In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens
Abstract
1. Introduction
2. Results
3. Materials and Methods
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morrison, C.B.; Markovetz, M.R.; Ehre, C. Mucus, mucins, and cystic fibrosis. Pediatr. Pulmonol. 2019, 54 (Suppl. S3), S84–S96. [Google Scholar] [CrossRef]
- Cohen, T.S.; Prince, A. Cystic fibrosis: A mucosal immunodeficiency syndrome. Nat. Med. 2012, 18, 509–519. [Google Scholar] [CrossRef]
- Blanchard, A.C.; Waters, V.J. Microbiology of Cystic Fibrosis Airway Disease. Semin. Respir. Crit. Care Med. 2019, 40, 727–736. [Google Scholar] [CrossRef]
- Tavares, M.; Kozak, M.; Balola, A.; Sá-Correia, I. Burkholderia cepacia Complex Bacteria: A Feared Contamination Risk in Water-Based Pharmaceutical Products. Clin. Microbiol. Rev. 2020, 33, e00139-19. [Google Scholar] [CrossRef]
- Menetrey, Q.; Sorlin, P.; Jumas-Bilak, E.; Chiron, R.; Dupont, C.; Marchandin, H. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: Emerging Pathogens Well-Armed for Life in the Cystic Fibrosis Patients’ Lung. Genes 2021, 12, 610. [Google Scholar] [CrossRef]
- Zlosnik, J.E.; Zhou, G.; Brant, R.; Henry, D.A.; Hird, T.J.; Mahenthiralingam, E.; Chilvers, M.A.; Wilcox, P.; Speert, D.P. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years’ experience. Ann. Am. Thorac. Soc. 2015, 12, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Quon, B.S.; Goss, C.H.; Ramsey, B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014, 11, 425–434. [Google Scholar] [CrossRef]
- Moore, J.E.; Millar, B.C.; Ollman-Selinger, M.; Cambridge, L. The Role of Suboptimal Concentrations of Nebulized Tobramycin in Driving Antimicrobial Resistance in Pseudomonas aeruginosa Isolates in Cystic Fibrosis. Respir. Care 2021, 66, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Bocharova, Y.A.; Savinova, T.A.; Lyamin, A.V.; Kondratenko, O.V.; Polikarpova, S.V.; Zhilina, S.V.; Fedorova, N.I.; Semykin, S.Y.; Chaplin, A.V.; Korostin, D.O.; et al. Genome features and antibiotic resistance of Pseudomonas aeruginosa strains isolated in patients with cystic fibrosis in the Russian Federation. Klin. Lab. Diagn. 2021, 66, 629–634. [Google Scholar] [CrossRef]
- Mantero, M.; Gramegna, A.; Pizzamiglio, G.; D’Adda, A.; Tarsia, P.; Blasi, F. Once daily aerosolised tobramycin in adult patients with cystic fibrosis in the management of Pseudomonas aeruginosa chronic infection. Multidiscip. Respir. Med. 2017, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Raghunand, N.; Garcia-Martin, M.L.; Gatenby, R. pH imaging. IEEE Eng. Med. Biol. Mag. 2004, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, L.R.; Jones, K.M.; High, R.A.; Howison, C.M.; Shubitz, L.F.; Pagel, M.D. Differentiating lung cancer and infection based on measurements of extracellular pH with acidoCEST MRI. Sci. Rep. 2019, 9, 13002. [Google Scholar] [CrossRef] [PubMed]
- Massip-Copiz, M.M.; Santa-Coloma, T.A. Extracellular pH and lung infections in cystic fibrosis. Eur. J. Cell Biol. 2018, 97, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A.A. Membrane Interactions of Antibacterial Agents. Trend Clin. Microbiol. 2018, 1, 04–48. [Google Scholar]
- Gudmundsson, A.; Erlendsdottir, H.; Gottfredsson, M.; Gudmundsson, S. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob. Agents Chemother. 1991, 35, 2617–2624. [Google Scholar] [CrossRef][Green Version]
- Bryant, R.E.; Fox, K.; Oh, G.; Morthland, V.G. β-Lactam Enhancement of Aminoglycoside Activity under Conditions of Reduced pH and Oxygen Tension That May Exist in Infected Tissues. J. Infect. Dis. 1992, 165, 676–682. [Google Scholar] [CrossRef]
- Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microb. Antimicrob. 2016, 15, 34. [Google Scholar] [CrossRef]
- Wagenlehner, F.; Nowicki, M.; Bentley, C.; Lückermann, M.; Wohlert, S.; Fischer, C.; Vente, A.; Naber, K.; Dalhoff, A. Explorative Randomized Phase II Clinical Study of the Efficacy and Safety of Finafloxacin versus Ciprofloxacin for Treatment of Complicated Urinary Tract Infections. Antimicrob. Agents Chemother. 2018, 62, e02317-17. [Google Scholar] [CrossRef]
- Stubbings, W.; Leow, P.; Yong, G.C.; Goh, F.; Körber-Irrgang, B.; Kresken, M.; Endermann, R.; Labischinski, H. In vitro spectrum of activity of finafloxacin, a novel, pH-activated fluoroquinolone, under standard and acidic conditions. Antimicrob. Agents Chemother. 2011, 55, 4394–4397. [Google Scholar] [CrossRef]
- Chalhoub, H.; Harding, S.V.; Tulkens, P.M.; Van Bambeke, F. Influence of pH on the activity of finafloxacin against extracellular and intracellular Burkholderia thailandensis, Yersinia pseudotuberculosis and Francisella philomiragia and on its cellular pharmacokinetics in THP-1 monocytes. Clin. Microbiol. Infect. 2020, 26, 1254.e1–1254.e8. [Google Scholar] [CrossRef]
- Endermann, R.; Ladel, C.; Stubbings, W.; Labischinski, H. Pharmacokinetics (PK) and In Vivo Efficacy of Oral Finafloxacin (FIN) and Comparators in Rodent Models of Systemic Infection. In Proceedings of the 48th ICAAC/46th IDSA, Washington, DC, USA, 25–28 October 2008. [Google Scholar]
- Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Activity of finafloxacin, a novel fluoroquinolone with increased activity at acid pH, towards extracellular and intracellular Staphylococcus aureus, Listeria monocytogenes and Legionella pneumophila. Int. J. Antimicrob. Agents 2011, 38, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Stubbings, W.; Wisplinghoff, H.; Seifert, H. Activity of the investigational fluoroquinolone finafloxacin against ciprofloxacin-sensitive and resistant Acinetobacter baumannii isolates. Antimicrob. Agents Chemother. 2010, 54, 1613–1615. [Google Scholar] [CrossRef] [PubMed]
- Barnes, K.B.; Zumbrun, S.D.; Halasohoris, S.A.; Desai, P.D.; Miller, L.L.; Richards, M.I.; Russell, P.; Bentley, C.; Harding, S.V. Demonstration of the broad spectrum in vitro activity of finafloxacin against pathogens of biodefence interest. Antimicrob. Agents Chemother. 2019, 63, e01470-19. [Google Scholar] [CrossRef] [PubMed]
- Barnes, K.B.; Hamblin, K.A.; Richards, M.I.; Laws, T.R.; Vente, A.; Atkins, H.S.; Harding, S.V. Demonstrating the protective efficacy of the novel fluoroquinolone finafloxacin against an inhalational exposure to Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2017, 61, e00082-17. [Google Scholar] [CrossRef] [PubMed]
- Barnes, K.B.; Richards, M.I.; Laws, T.R.; Nunez, A.; Thwaite, J.E.; Bentley, C.; Harding, S.V. Finafloxacin is an effective treatment for inhalational tularemia and plague in mouse models of infection. Antimicrob. Agents Chemother. 2021, 65, e02294-20. [Google Scholar] [CrossRef]
- Clinical Laboratory and Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards—Eleventh Edition; CLSI document M07-A11; CLSI: Pittsburgh, PA, USA, 2018; ISBN 1-56238-836. [Google Scholar]
- Clinical Laboratory and Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI document M100-Ed31; CLSI: Pittsburgh, PA, USA, 2021; ISBN 978-1-68440-104-8. [Google Scholar]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter Infections and Treatment Options. Antimicrob. Agents Chemother. 2020, 64, e01025-20. [Google Scholar] [CrossRef]
- Amoureux, L.; Sauge, J.; Sarret, B.; Lhoumeau, M.; Bajard, A.; Tetu, J.; Bador, J.; Neuwirth, C. Study of 109 Achromobacter spp. isolates from 9 French CF centres reveals the circulation of a multiresistant clone of A. xylosoxidans belonging to ST 137. J. Cyst. Fibros. 2019, 18, 804–807. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Salim, M.T.A.; Anwer, B.E.; Aboshanab, K.M.; Aboulwafa, M.M. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci. Rep. 2021, 11, 20136. [Google Scholar] [CrossRef]
- El Chakhtoura, N.G.; Saade, E.; Iovleva, A.; Yasmin, M.; Wilson, B.; Perez, F.; Bonomo, R.A. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: A perilous journey toward “molecularly targeted” therapy. Exp. Rev. Anti-Infect. Ther. 2018, 16, 89–110. [Google Scholar] [CrossRef]
- Caverly, L.J.; Spilker, T.; Kalikin, L.M.; Stillwell, T.; Young, C.; Huang, D.B.; LiPuma, J.J. In Vitro Activities of β-Lactam-β-Lactamase Inhibitor Antimicrobial Agents against Cystic Fibrosis Respiratory Pathogens. Antimicrob. Agents Chemother. 2019, 64, e01595-19. [Google Scholar] [CrossRef]
- Barnes, K.B.; Richards, M.I.; Burgess, G.; Armstrong, S.J.; Bentley, C.; Maishman, T.C.; Laws, T.R.; Nelson, M.; Harding, S.V. Investigation of a combination therapy approach for the treatment of melioidosis. Front. Microbiol. 2022, 13, 934312. [Google Scholar] [CrossRef] [PubMed]
- Emrich, N.C.; Heisig, A.; Stubbings, W.; Labischinski, H.; Heisig, P. Antibacterial activity of finafloxacin under different pH conditions against isogenic strains of Escherichia coli expressing combinations of defined mechanisms of fluoroquinolone resistance. J. Antimicrob. Chemother. 2010, 65, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Finafloxacin MIC50 / MIC90 (µg/mL) | Finafloxacin Range (µg/mL) | Tobramycin MIC50 / MIC90 (µg/mL) | Tobramycin Range (µg/mL) | ||||
---|---|---|---|---|---|---|---|---|
pH 7.2 | pH 5.8 | pH 7.2 | pH 5.8 | pH 7.2 | pH 5.8 | pH 7.2 | pH 5.8 | |
Achromobacter spp. (n = 4) | - | - | 1 – 8 | <0.25 – 0.5 | - | - | 2 – >64 | 16 – >64 |
A. xylosoxidans (n = 16) | 8 / 32 | 0.5 / 1 | 2 – >64 | <0.25 – 8 | 32 / >64 | >64 / >64 | 16 – >64 | 32 – >64 |
A. baumannii (n = 20) | 16 / >64 | 1.5 / 4 | <0.25 – >64 | <0.25 – 16 | 32 / >64 | 32 / >64 | 1 – >64 | 2 – >64 |
B. cenocepacia (n = 20) | 4 / 16 | 1 / 8 | 1 – >64 | <0.25 – 32 | >64 / >64 | >64 / >64 | 32 – >64 | >64 |
B. cepacia (n = 20) | 4 / >64 | 1.5 / 64 | <0.25 – >64 | <0.25 – >64 | 32 / 64 | >64 / >64 | 4 – >64 | 16 – >64 |
B. gladioli (n = 10) | 1 / 2 | 0.4 / 0.5 | 0.5 – 2 | <0.25 – 0.5 | 0.4 / 1 | 8 / 16 | <0.25 – 8 | 4 – >64 |
B. multivorans (n = 20) | 2 / 64 | 0.5 / 4 | 1 – >64 | <0.25 – 32 | 32 / 64 | >64 / >64 | <0.25 – >64 | <0.25 – >64 |
P. aeruginosa (n = 20) | 4 / >64 | 0.5 / 2 | <0.25 – >64 | <0.25 – 8 | 0.5 / 2 | 2 / 4 | <0.25 – >64 | 0.5 – >64 |
S. maltophilia (n = 20) | 6 / 64 | 1 / 8 | 0.5 – >64 | <0.25 – >64 | 32 / >64 | 48 / >64 | <0.25 – >64 | 2 – >64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© Crown copyright (2023) Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gov.uk
Share and Cite
Harding, S.V.; Barnes, K.B.; Hawser, S.; Bentley, C.E.; Vente, A. In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics 2023, 12, 1096. https://doi.org/10.3390/antibiotics12071096
Harding SV, Barnes KB, Hawser S, Bentley CE, Vente A. In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics. 2023; 12(7):1096. https://doi.org/10.3390/antibiotics12071096
Chicago/Turabian StyleHarding, Sarah V., Kay B. Barnes, Stephen Hawser, Christine E. Bentley, and Andreas Vente. 2023. "In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens" Antibiotics 12, no. 7: 1096. https://doi.org/10.3390/antibiotics12071096
APA StyleHarding, S. V., Barnes, K. B., Hawser, S., Bentley, C. E., & Vente, A. (2023). In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics, 12(7), 1096. https://doi.org/10.3390/antibiotics12071096