In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morrison, C.B.; Markovetz, M.R.; Ehre, C. Mucus, mucins, and cystic fibrosis. Pediatr. Pulmonol. 2019, 54 (Suppl. S3), S84–S96. [Google Scholar] [CrossRef] [Green Version]
- Cohen, T.S.; Prince, A. Cystic fibrosis: A mucosal immunodeficiency syndrome. Nat. Med. 2012, 18, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, A.C.; Waters, V.J. Microbiology of Cystic Fibrosis Airway Disease. Semin. Respir. Crit. Care Med. 2019, 40, 727–736. [Google Scholar] [CrossRef]
- Tavares, M.; Kozak, M.; Balola, A.; Sá-Correia, I. Burkholderia cepacia Complex Bacteria: A Feared Contamination Risk in Water-Based Pharmaceutical Products. Clin. Microbiol. Rev. 2020, 33, e00139-19. [Google Scholar] [CrossRef]
- Menetrey, Q.; Sorlin, P.; Jumas-Bilak, E.; Chiron, R.; Dupont, C.; Marchandin, H. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: Emerging Pathogens Well-Armed for Life in the Cystic Fibrosis Patients’ Lung. Genes 2021, 12, 610. [Google Scholar] [CrossRef]
- Zlosnik, J.E.; Zhou, G.; Brant, R.; Henry, D.A.; Hird, T.J.; Mahenthiralingam, E.; Chilvers, M.A.; Wilcox, P.; Speert, D.P. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years’ experience. Ann. Am. Thorac. Soc. 2015, 12, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Quon, B.S.; Goss, C.H.; Ramsey, B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014, 11, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.E.; Millar, B.C.; Ollman-Selinger, M.; Cambridge, L. The Role of Suboptimal Concentrations of Nebulized Tobramycin in Driving Antimicrobial Resistance in Pseudomonas aeruginosa Isolates in Cystic Fibrosis. Respir. Care 2021, 66, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Bocharova, Y.A.; Savinova, T.A.; Lyamin, A.V.; Kondratenko, O.V.; Polikarpova, S.V.; Zhilina, S.V.; Fedorova, N.I.; Semykin, S.Y.; Chaplin, A.V.; Korostin, D.O.; et al. Genome features and antibiotic resistance of Pseudomonas aeruginosa strains isolated in patients with cystic fibrosis in the Russian Federation. Klin. Lab. Diagn. 2021, 66, 629–634. [Google Scholar] [CrossRef]
- Mantero, M.; Gramegna, A.; Pizzamiglio, G.; D’Adda, A.; Tarsia, P.; Blasi, F. Once daily aerosolised tobramycin in adult patients with cystic fibrosis in the management of Pseudomonas aeruginosa chronic infection. Multidiscip. Respir. Med. 2017, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, R.J.; Raghunand, N.; Garcia-Martin, M.L.; Gatenby, R. pH imaging. IEEE Eng. Med. Biol. Mag. 2004, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, L.R.; Jones, K.M.; High, R.A.; Howison, C.M.; Shubitz, L.F.; Pagel, M.D. Differentiating lung cancer and infection based on measurements of extracellular pH with acidoCEST MRI. Sci. Rep. 2019, 9, 13002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massip-Copiz, M.M.; Santa-Coloma, T.A. Extracellular pH and lung infections in cystic fibrosis. Eur. J. Cell Biol. 2018, 97, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A.A. Membrane Interactions of Antibacterial Agents. Trend Clin. Microbiol. 2018, 1, 04–48. [Google Scholar]
- Gudmundsson, A.; Erlendsdottir, H.; Gottfredsson, M.; Gudmundsson, S. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob. Agents Chemother. 1991, 35, 2617–2624. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R.E.; Fox, K.; Oh, G.; Morthland, V.G. β-Lactam Enhancement of Aminoglycoside Activity under Conditions of Reduced pH and Oxygen Tension That May Exist in Infected Tissues. J. Infect. Dis. 1992, 165, 676–682. [Google Scholar] [CrossRef]
- Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microb. Antimicrob. 2016, 15, 34. [Google Scholar] [CrossRef] [Green Version]
- Wagenlehner, F.; Nowicki, M.; Bentley, C.; Lückermann, M.; Wohlert, S.; Fischer, C.; Vente, A.; Naber, K.; Dalhoff, A. Explorative Randomized Phase II Clinical Study of the Efficacy and Safety of Finafloxacin versus Ciprofloxacin for Treatment of Complicated Urinary Tract Infections. Antimicrob. Agents Chemother. 2018, 62, e02317-17. [Google Scholar] [CrossRef] [Green Version]
- Stubbings, W.; Leow, P.; Yong, G.C.; Goh, F.; Körber-Irrgang, B.; Kresken, M.; Endermann, R.; Labischinski, H. In vitro spectrum of activity of finafloxacin, a novel, pH-activated fluoroquinolone, under standard and acidic conditions. Antimicrob. Agents Chemother. 2011, 55, 4394–4397. [Google Scholar] [CrossRef] [Green Version]
- Chalhoub, H.; Harding, S.V.; Tulkens, P.M.; Van Bambeke, F. Influence of pH on the activity of finafloxacin against extracellular and intracellular Burkholderia thailandensis, Yersinia pseudotuberculosis and Francisella philomiragia and on its cellular pharmacokinetics in THP-1 monocytes. Clin. Microbiol. Infect. 2020, 26, 1254.e1–1254.e8. [Google Scholar] [CrossRef] [Green Version]
- Endermann, R.; Ladel, C.; Stubbings, W.; Labischinski, H. Pharmacokinetics (PK) and In Vivo Efficacy of Oral Finafloxacin (FIN) and Comparators in Rodent Models of Systemic Infection. In Proceedings of the 48th ICAAC/46th IDSA, Washington, DC, USA, 25–28 October 2008. [Google Scholar]
- Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Activity of finafloxacin, a novel fluoroquinolone with increased activity at acid pH, towards extracellular and intracellular Staphylococcus aureus, Listeria monocytogenes and Legionella pneumophila. Int. J. Antimicrob. Agents 2011, 38, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Stubbings, W.; Wisplinghoff, H.; Seifert, H. Activity of the investigational fluoroquinolone finafloxacin against ciprofloxacin-sensitive and resistant Acinetobacter baumannii isolates. Antimicrob. Agents Chemother. 2010, 54, 1613–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, K.B.; Zumbrun, S.D.; Halasohoris, S.A.; Desai, P.D.; Miller, L.L.; Richards, M.I.; Russell, P.; Bentley, C.; Harding, S.V. Demonstration of the broad spectrum in vitro activity of finafloxacin against pathogens of biodefence interest. Antimicrob. Agents Chemother. 2019, 63, e01470-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, K.B.; Hamblin, K.A.; Richards, M.I.; Laws, T.R.; Vente, A.; Atkins, H.S.; Harding, S.V. Demonstrating the protective efficacy of the novel fluoroquinolone finafloxacin against an inhalational exposure to Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2017, 61, e00082-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, K.B.; Richards, M.I.; Laws, T.R.; Nunez, A.; Thwaite, J.E.; Bentley, C.; Harding, S.V. Finafloxacin is an effective treatment for inhalational tularemia and plague in mouse models of infection. Antimicrob. Agents Chemother. 2021, 65, e02294-20. [Google Scholar] [CrossRef]
- Clinical Laboratory and Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards—Eleventh Edition; CLSI document M07-A11; CLSI: Pittsburgh, PA, USA, 2018; ISBN 1-56238-836. [Google Scholar]
- Clinical Laboratory and Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI document M100-Ed31; CLSI: Pittsburgh, PA, USA, 2021; ISBN 978-1-68440-104-8. [Google Scholar]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter Infections and Treatment Options. Antimicrob. Agents Chemother. 2020, 64, e01025-20. [Google Scholar] [CrossRef]
- Amoureux, L.; Sauge, J.; Sarret, B.; Lhoumeau, M.; Bajard, A.; Tetu, J.; Bador, J.; Neuwirth, C. Study of 109 Achromobacter spp. isolates from 9 French CF centres reveals the circulation of a multiresistant clone of A. xylosoxidans belonging to ST 137. J. Cyst. Fibros. 2019, 18, 804–807. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Salim, M.T.A.; Anwer, B.E.; Aboshanab, K.M.; Aboulwafa, M.M. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci. Rep. 2021, 11, 20136. [Google Scholar] [CrossRef]
- El Chakhtoura, N.G.; Saade, E.; Iovleva, A.; Yasmin, M.; Wilson, B.; Perez, F.; Bonomo, R.A. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: A perilous journey toward “molecularly targeted” therapy. Exp. Rev. Anti-Infect. Ther. 2018, 16, 89–110. [Google Scholar] [CrossRef]
- Caverly, L.J.; Spilker, T.; Kalikin, L.M.; Stillwell, T.; Young, C.; Huang, D.B.; LiPuma, J.J. In Vitro Activities of β-Lactam-β-Lactamase Inhibitor Antimicrobial Agents against Cystic Fibrosis Respiratory Pathogens. Antimicrob. Agents Chemother. 2019, 64, e01595-19. [Google Scholar] [CrossRef]
- Barnes, K.B.; Richards, M.I.; Burgess, G.; Armstrong, S.J.; Bentley, C.; Maishman, T.C.; Laws, T.R.; Nelson, M.; Harding, S.V. Investigation of a combination therapy approach for the treatment of melioidosis. Front. Microbiol. 2022, 13, 934312. [Google Scholar] [CrossRef] [PubMed]
- Emrich, N.C.; Heisig, A.; Stubbings, W.; Labischinski, H.; Heisig, P. Antibacterial activity of finafloxacin under different pH conditions against isogenic strains of Escherichia coli expressing combinations of defined mechanisms of fluoroquinolone resistance. J. Antimicrob. Chemother. 2010, 65, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Finafloxacin MIC50 / MIC90 (µg/mL) | Finafloxacin Range (µg/mL) | Tobramycin MIC50 / MIC90 (µg/mL) | Tobramycin Range (µg/mL) | ||||
---|---|---|---|---|---|---|---|---|
pH 7.2 | pH 5.8 | pH 7.2 | pH 5.8 | pH 7.2 | pH 5.8 | pH 7.2 | pH 5.8 | |
Achromobacter spp. (n = 4) | - | - | 1 – 8 | <0.25 – 0.5 | - | - | 2 – >64 | 16 – >64 |
A. xylosoxidans (n = 16) | 8 / 32 | 0.5 / 1 | 2 – >64 | <0.25 – 8 | 32 / >64 | >64 / >64 | 16 – >64 | 32 – >64 |
A. baumannii (n = 20) | 16 / >64 | 1.5 / 4 | <0.25 – >64 | <0.25 – 16 | 32 / >64 | 32 / >64 | 1 – >64 | 2 – >64 |
B. cenocepacia (n = 20) | 4 / 16 | 1 / 8 | 1 – >64 | <0.25 – 32 | >64 / >64 | >64 / >64 | 32 – >64 | >64 |
B. cepacia (n = 20) | 4 / >64 | 1.5 / 64 | <0.25 – >64 | <0.25 – >64 | 32 / 64 | >64 / >64 | 4 – >64 | 16 – >64 |
B. gladioli (n = 10) | 1 / 2 | 0.4 / 0.5 | 0.5 – 2 | <0.25 – 0.5 | 0.4 / 1 | 8 / 16 | <0.25 – 8 | 4 – >64 |
B. multivorans (n = 20) | 2 / 64 | 0.5 / 4 | 1 – >64 | <0.25 – 32 | 32 / 64 | >64 / >64 | <0.25 – >64 | <0.25 – >64 |
P. aeruginosa (n = 20) | 4 / >64 | 0.5 / 2 | <0.25 – >64 | <0.25 – 8 | 0.5 / 2 | 2 / 4 | <0.25 – >64 | 0.5 – >64 |
S. maltophilia (n = 20) | 6 / 64 | 1 / 8 | 0.5 – >64 | <0.25 – >64 | 32 / >64 | 48 / >64 | <0.25 – >64 | 2 – >64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© Crown copyright (2023) Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected]
Share and Cite
Harding, S.V.; Barnes, K.B.; Hawser, S.; Bentley, C.E.; Vente, A. In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics 2023, 12, 1096. https://doi.org/10.3390/antibiotics12071096
Harding SV, Barnes KB, Hawser S, Bentley CE, Vente A. In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics. 2023; 12(7):1096. https://doi.org/10.3390/antibiotics12071096
Chicago/Turabian StyleHarding, Sarah V., Kay B. Barnes, Stephen Hawser, Christine E. Bentley, and Andreas Vente. 2023. "In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens" Antibiotics 12, no. 7: 1096. https://doi.org/10.3390/antibiotics12071096
APA StyleHarding, S. V., Barnes, K. B., Hawser, S., Bentley, C. E., & Vente, A. (2023). In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics, 12(7), 1096. https://doi.org/10.3390/antibiotics12071096