Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine
Abstract
:1. Introduction
2. Results
2.1. Nitrofurantoin and Sulfamethoxazole Activity Was Affected Both, by SHU and ASC
2.2. ASC Reduced the MIC of Fluoroquinolones in 1–2 Dilutions in SHU
2.3. ASC Reduced the MIC of Gentamicin and Trimethoprim in 1–4 Dilutions in SHU
2.4. Ampicillin MICs Did Not Change in any Experimental Condition
2.5. Dose-Response in Checkerboard Experiments
2.6. The Effect of ASC on Antibiotic’s MIC in SHU Is Not Dependent on Oxygen
2.7. ASC Is Oxidized in SHU, and Bacterial Growth Partially Prevents This Oxidation
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Assessment of Pro-Oxidant Susceptibility
4.3. SHU, ASC and Antibiotics Solutions
4.4. MIC Assays with/without ASC
4.5. Checkerboard ASC/Antibiotic Assays
4.6. ASC Measurement
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pauling, L. Vitamin C, the Common Cold, and the Flu; WH Freeman: San Francisco, CA, USA, 1976. [Google Scholar]
- Hess, A.L.; Halalau, A.; Dokter, J.J.; Paydawy, T.S.; Karabon, P.; Bastani, A.; Baker, R.E.; Balla, A.K.; Galens, S.A. High-dose intravenous vitamin C decreases rates of mechanical ventilation and cardiac arrest in severe COVID-19. Int. Emerg. Med. 2022, 17, 1759–1768. [Google Scholar] [CrossRef]
- Gnarpe, H.; Michaelsson, M.; Dreborg, S. The in vitro effect of ascorbic acid on the bacterial growth in urine. Acta Pathol. Microbiol. Scand. 1968, 74, 41–50. [Google Scholar] [CrossRef]
- Rawal, B.D.; McKay, G. Inhibition of Pseudomonas aeruginosa by ascorbic acid acting singly and in combination with antimicrobials: In-vitro and in-vivo studies. Med. J. Aust. 1974, 1, 169–174. [Google Scholar] [CrossRef]
- Abdelraheem, W.M.; Refaie, M.M.M.; Yousef, R.K.M.; Abd El Fatah, A.S.; Mousa, Y.M.; Rashwan, R. Assessment of antibacterial and anti-biofilm effects of vitamin C against Pseudomonas aeruginosa clinical isolates. Front. Microbiol. 2022, 13, 847449. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.; Emara, M. Antibacterial and antivirulence activities of acetate, zinc oxide nanoparticles, and vitamin C against E. coli O157:H7 and P. aeruginosa. Curr. Microbiol. 2023, 50, 57. [Google Scholar] [CrossRef] [PubMed]
- Vilchèze, C.; Hartman, T.; Weinrick, B.; Jacobs, W.R. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 2013, 4, 1881. [Google Scholar] [CrossRef] [PubMed]
- Kwiecińska-Piróg, J.; Skowron, K.; Bogiel, T.; Białucha, A.; Przekwas, J.; Gospodarek-Komkowska, E. Vitamin C in the presence of sub-inhibitory concentration of aminoglycosides and fluoroquinolones alters Proteus mirabilis biofilm inhibitory rate. Antibiotics 2019, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Al-Madboly, L.A. A novel triple combination to combat serious infections with carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. Microb. Spectrum 2022, 10, e02710-21. [Google Scholar] [CrossRef]
- Amábile-Cuevas, C.F. Loss of penicillinase plasmids of Staphylococcus aureus after treatment with L-ascorbc acid. Mutat. Res. 1988, 207, 107–109. [Google Scholar] [CrossRef]
- Amábile-Cuevas, C.F.; Piña-Zentella, R.M.; Wah-Laborde, M.E. Decreased resistance to antibiotics and plasmid loss in plasmid-carrying strains of Staphylococcus aureus treated with ascorbic acid. Mutat. Res. 1991, 264, 119–125. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, J.; Liu, J.; Li, Q.; Yang, F.; Ding, X. Ascorbic acid-mediated modulation of antibiotic susceptibility of major bovine mastitis pathogens. Infect. Drug Resist. 2022, 15, 7363–7367. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Ashraf, M.; Bukhsh, A.; Akhtar, S.; Rasheed, A.D. Efficacy of anti-microbial agents with ascorbic acid in catheter associated urinary tract infection. J. Infect. Dis. Prev. Med. 2017, 5, 3. [Google Scholar] [CrossRef]
- Mumtaz, S.; Mumtaz, S.; Ali, S.; Tahir, H.M.; Kazmi, S.A.R.; Mughal, T.A.; Younas, M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. Braz. J. Biol. 2023, 83, e247165. [Google Scholar] [CrossRef]
- Verghese, R.J.; Mathew, S.K.; David, A. Antimicrobial activity of vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. J. Curr. Res. Sci. Med. 2018, 3, 88–93. [Google Scholar]
- Lykkesfeldt, J.; Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients 2019, 11, 2412. [Google Scholar] [CrossRef]
- Brigden, M.L.; Edgell, D.; McPherson, M.; Leadbeater, A.; Hoag, G. High incidence of significant urinary ascorbic acid concentrations in a West Coast population --implications for routine urinalysis. Clin. Chem. 1991, 38, 426–431. [Google Scholar] [CrossRef]
- Shields-Cutler, R.R.; Crowley, J.R.; Hung, C.S.; Stapleton, A.E.; Aldrich, C.C.; Marschall, J.; Henderson, J.P. Human urinary composition controls antibacterial activity of sidercalin. J. Biol. Chem 2015, 290, 15949–15960. [Google Scholar] [CrossRef]
- Vainrub, B.; Musher, D.M. Lack of effect of methenamine in suppression of, or prophylaxis against, chronic urinary infection. Antimicrob. Agents Chemother. 1977, 12, 625–629. [Google Scholar] [CrossRef]
- Foxman, B.; Chi, J.W. Health behavior and urinary tract infection in college-aged women. J. Clin. Epidemiol. 1990, 43, 329–337. [Google Scholar] [CrossRef]
- Ipe, D.S.; Ulett, G.C. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium. J. Microbiol. Meth. 2016, 127, 164–171. [Google Scholar] [CrossRef]
- Przybyło, M.; Lagner, M. On the physiological and cellular homeostais of ascorbate. Cell. Mol. Biol. Lett. 2020, 25, 32. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.; Montella, C.; Garces, F.; Baldoma, L.; Aguilar, J.; Badia, J. Aerobic L-ascorbate metabolism and associated oxidative stress in Escherichia coli. Microbiol. 2007, 153, 3399–3408. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Collins, J.J.; Walker, G.C. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 313–332. [Google Scholar] [CrossRef]
- Fuentes, A.M.; Amábile Cuevas, C.F. Antioxidant vitamins C and E affect the superoxide-mediated induction of the soxRS regulon of Escherichia coli. Microbiol. 1998, 144, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, Q.; Gao, Q.; Xie, J.; Huang, H.; Drlica, K.; Zhao, X. Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing. J. Antimicrob. Chemother. 2020, 75, 576–585. [Google Scholar] [CrossRef]
- Tkachenko, A.G.; Akhova, A.V.; Shumkov, M.S.; Nesterova, L.Y. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res. Microbiol. 2012, 163, 83–91. [Google Scholar] [CrossRef]
- Ipe, D.S.; Horton, E.; Ulett, G.C. The basics of bacteriuria: Strategies of microbes for persistence in urine. Front. Cell. Infect. Microbiol. 2016, 6, 14. [Google Scholar] [CrossRef]
- Hogins, J.; Fan, E.; Seyan, Z.; Kusin, S.; Christie, A.L.; Zimmern, P.E.; Reitzer, L. Bacterial growth of uropathogenic Escherichia coli in pooled urine is much higher than predicted from average growth in individual urine samples. Microb. Spectrum 2022, 10, e02016-22. [Google Scholar] [CrossRef]
- Abbott, I.J.; van Gorp, E.; Wijma, R.A.; Meletiadis, J.; Mouton, J.W.; Peleg, A.Y. Evaluation of pooled human urine and synthetic alternatives in a dynamic bladder infection in vitro model simulating oral fosfomycin therapy. J. Microbiol. Meth. 2020, 171, 105861. [Google Scholar] [CrossRef]
- Dalhoff, A.; Stubbings, W.; Schubert, S. Comparative in vitro activities of the novel antibacterial finafloxacin against selected gram-positive and gram-negative bacteria tested in Mueller-Hinton broth and synthetic urine. Antimicrob. Agents Chemother. 2011, 55, 1814–1818. [Google Scholar] [CrossRef]
- Sako, S.; Kariyama, R.; Mitsuhata, R.; Yamamoto, M.; Wada, K.; Ishii, A.; Uehara, S.; Kokeguchi, S.; Kusano, N.; Kumon, H. Molecular epidemiology and clinical implications of metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from urine. Acta Med. Okayama 2014, 68, 89–99. [Google Scholar]
- Wenzler, E.; Danziger, L.H. Urinary tract infections: Resistance is futile. Antimicrob. Agents Chemother. 2016, 60, 2596–2597. [Google Scholar] [CrossRef] [PubMed]
- Doern, G.V.; Brecher, S.M. The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests. J. Clin. Microbiol. 2011, 49, S11–S14. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. Bacterial death from treatment with fluoroquinolones and other lethal stressors. Exp. Rev. Anti Infect. Ther. 2020, 19, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Belenky, P.A.; Yang, J.H.; MacDonald, I.C.; Martell, J.D.; Takahashi, N.; Chan, C.T.Y.; Lobritz, M.A.; Braff, D.; Schwarz, E.G.; et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 2014, 111, e2100-9. [Google Scholar] [CrossRef] [PubMed]
- Amábile-Cuevas, C.F.; Arredondo-García, J.L. Nitrofurantoin, phenazopyridine, and the superoxide-response regulon soxRS of Escherichia coli. J. Infect. Chemother. 2013, 19, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Wei, Z.; Oh, J.; Xu, H.; Kim, C.S.; Wang, R.; Wyche, T.P.; Piizzi, G.; Flavell, R.A.; Crawford, J.M. Sulfamethoxazole drug stress upregulates antioxidant immunomodulatory metabolites in Escherichia coli. Nat. Microbiol 2020, 5, 1319–1329. [Google Scholar] [CrossRef]
- Omaye, S.T.; Turnbull, J.D.; Sauberlich, H.E. Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Meth. Enzymol. 1979, 62, 3–11. [Google Scholar]
- Okamura, M. A specific method for determination of total ascorbic acids in urine by the α,α’-dipyridyl method. Clin. Chim. Acta 1981, 115, 393–403. [Google Scholar] [CrossRef]
- Ciftci, H.; Verit, A.; Yeni, E.; Savas, M. Decreased oxidative stress index of urine in patients with urinary tract infection. Urol. Int. 2008, 81, 312–315. [Google Scholar] [CrossRef]
- Bamberger, D.M.; Foxworth, J.W.; Bridwell, D.L.; Shain, C.S.; Gerding, D.N. Extravascular antimicrobial distribution and the respective blood and urine concentrations in humans. In Antibiotics in laboratory medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 719–809. [Google Scholar]
- Blango, M.G.; Mulvey, M.A. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob. Agents Chemother. 2010, 54, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Geddes, A.M.; Gould, I.M.; Roberts, J.A.; Grayson, M.L.; Cosgrove, S.E. Ampicillin and amoxicillin. In Kucers’ The use of antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 100–135. [Google Scholar]
- Kwong, J.; Grayson, M.L. Ciprofloxacin. In Kucers’ The Use of Antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1867–1985. [Google Scholar]
- Sojo-Dorado, J.; Rodríguez-Baño, J. Gentamicin. In Kucers’ The use of antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 964–991. [Google Scholar]
- Huttner, A.; Stewardson, A. Nitrofurans: Nitrofurazone, furazidine, and nitrofurantoin. In Kucers’ The Use of Antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1784–1798. [Google Scholar]
- Stuart, R.L. Norfloxacin. In Kucers’ The Use of Antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1986–2003. [Google Scholar]
- Trubiano, J.A.; Grayson, M.L. Trimethoprim and trimethoprim-sulfamethoxazole (cotrimoxazole). In Kucers’ The Use of Antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1625–1724. [Google Scholar]
- Wagenlehner, F.M.E.; Kinzig-Schippers, M.; Sörgel, F.; Weidner, W.; Naber, K.G. Concentrations in plasma, urinary excretion and bactericidal activity of levofloxacin (500 mg) versus ciprofloxacin (500 mg) in healthy volunteers receiving a single oral dose. Int. J. Antimicrob. Agents 2006, 28, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Kinzig-Schippers, M.; Tischmeyer, U.; Wagenlehner, C.; Sörgel, F.; Dalhoff, A.; Naber, K.G. Pharmacokinetics of ciprofloxacin XR (1000 mg) versus levofloxacin (500 mg) in plasma and urine of male and female healthy volunteers receiving a single oral dose. Int. J. Antimicrob. Agents 2006, 27, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Labovitz, E.; Levison, M.E.; Kaye, D. Single-dose daily gentamicin therapy in urinary tract infection. Antimicrob. Agents Chemother. 1974, 6, 465–470. [Google Scholar] [CrossRef]
- Guelen, P.J.M.; Boerema, J.B.J.; Vree, T.B. Comparative human bioavailability study of macrocrystalline nitrofurantoin and two prolonged-action hydroxymethylnitrofurantoin preparations. Drug Inteli. Clin. Pharm. 1988, 22, 959–964. [Google Scholar] [CrossRef]
- Anderson, G.G.; Dodson, K.W.; Hooton, T.M.; Hultgren, S.J. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol. 2004, 12, 424–430. [Google Scholar] [CrossRef]
- May, J.M.; Qu, Z.c. Ascorbic acid efflux and re-uptake in endothelial cells: Maintenance of intracellular ascorbate. Mol. Cell. Biochem. 2009, 325, 79–88. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Strandards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Greenberg, J.T.; Demple, B. Overproduction of peroxide-scavenging enzymes in Escherichia coli supresses spontaneous mutagenesis and sensitivity to redox-cycling agents in oxyR- mutants. EMBO J. 1988, 7, 2611–2617. [Google Scholar] [CrossRef]
- Amábile Cuevas, C.F.; Martínez, L.; Rosas, I. Susceptibility to antibiotics and reactive oxygen species in Escherichia coli: A survey of clinical and environmental isolates. Microbiol. Res. J. Int. 2021, 31, 64–71. [Google Scholar] [CrossRef]
- Pillai, S.K.; Moellering, R.C.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 365–440. [Google Scholar]
MHb | SHU | MHb | SHU | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Strain | O2− | H2O2 | NIT | NIT/ASC | NIT | NIT/ASC | SUL | SUL/ASC | SUL | SUL/ASC |
1 | R | R | 128 | 64 | 32 | 16 | ||||
2 | R | R | 128 | 32 | 32 | 8 | ||||
8 | A | A | 128 | 32 | 32 | 16 | 2048 | 1024 | 1024 | 512 |
9 | A | A | 2048 | 1024 | 512 | 256 | ||||
10 | A | A | 1024 | 1024 | 512 | 128 | ||||
11 | R | A | 2048 | 1024 | 1024 | 256 | ||||
12 | S | S | 128 | 32 | 32 | 8 | 1024 | 512 | 1024 | 256 |
13 | A | A | 1024 | 1024 | 512 | 128 | ||||
14 | A | A | 512 | 256 | 512 | 128 | ||||
16 | R | R | 128 | 32 | 32 | 8 |
Strain | O2− | H2O2 | CIP a | CIP/ASC | NOR a | NOR/ASC |
---|---|---|---|---|---|---|
3 | R | R | 1024 | 512 | >1024 | 256 |
4 | A | R | >1024 | 512 | >1024 | 512 |
5 | R | A | >1024 | >1024 | >1024 | >1024 |
6 | R | A | 1024 | 512 | >1024 | 1024 |
10 | A | A | 1024 | 256 | >1024 | 256 |
12 | S | S | >1024 | 1024 | >1024 | >1024 |
14 | A | A | >1024 | 512 | >1024 | 1024 |
15 | A | A | >1024 | 512 | >1024 | 256 |
Strain | O2− | H2O2 | GEN | GEN/ASC | TMP | TMP/ASC |
---|---|---|---|---|---|---|
3 | R | R | 512 | 128 | ||
8 | A | A | 256 | 128 | >2048 | 512 |
9 | A | A | >2048 | 1024 | ||
10 | A | A | >2048 | 128 | ||
11 | R | A | >2048 | 256 | ||
12 | S | S | 512 | 256 | >2048 | 1024 |
13 | A | A | >2048 | 1024 | ||
14 | A | A | 512 | 128 | >2048 | 1024 |
Ref. | AMP | CIP | GEN | NIT | NOR | SUL | TMP |
---|---|---|---|---|---|---|---|
[42] | 160–700 | >2 | 400–500 | 25–300 | 168–417 | 100–100 | 70–100 |
Kucers a | 250–1000 | 20–387 b | 40–50 | 50–250 | 478 | 40–320 | 19–130 |
[43] | - | 2–3 | 400–800 | 300–500 | 300–500 | 100–300 | 66–200 |
other | 268 c 892 d | 164–225 e | 70 f |
Strain No. | AMP | AMC | CTX | SUL | CIP | GEN | NIT | Used for Assays with: |
---|---|---|---|---|---|---|---|---|
1 | R | R | R | R | NIT | |||
2 | R | R | R | R | R | R | NIT | |
3 | R | R | R | Flu, AMP, GEN | ||||
4 | R | R | R | R | R | Flu | ||
5 | R | R | R | Flu, AMP | ||||
6 | R | R | R | Flu, AMP | ||||
7 | R | R | AMP | |||||
8 | R | R | R | R | R | R | R | NIT, SUL, AMP, GEN |
9 | R | R | SUL | |||||
10 | R | R | R | R | SUL, Flu | |||
11 | R | R | R | SUL | ||||
12 | R | R | R | R | R | R | NIT, SUL, Flu, GEN | |
13 | R | R | R | SUL | ||||
14 | R | R | R | R | SUL, Flu, AMP, GEN | |||
15 | R | R | R | Flu | ||||
16 | R | R | R | NIT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amábile-Cuevas, C.F. Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine. Antibiotics 2023, 12, 985. https://doi.org/10.3390/antibiotics12060985
Amábile-Cuevas CF. Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine. Antibiotics. 2023; 12(6):985. https://doi.org/10.3390/antibiotics12060985
Chicago/Turabian StyleAmábile-Cuevas, Carlos F. 2023. "Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine" Antibiotics 12, no. 6: 985. https://doi.org/10.3390/antibiotics12060985
APA StyleAmábile-Cuevas, C. F. (2023). Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine. Antibiotics, 12(6), 985. https://doi.org/10.3390/antibiotics12060985