103, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Martinez Vidal, J.L.; Garrido Frenich, A.; Aguilera-Luiz, M.M.; Romero-Gonzalez, R. Development of fast screening methods for the analysis of veterinary drug residues in milk by liquid chromatography-triple quadrupole mass spectrometry. Anal. Bioanal. Chem. 2010, 397, 2777–2790. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, B.; Koenig, J.; Lesueur, C. Development and Validation of a Multi-class UHPLC-MS/MS Method for Determination of Antibiotic Residues in Dairy Products. Food Anal. Methods 2018, 11, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Tian, F.; Liu, X.; Xu, J.; Dong, F.; Zheng, Y.; Hu, M.; Wu, Y. Simultaneous Determination of Phoxim, Chlorpyrifos, and Pyridaben Residues in Edible Mushrooms by High-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Food Anal. Methods 2016, 9, 2917–2924. [Google Scholar] [CrossRef]
- SANCO/12571; European Commission. Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed. European Union: Brussels, Belgium, 2013. [Google Scholar]
- Tsiboukis, D.; Sazakli, E.; Jelastopulu, E.; Leotsinidis, M. Anthelmintics residues in raw milk. Assessing intake by a children population. Pol. J. Vet. Sci. 2013, 16, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Tao, Y.; Liu, Z.; Liu, Z.; Huang, L.; Wang, Y.; Yuan, Z. Development of a high-performance liquid chromatography method to monitor the residues of benzimidazoles in bovine milk. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2010, 878, 2928–2932. [Google Scholar] [CrossRef]
- Lourenco, A.; Fraga-Corral, M.; De Colli, L.; Moloney, M.; Danaher, M.; Jordan, K. Determination of the presence of pathogens and anthelmintic drugs in raw milk and raw milk cheeses from small scale producers in Ireland. Lwt-Food Sci. Technol. 2020, 130, 109347. [Google Scholar] [CrossRef]
- Yoo, K.-H.; Park, D.-H.; Abd El-Aty, A.M.; Kim, S.-K.; Jung, H.-N.; Jeong, D.-H.; Shin, H.C. Development of an analytical method for multi-residue quantification of 18 anthelmintics in various animal-based food products using liquid chromatography-tandem mass spectrometry. J. Pharm. Anal. 2021, 11, 68–76. [Google Scholar] [CrossRef]
- Delatour, P.; Garnier, F.; Benoit, E. Kinetics of 4 Metabolites of Febantel in Cows Milk. Vet. Res. Commun. 1983, 6, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Chen, Q.; Li, Y.; Liu, Y.; Zhang, Y.; Huang, Y.; Zhu, L. Status of antibiotic residues and detection techniques used in Chinese milk: A systematic review based on cross-sectional surveillance data. Food Res. Int. 2021, 147, 110450. [Google Scholar] [CrossRef] [PubMed]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Hussani, S.M.A.K. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Zheng, N.; Han, R.W.; Zheng, B.Q.; Yu, Z.N.; Li, S.L.; Wang, J.Q. Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China’s market. Food Control 2014, 36, 238–242. [Google Scholar] [CrossRef]
- Blasco, C.; Pico, Y.; Andreu, V. Analytical method for simultaneous determination of pesticide and veterinary drug residues in milk by CE-MS. Electrophoresis 2009, 30, 1698–1707. [Google Scholar] [CrossRef]
- Ibarra, I.S.; Rodriguez, J.A.; Elena Paez-Hernandez, M.; Santos, E.M.; Miranda, J.M. Determination of quinolones in milk samples using a combination of magnetic solid-phase extraction and capillary electrophoresis. Electrophoresis 2012, 33, 2041–2048. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, Q.; Wang, Y.; Liao, C.; Jiang, G. A short review of human exposure to antibiotics based on urinary biomonitoring. Sci. Total Environ. 2022, 830, 154775. [Google Scholar] [CrossRef] [PubMed]
- MEP. Ministry of environmental protection of the People’s republic of China (MEP). In Exposure Factors Handbook of Chinese Population; China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- MEP. Ministry of environmental protection of the People’s republic of China (MEP). In Exposure Factors Handbook of Chinese Population (6~17 years); China Environmental Science Press: Beijing, China, 2015. [Google Scholar]
- MEP. Ministry of environmental protection of the People’s republic of China (MEP). In Exposure Factors Handbook of Chinese Population (0~5 years); China Environmental Science Press: Beijing, China, 2015. [Google Scholar]
- Zhai, F. A Prospective Study on Dietary Pattern and Nutrition Transition in China; Science Press: Beijing, China, 2008. [Google Scholar]
Version | Acetonitrile Volume/mL | Acetic Acid/% | The Ratio of NaOAc to MgSO4 | The Ratio of NaCl to MgSO4 | The Ratio of NH4Cl to MgSO4 | The Ratio of SCDS to SCTD |
---|---|---|---|---|---|---|
V1 | 10, 15, 20 | 0.5, 1, 2, 3 | 1:2, 1:4, 1:5 | / | / | / |
V2 | 10, 15, 20 | / | 1:2, 1:4, 1:5 | / | / | / |
V3 | 10, 15, 20 | / | / | 1:2, 1:4, 1:5 | / | 1:1, 2:1, 1:2 |
V4 | 10, 15, 20 | / | / | / | 1:2, 1:4, 1:5 | / |
Anthelmintics | Recovery | Matrix Effect | RSD | Antibiotics | Recovery | Matrix Effect | RSD |
---|---|---|---|---|---|---|---|
ALB | 96.7 | 115.7 | 8.5 | RFP | 104.0 | 159.4 | 9.5 |
RIC | 93.4 | 107.4 | 8.7 | ROX | 104.0 | 113.2 | 14.6 |
FEN | 101.3 | 112.3 | 7.8 | AZI | 106.4 | 108.8 | 13.3 |
OXF | 94.6 | 111.2 | 8.9 | TYL | 97.6 | 99.0 | 10.6 |
FLU | 94.7 | 110.1 | 7.4 | PEN | 88.1 | 81.9 | 15.0 |
MEB | 95.2 | 112.1 | 10.5 | RNZ | 113.1 | 110.9 | 10.4 |
THI | 95.2 | 111.3 | 7.2 | DMZ | 116.8 | 104.2 | 8.1 |
ABA | 100.6 | 125.3 | 10.6 | MTZ | 106.8 | 116.1 | 12.8 |
DOR | 105.1 | 102.2 | 10.5 | TMP | 110.3 | 105.2 | 9.4 |
IVE | 99.2 | 71.7 | 8.8 | SCP | 110.3 | 121.6 | 9.0 |
EPR | 99.2 | 151.2 | 10.1 | SDZ | 108.7 | 141.2 | 13.8 |
MOX | 97.3 | 130.3 | 12.2 | SMM | 111.2 | 114.3 | 11.5 |
LEV | 95.6 | 117.7 | 12.5 | SMR | 117.2 | 99.2 | 9.1 |
DIE | 73.2 | 73.4 | 18.6 | SM2 | 114.0 | 128.5 | 12.9 |
MOR | 96.5 | 71.6 | 17.5 | SMZ | 112.1 | 114.4 | 15.3 |
PYR | 95.4 | 113.6 | 14.0 | SPD | 104.4 | 111.0 | 14.8 |
FEB | 101.4 | 113.3 | 13.0 | STZ | 112.1 | 107.3 | 14.0 |
BIT | 80.8 | 156.0 | 12.4 | ENR | 95.4 | 125.9 | 16.3 |
CLO | 78.1 | 156.0 | 13.6 | LEVOF | 79.7 | 133.1 | 12.2 |
DANME | 92.2 | 98.0 | 7.8 | ||||
LOM | 79.7 | 107.0 | 10.2 | ||||
OFX | 85.6 | 133.2 | 11.0 | ||||
NOR | 53.4 | 135.1 | 11.6 | ||||
CHL | 110.6 | 113.0 | 10.2 | ||||
FFC | 113.7 | 115.5 | 14.3 | ||||
TAP | 110.3 | 110.5 | 11.5 |
Region | ALB | RIC | FEN | OXF | FLU | MEB | THI | ABA | DOR | IVE | EPR | MOX | LEV | DIE | MOR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Northwest | n.q. | n.d. | 2734.6 | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Southwest | n.d. | n.d. | 2750.4 | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
South China | n.q. | n.d. | 2752.9 | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Central China | n.d. | n.d. | 2779.9 | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Eastern China | n.d. | n.d. | 2740.4 | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
North China | n.d. | n.d. | 2715.1 | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Northeast | n.d. | n.d. | 2736.75 | n.d. | n.d. | n.d. | n.q. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Region | PYR | FEB | BIT | CLO | ENR | LEVOF | NOR | PEN | RFP | ROX | SCP | SDZ | SMM | SMR | SM2 |
Northwest | n.d. | 559.3 | n.q. | n.q. | 399.5 | 53.9 | 17.4 | n.d. | n.d. | n.d. | n.d. | 89.7 | n.d. | n.d. | n.d. |
Southwest | n.d. | 549.2 | n.q. | 49.5 | 784.5 | 77.5 | n.d. | n.d. | n.d. | n.d. | n.d. | 78.35 | n.d. | n.d. | n.d. |
South China | n.d. | 562.8 | n.q. | n.d. | 1378.8 | 91.6 | 144.2 | n.d. | n.d. | n.d. | 186.5 | 268.1 | 52.1 | n.d. | n.d. |
Central China | n.d. | 563.4 | n.q. | n.d. | 221.9 | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | 72.4 | n.d. | n.d. | n.d. |
Eastern China | n.d. | 550.6 | n.q. | n.d. | 428.2 | 40.15 | 80.9 | n.d. | n.d. | n.d. | n.d. | 75.9 | n.d. | n.d. | n.d. |
North China | n.d. | 550.15 | n.q. | n.d. | 583.5 | 49.25 | n.d. | n.d. | n.d. | n.d. | n.d. | 88.5 | n.d. | n.d. | n.d. |
Northeast | n.d. | 548.7 | n.q. | n.d. | 348.1 | 35.4 | 27.7 | n.d. | n.d. | n.d. | n.d. | 108.2 | n.d. | n.d. | n.d. |
Region | SMZ | SPD | STZ | TMP | AZI | DANME | DMZ | LOM | MTZ | OFX | RNZ | TYL | CHL | FFC | TAP |
Northwest | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. | 13.65 | n.d. | n.q. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
Southwest | 212.9 | n.d. | n.d. | n.d. | n.d. | n.d. | 13.65 | n.d. | 25.4 | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
South China | 252.7 | 88.3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 24 | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
Central China | 42.7 | n.d. | n.d. | n.d. | n.d. | n.d. | 40.8 | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
Eastern China | 122.65 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
North China | 226.05 | n.d. | n.d. | n.d. | n.d. | n.d. | 8.875 | n.d. | n.d. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
Northeast | 140.3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.q. | n.q. | n.q. | n.d. | n.d. | n.d. | n.d. | n.d. |
Toddlers (2–5 Years) | Teenagers (6–17 Years) | Adults (>18 Years) | ||||
---|---|---|---|---|---|---|
A | B | A | B | A | B | |
ENR | 1.4266 | 6.6108 | 0.4016 | 1.8608 | 0.1040 | 0.4818 |
LEVOF | 0.1413 | 0.6951 | 0.0398 | 0.1957 | 0.0102 | 0.0506 |
NOR | 0.0388 | 0.8267 | 0.0109 | 0.2327 | 0.0028 | 0.0603 |
OFX | 0.0891 | 0.6743 | 0.0251 | 0.1898 | 0.0065 | 0.0491 |
SDZ | 0.2462 | 0.8909 | 0.0693 | 0.2508 | 0.0180 | 0.0649 |
SMZ | 0.4055 | 1.2387 | 0.1141 | 0.3487 | 0.0295 | 0.0903 |
MTZ | 0.0236 | 0.1312 | 0.0066 | 0.0369 | 0.0017 | 0.0095 |
FEN | 7.6125 | 7.8901 | 2.1428 | 2.2209 | 0.5547 | 0.5750 |
THI | 0.0065 | 0.0065 | 0.0018 | 0.0018 | 0.0005 | 0.0005 |
FEB | 1.5449 | 1.6077 | 0.4349 | 0.4525 | 0.1126 | 0.1172 |
BIT | 0.0222 | 2.1831 | 0.0062 | 0.6145 | 0.0016 | 0.1591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.; Du, S.; Wu, X.; Zhang, J.; Gan, Z. Analysis, Occurrence and Exposure Evaluation of Antibiotic and Anthelmintic Residues in Whole Cow Milk from China. Antibiotics 2023, 12, 1125. https://doi.org/10.3390/antibiotics12071125
Chang L, Du S, Wu X, Zhang J, Gan Z. Analysis, Occurrence and Exposure Evaluation of Antibiotic and Anthelmintic Residues in Whole Cow Milk from China. Antibiotics. 2023; 12(7):1125. https://doi.org/10.3390/antibiotics12071125
Chicago/Turabian StyleChang, Liming, Sishi Du, Xiaojiao Wu, Jian Zhang, and Zhiwei Gan. 2023. "Analysis, Occurrence and Exposure Evaluation of Antibiotic and Anthelmintic Residues in Whole Cow Milk from China" Antibiotics 12, no. 7: 1125. https://doi.org/10.3390/antibiotics12071125
APA StyleChang, L., Du, S., Wu, X., Zhang, J., & Gan, Z. (2023). Analysis, Occurrence and Exposure Evaluation of Antibiotic and Anthelmintic Residues in Whole Cow Milk from China. Antibiotics, 12(7), 1125. https://doi.org/10.3390/antibiotics12071125