Interplay between OXA-10 β-Lactamase Production and Low Outer-Membrane Permeability in Carbapenem Resistance in Enterobacterales
Abstract
:1. Introduction
2. Results and Discussion
2.1. Clinical Data, Resistance Phenotypes and WGS-Guided Detection of SNPs and Resistance Mechanisms
2.2. Role of OXA-10 on β-Lactam Resistance: Comparison with the Widespread OXA-48 Carbapenemase and Impact on Carbapenem MICs in Relation to Low and High Permeability Rates
2.3. Hydrolytic Features of OXA-10 Enzymes against Carbapenems: Comparative Analysis with the OXA-48 Carbapenemase
2.4. Structural Insights into the Interaction between the OXA-10 Enzyme and Carbapenems
2.5. Detection of Carbapenemase Activity
3. Materials and Methods
3.1. Clinical Strains
3.2. Antimicrobial Susceptibility Testing
3.3. Whole Genome Sequencing
3.4. Characterization of Resistance Mechanisms
3.5. Molecular Typing
3.6. Cloning and Expression of blaOXA-10 and blaOXA-48 in Relation to Low and High Permeability Rates
3.7. Protein Purification
3.8. Steady-State Kinetics
3.9. Molecular Modelling Studies
3.10. Biochemical Detection of Carbapenemase Activity
3.11. Nucleotide Accession Numbers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doi, Y. Treatment options for carbapenem-resistant Gram-negative bacterial infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Hancock, R.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Arca-Suárez, J.; Rodiño-Janeiro, B.K.; Pérez, A.; Guijarro-Sánchez, P.; Vázquez-Ucha, J.C.; Cruz, F.; Gómez-Garrido, J.; Alioto, T.S.; Álvarez-Tejado, M.; Gut, M.; et al. Emergence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacterales in Spain studied by whole-genome sequencing. Int. J. Antimicrob. Agents 2022, 59, 106456. [Google Scholar] [CrossRef]
- Antunes, N.T.; Lamoureaux, T.L.; Toth, M.; Stewart, N.K.; Frase, H.; Vakulenko, S.B. Class D β-lactamases: Are they all carbapenemases? Antimicrob. Agents Chemother. 2014, 58, 2119–2125. [Google Scholar] [CrossRef]
- Arca-Suárez, J.; Fraile-Ribot, P.; Vázquez-Ucha, J.C.; Cabot, G.; Martínez-Guitián, M.; Lence, E.; González-Bello, C.; Beceiro, A.; Rodríguez-Iglesias, M.; Galán-Sánchez, F.; et al. Challenging Antimicrobial Susceptibility and Evolution of Resistance (OXA-681) during Treatment of a Long-Term Nosocomial Infection Caused by a Pseudomonas aeruginosa ST175 Clone. Antimicrob. Agents Chemother. 2019, 63, e01110-19. [Google Scholar] [CrossRef]
- Arca-Suárez, J.; Lasarte-Monterrubio, C.; Rodiño-Janeiro, B.-K.; Cabot, G.; Vázquez-Ucha, J.C.; Rodríguez-Iglesias, M.; Galán-Sánchez, F.; Beceiro, A.; González-Bello, C.; Oliver, A.; et al. Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections. J. Antimicrob. Chemother. 2021, 76, 91–100. [Google Scholar] [CrossRef]
- Tamma, P.D.; Smith, T.T.; Adebayo, A.; Karaba, S.M.; Jacobs, E.; Wakefield, T.; Nguyen, K.; Whitfield, N.N.; Simner, P.J. Prevalence of bla(CTX-M) Genes in Gram-Negative Bloodstream Isolates across 66 Hospitals in the United States. J. Clin. Microbiol. 2021, 59, e00127-21. [Google Scholar] [CrossRef]
- Iovleva, A.; Mettus, R.T.; McElheny, C.L.; Mustapha, M.M.; Van Tyne, D.; Shields, R.K.; Pasculle, A.W.; Cooper, V.S.; Doi, Y. Reduced ceftazidime and ertapenem susceptibility due to production of OXA-2 in Klebsiella pneumoniae ST258. J. Antimicrob. Chemother. 2019, 74, 2203–2208. [Google Scholar] [CrossRef]
- Carvalho, I.; Cunha, R.; Martins, C.; Martínez-Álvarez, S.; Safia Chenouf, N.; Pimenta, P.; Pereira, A.R.; Ramos, S.; Sadi, M.; Martins, Â.; et al. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics 2021, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Miltgen, G.; Martak, D.; Valot, B.; Kamus, L.; Garrigos, T.; Verchere, G.; Gbaguidi-Haore, H.; Ben Cimon, C.; Ramiandrisoa, M.; Picot, S.; et al. One Health compartmental analysis of ESBL-producing Escherichia coli on Reunion Island reveals partitioning between humans and livestock. J. Antimicrob. Chemother. 2022, 77, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Roer, L.; Hansen, F.; Thomsen, M.C.F.; Knudsen, J.D.; Hansen, D.S.; Wang, M.; Samulioniené, J.; Justesen, U.S.; Røder, B.L.; Schumacher, H.; et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J. Antimicrob. Chemother. 2017, 72, 1922–1929. [Google Scholar] [CrossRef]
- Hamzaoui, Z.; Ocampo-Sosa, A.; Fernandez Martinez, M.; Landolsi, S.; Ferjani, S.; Maamar, E.; Saidani, M.; Slim, A.; Martinez-Martinez, L.; Boutiba-Ben Boubaker, I. Role of association of OmpK35 and OmpK36 alteration and bla(ESBL) and/or bla(AmpC) genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2018, 52, 898–905. [Google Scholar] [CrossRef]
- Philippon, A.M.; Paul, G.C.; Jacoby, G.A. Properties of PSE-2 beta-lactamase and genetic basis for its production in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1983, 24, 362–369. [Google Scholar] [CrossRef] [PubMed]
- De Luca, F.; Benvenuti, M.; Carboni, F.; Pozzi, C.; Rossolini, G.M.; Mangani, S.; Docquier, J.-D. Evolution to carbapenem-hydrolyzing activity in non carbapenemase class D β-lactamase OXA-10 by rational protein design. Proc. Natl. Acad. Sci. USA 2011, 108, 18424–18429. [Google Scholar] [CrossRef]
- Oueslati, S.; Nordmann, P.; Poirel, L. Heterogeneous hydrolytic features for OXA-48-like β-lactamases. J. Antimicrob. Chemother. 2015, 70, 1059–1063. [Google Scholar] [CrossRef]
- Kotsakis, S.D.; Flach, C.-F.; Razavi, M.; Larsson, D.G.J. Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity. Antimicrob. Agents Chemother. 2019, 63, e01817-18. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Emeraud, C.; Oueslati, S.; Dortet, L.; Naas, T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front. Med. 2020, 7, 616490. [Google Scholar] [CrossRef]
- Dabos, L.; Oueslati, S.; Bernabeu, S.; Bonnin, R.A.; Dortet, L.; Naas, T. To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms 2022, 10, 258. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Broth Microdilution-EUCAST Reading Guide; Version 4.0; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2022. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Snippy: Fast Bacterial Variant Calling from NGS Reads. Available online: https://github.com/tseemann/snippy (accessed on 1 May 2022).
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Ucha, J.C.; Seoane-Estévez, A.; Rodiño-Janeiro, B.K.; González-Bardanca, M.; Conde-Pérez, K.; Martínez-Guitián, M.; Alvarez-Fraga, L.; Arca-Suárez, J.; Lasarte-Monterrubio, C.; Gut, M.; et al. Activity of imipenem/relebactam against a Spanish nationwide collection of carbapenemase-producing Enterobacterales. J. Antimicrob. Chemother. 2021, 76, 1498–1510. [Google Scholar] [CrossRef] [PubMed]
- Mammeri, H.; Nordmann, P.; Berkani, A.; Eb, F. Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol. Lett. 2008, 282, 238–240. [Google Scholar] [CrossRef]
- Vallejo, J.A.; Martínez-Guitián, M.; Vázquez-Ucha, J.C.; González-Bello, C.; Poza, M.; Buynak, J.D.; Bethel, C.R.; Bonomo, R.A.; Bou, G.; Beceiro, A. LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48. J. Antimicrob. Chemother. 2016, 71, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Vázquez-Ucha, J.C.; Rodríguez, D.; Lasarte-Monterrubio, C.; Lence, E.; Arca-Suarez, J.; Maneiro, M.; Gato, E.; Perez, A.; Martínez-Guitián, M.; Juan, C.; et al. 6-Halopyridylmethylidene Penicillin-Based Sulfones Efficiently Inactivate the Natural Resistance of Pseudomonas aeruginosa to β-Lactam Antibiotics. J. Med. Chem. 2021, 64, 6310–6328. [Google Scholar] [CrossRef]
- Johnson, J.W.; Gretes, M.; Goodfellow, V.J.; Marrone, L.; Heynen, M.L.; Strynadka, N.C.J.; Dmitrienko, G.I. Cyclobutanone analogues of beta-lactams revisited: Insights into conformational requirements for inhibition of serine- and metallo-beta-lactamases. J. Am. Chem. Soc. 2010, 132, 2558–2560. [Google Scholar] [CrossRef]
- Morosini, M.I.; García-Castillo, M.; Tato, M.; Gijón, D.; Valverde, A.; Ruiz-Garbajosa, P.; Cantón, R. Rapid detection of β-lactamase-hydrolyzing extended-spectrum cephalosporins in Enterobacteriaceae by use of the new chromogenic βLacta test. J. Clin. Microbiol. 2014, 52, 1741–1744. [Google Scholar] [CrossRef] [PubMed]
- Van der Zwaluw, K.; de Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J.; Schouls, L.M. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [PubMed]
- Girlich, D.; Poirel, L.; Nordmann, P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J. Clin. Microbiol. 2012, 50, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu, S.; Dortet, L.; Naas, T. Evaluation of the β-CARBATM test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli. J. Antimicrob. Chemother. 2017, 72, 1646–1658. [Google Scholar] [CrossRef]
- Oviaño, M.; Gato, E.; Bou, G. Rapid Detection of KPC-Producing Enterobacterales Susceptible to Imipenem/Relebactam by Using the MALDI-TOF MS MBT STAR-Carba IVD Assay. Front. Microbiol. 2020, 11, 328. [Google Scholar] [CrossRef]
MIC (mg/L) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | Isolation Date | Source | ST | PIP (R > 8) | P/T (R > 8) | CTX (R > 2) | CAZ (R > 4) | CZ/A (R > 8) | AZT (R > 4) | FEP (R > 4) | IPM (R > 4) | IM/R (R > 2) | ERT (R > 0.5) | MRP (R > 8) | M/V (R > 8) | β-Lactam Resistance Genotype |
E. coli 52188484 | 24 October 2021 | Blood | ST57 | ≥512 | 128 | 512 | 16 | 0.25 | 512 | 64 | 0.5 | 0.25 | 2 | 2 | 1 | blaOXA-10, blaCTX-M-65, ompC G83frameshift, ompF Q84stop codon |
E. coli 52190692 | 2 November 2021 | Surgical wound | ST57 | ≥512 | 128 | 256 | 16 | 0.25 | 512 | 128 | 0.5 | 0.25 | 2 | 4 | 1 | blaOXA-10, blaCTX-M-65, ompC G83frameshift, ompF Q84stop codon |
MIC (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | PIP (R > 8) | P/T (R > 8) | CTX (R > 2) | CAZ (R > 4) | CZ/A (R > 8) | AZT (R > 4) | FEP (R > 4) | IPM (R > 4) | IM/R (R > 2) | ERT (R > 0.5) | MRP (R > 8) | M/V (R > 8) |
E. coli TG1 | 0.5 | 0.5 | ≤0.06 | ≤0.06 | 0.03 | ≤0.06 | ≤0.06 | 0.06 | 0.06 | ≤0.015 | ≤0.015 | ≤0.015 |
E. coli TG1 + pUCP24-blaOXA-10 | 128 | 128 | 0.12 | 0.12 | 0.06 | 2 | 0.5 | 0.06 | 0.06 | 0.12 | 0.12 | 0.12 |
E. coli TG1 + pUCP24-blaOXA-48 | 256 | 128 | 0.25 | 0.12 | 0.12 | 0.06 | 0.25 | 0.5 | 0.25 | 1 | 0.12 | 0.25 |
E. coli HB4 | 8 | 4 | 0.5 | 1 | 0.25 | 0.5 | 0.5 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
E. coli HB4 + pUCP24-blaOXA-10 | 512 | 512 | 2 | 1 | 1 | 16 | 8 | 0.25 | 0.25 | 1 | 4 | 4 |
E. coli HB4 + pUCP24-blaOXA-48 | ≥512 | 512 | 4 | 0.5 | 0.5 | 0.5 | 4 | 16 | 4 | 32 | 32 | 32 |
OXA-10 | OXA-48 | ||||||
---|---|---|---|---|---|---|---|
Drug | Km (µM) | kcat (s−1) | kcat/Km (µM−1 s−1) | Km (µM) | kcat (s−1) | kcat/Km (µM−1 s−1) | Ratio kcat/Km for OXA-48/OXA-10 |
Imipenem | 36.1 ± 14.6 | 0.054 ± 0.003 | 0.0015 ± 0.0004 | 7.24 ± 0.54 | 1.590 ± 0.119 | 0.220 ± 0.012 | 146.6 |
Meropenem | 40.8 ± 10.9 | 0.049 ± 0.009 | 0.0012 ± 0.0002 | 24.38 ± 1.80 | 0.046 ± 0.004 | 0.0019 ± 0.0001 | 1.582 |
Isolate | Carba NP Test | CIM Test | Modified Hodge Test | Β-Carba Test | MALDI-TOF MS MBT STAR—Carba IVD Assay |
---|---|---|---|---|---|
E. coli 52188484 | − | − | − | − | − |
E. coli 52190692 | − | − | − | − | − |
E. coli TG1 + pUCP24-blaOXA-10 | − | − | − | − | − |
E. coli HB4 + pUCP24-blaOXA-10 | − | − | − | − | − |
E. coli TG1 + pUCP24-blaOXA-48 | + | + | + | + | + |
E. coli HB4 + pUCP24-blaOXA-48 | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-García, I.; Vázquez-Ucha, J.C.; Martínez-Guitián, M.; Lasarte-Monterrubio, C.; Rodríguez-Pallares, S.; Camacho-Zamora, P.; Rumbo-Feal, S.; Aja-Macaya, P.; González-Pinto, L.; Outeda-García, M.; et al. Interplay between OXA-10 β-Lactamase Production and Low Outer-Membrane Permeability in Carbapenem Resistance in Enterobacterales. Antibiotics 2023, 12, 999. https://doi.org/10.3390/antibiotics12060999
Alonso-García I, Vázquez-Ucha JC, Martínez-Guitián M, Lasarte-Monterrubio C, Rodríguez-Pallares S, Camacho-Zamora P, Rumbo-Feal S, Aja-Macaya P, González-Pinto L, Outeda-García M, et al. Interplay between OXA-10 β-Lactamase Production and Low Outer-Membrane Permeability in Carbapenem Resistance in Enterobacterales. Antibiotics. 2023; 12(6):999. https://doi.org/10.3390/antibiotics12060999
Chicago/Turabian StyleAlonso-García, Isaac, Juan Carlos Vázquez-Ucha, Marta Martínez-Guitián, Cristina Lasarte-Monterrubio, Salud Rodríguez-Pallares, Pablo Camacho-Zamora, Soraya Rumbo-Feal, Pablo Aja-Macaya, Lucía González-Pinto, Michelle Outeda-García, and et al. 2023. "Interplay between OXA-10 β-Lactamase Production and Low Outer-Membrane Permeability in Carbapenem Resistance in Enterobacterales" Antibiotics 12, no. 6: 999. https://doi.org/10.3390/antibiotics12060999