In Vitro Activity of Novel Topoisomerase Inhibitors against Francisella tularensis and Burkholderia pseudomallei
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Reagents
3.2. Bacterial Strains and Cultures
3.3. MIC Assays
3.4. Time-Kill Assays
3.5. Intracellular Assays
3.6. Statistical Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, A.C.; Currie, B.J. Melioidosis: Epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 2005, 18, 383–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.; Oyston, P.C.; Green, M.; Titball, R.W. Tularemia. Clin. Microbiol. Rev. 2002, 15, 631–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, C.; Hu, Z.; Chen, J.; Tang, M.; Chen, H.; Lu, X.; Cao, L.; Deng, L.; Mao, X.; Li, Q. Molecular epidemiology and antibiotic resistance of Burkholderia pseudomallei isolates from Hainan. China Med. 2019, 98, 14461. [Google Scholar] [CrossRef]
- Narayanan, N.; Lacy, C.R.; Cruz, J.E.; Nahass, M.; Karp, J.; Barone, J.A.; Hermes-DeSantis, E.R. Disaster preparedness: Biological threats and treatment options. Pharmacotherapy 2018, 38, 217–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, R.P.; Ward, L.; Currie, B.J. Oral eradication therapy for melioidosis; important but not without risks. Int. J. Infect. Dis. 2019, 80, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.C. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001, 7, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef]
- Wright, G.D. Molecular mechanisms of antibiotic resistance. Chem. Commun. 2011, 47, 4055–4061. [Google Scholar] [CrossRef]
- Gibson, E.G.; Bax, B.; Chan, P.F.; Osheroff, N. Mechanistic and structural basis for the actions of the antibacterial Gepotidacin against Staphylococcus aureus gyrase. ACS Infect. Dis. 2019, 5, 570–581. [Google Scholar] [CrossRef]
- Kolarič, A.; Anderluh, M.; Minovski, N. Two decades of successful SAR-grounded stories of the novel bacterial topoisomerase inhibitors (NBTIs). J. Med. Chem. 2020, 63, 5664–5674. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, S.; Nehra, B.; Kumar, S.; Monge, V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorg. Chem. 2020, 104, 104266. [Google Scholar] [CrossRef] [PubMed]
- Reck, F.; Alm, R.A.; Brassil, P.; Newman, J.V.; Ciaccio, P.; McNulty, J.; Barthlow, H.; Goteti, K.; Breen, J.; Comita-Prevoir, J.; et al. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced p K a: Antibacterial agents with an improved safety profile. J. Med. Chem. 2012, 55, 6916–6933. [Google Scholar] [CrossRef]
- Bulter, A.; Helliwell, M.V.; Zhange, Y.; Hancox, J.C.; Dempsey, C.E. An update on the structure of hERG. Front. Pharmacol. 2020, 10, 1572. [Google Scholar]
- Biedenbach, D.J.; Bouchillon, S.K.; Hackel, M.; Miller, L.A.; Scangarella-Oman, N.E.; Jakielaszek, C.; Sahm, D.F. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob. Agents. Chemother. 2016, 60, 1918–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsson, S.; Golparian, D.; Scangarella-Oman, N.; Unemo, M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2018, 73, 2072–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakielaszek, C.; Hossain, M.; Qian, L.; Fishman, C.; Widdowson, K.; Hilliard, J.J.; Mannino, F.; Raychaudhuri, A.; Carniel, E.; Demons, S.; et al. Gepotidacin is efficacious in a nonhuman primate model of pneumonic plague. Sci. Transl. Med. 2022, 14, 1787. [Google Scholar] [CrossRef] [PubMed]
- Lyons, A.; Kirkham, J.; Blades, K.; Orr, D.; Dauncey, E.; Smith, O.; Dick, E.; Walker, R.; Matthews, T.; Bunt, A.; et al. Discovery and structure-activity relationships of a novel oxazolidinone class of bacterial type II topoisomerase inhibitors. Bioorg. Med. Chem. Lett. 2022, 65, 128648. [Google Scholar] [CrossRef]
- Larsson, P.; Oyston, P.C.F.; Chain, P.; Chu, M.C.; Duffield, M.; Fuxelius, H.-H.; Garcia, E.; Hälltorp, G.; Johansson, D.; E Isherwood, K.; et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Gen. 2005, 37, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Holden, M.T.G.; Titball, R.W.; Peacock, S.J.; Cerdeño-Tárraga, A.M.; Atkins, T.; Crossman, L.C.; Pitt, T.; Churcher, C.; Mungall, K.; Bentley, S.D.; et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. USA 2004, 101, 14240–14245. [Google Scholar] [CrossRef] [Green Version]
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard. CSLI Document M07-A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015.
- Eyles, J.E.; Hartley, M.G.; Laws, T.R.; Oyston, P.C.F.; Griffin, K.F.; Titball, R.W. Protection afforded against aerosol challenge by systemic immunisation with inactivated Francisella tularensis live vaccine strain (LVS). Microb. Pathog. 2008, 44, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; CLSI Document M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999.
- Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010, 466, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Charrier, C.; Salisbury, A.M.; Savage, V.J.; Duffy, T.; Moyo, E.; Chaffer-Malam, N.; Ooi, N.; Newman, R.; Cheung, J.; Metzger, R.; et al. Novel bacterial topoisomerase inhibitors with potent broad-spectrum activity against drug-resistant bacteria. Antimicrob. Agents. Chemother. 2017, 61, e02100-16. [Google Scholar] [CrossRef] [Green Version]
- Ross, B.N.; Myers, J.N.; Muruato, L.A.; Tapia, D.; Torres, A.G. Evaluating new compounds to treat Burkholderia pseudomallei infections. Front. Cell. Infect. Microbiol. 2018, 8, 210. [Google Scholar] [CrossRef]
- Bommineni, G.R.; Kapilashrami, K.; Cummings, J.E.; Lu, L.; Knudson, S.E.; Gu, C.; Walker, S.G.; Slayden, S.A.; Tonge, P.J. Thiolactomycin-based inhibitors of bacterial β-Ketoacyl-ACP synthases with in vivo activity. J. Med. Chem. 2016, 59, 5377–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, J.E.; Kingry, L.C.; Rholl, D.A.; Schweizer, H.P.; Tonge, P.J.; Slayden, R.A. The Burkholderia pseudomallei enoyl-acyl carrier protein reductase fabI1 is essential for in vivo growth and is the target of a novel chemotherapeutic with efficacy. Antimicrob. Agents. Chemother. 2014, 58, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.E.; Beaupre, A.J.; Knudson, S.E.; Liu, N.; Yu, W.; Neckles, C.; Wang, H.; Khanna, A.; Bommineni, G.R.; Trunck, L.A.; et al. Substituted diphenyl ethers as a novel chemotherapeutic platform against Burkholderia pseudomallei. Antimicrob. Agents. Chemother. 2014, 58, 1646–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inhibitor/Antibiotic | MIC (μg/mL) | |
---|---|---|
B. pseudomallei | F. tularensis | |
INFEX993 | 2 | 0.06–0.125 |
INFEX2017 | 4 | 0.5–1 |
INFEX2018 | 8 | 8–16 |
INFEX2019 | 4 | 0.5–4 |
INFEX2020 | 8 | 16–32 |
Ciprofloxacin | 0.5–2 | 0.03–0.5 |
Doxycycline | 0.5–4 | 2–4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© Crown copyright (2023), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected].
Share and Cite
Whelan, A.O.; Cooper, I.; Ooi, N.; Orr, D.; Blades, K.; Kirkham, J.; Lyons, A.; Barnes, K.B.; Richards, M.I.; Salisbury, A.-M.; et al. In Vitro Activity of Novel Topoisomerase Inhibitors against Francisella tularensis and Burkholderia pseudomallei. Antibiotics 2023, 12, 983. https://doi.org/10.3390/antibiotics12060983
Whelan AO, Cooper I, Ooi N, Orr D, Blades K, Kirkham J, Lyons A, Barnes KB, Richards MI, Salisbury A-M, et al. In Vitro Activity of Novel Topoisomerase Inhibitors against Francisella tularensis and Burkholderia pseudomallei. Antibiotics. 2023; 12(6):983. https://doi.org/10.3390/antibiotics12060983
Chicago/Turabian StyleWhelan, Adam O., Ian Cooper, Nicola Ooi, David Orr, Kevin Blades, James Kirkham, Amanda Lyons, Kay B. Barnes, Mark I. Richards, Anne-Marie Salisbury, and et al. 2023. "In Vitro Activity of Novel Topoisomerase Inhibitors against Francisella tularensis and Burkholderia pseudomallei" Antibiotics 12, no. 6: 983. https://doi.org/10.3390/antibiotics12060983
APA StyleWhelan, A. O., Cooper, I., Ooi, N., Orr, D., Blades, K., Kirkham, J., Lyons, A., Barnes, K. B., Richards, M. I., Salisbury, A. -M., Craighead, M., & Harding, S. V. (2023). In Vitro Activity of Novel Topoisomerase Inhibitors against Francisella tularensis and Burkholderia pseudomallei. Antibiotics, 12(6), 983. https://doi.org/10.3390/antibiotics12060983