Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility/Resistance Pattern
2.2. Detection of Virulence Phenotypes among VRE Isolates
2.3. Distribution of Virulence Genes among the VRE Isolates
2.4. Correlation between Virulence Phenotypes and Genotypes
3. Discussion
4. Materials and Methods
4.1. Study Design and Period of Sampling
4.2. Screening and Identification of Enterococcus
4.3. Antimicrobial Susceptibility Test (AST)
4.4. Phenotypic Analysis of Virulence Factors among VRE
4.4.1. Gelatinase Activity
4.4.2. Protease Activity
4.4.3. Hemolytic Activity
4.4.4. Biofilm Production Test
4.4.5. Genotypic Characterization of Virulence Factors from VRE
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karna, A.; Baral, R.; Khanal, B. Characterization of clinical isolates of enterococci with special reference to glycopeptide susceptibility at a tertiary care center of Eastern Nepal. Int. J. Microbiol. 2019, 2019, 7936156. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Srivastava, P.; Yadav, S.; Tayade, S.N. Vancomycin-resistant enterococci causing bacteriuria in hospitalized patients from Northwest India. J. Datta Meghe. Inst. Med. Sci. Univ. 2020, 15, 421. [Google Scholar] [CrossRef]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Rosa, R.G.; Schwarzbold, A.V.; Santos, R.P.D.; Turra, E.E.; Machado, D.P.; Goldani, L.Z. Vancomycin-resistant Enterococcus faecium bacteremia in a tertiary care hospital: Epidemiology, antimicrobial susceptibility, and outcome. Biomed. Res. Int. 2014, 2014, 958469. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Kapil, A.; Chandra, R.; Sharma, P.; Das, B. Antimicrobial resistance in Enterococcus faecalis at a tertiary care centre of northern India. Indian J. Med. Res. 2003, 118, 25–28. [Google Scholar] [PubMed]
- Banerjee, T.; Anupurba, S. Prevalence of virulence factors and drug resistance in clinical isolates of Enterococci: A study from North India. J. Pathog. 2015, 2015, 692612. [Google Scholar] [CrossRef]
- Sood, S.; Malhotra, M.; Das, B.K.; Kapil, A. Enterococcal infections & antimicrobial resistance. Indian J. Med. Res. 2008, 128, 111. [Google Scholar]
- Courvalin, P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 2006, 42, S25–S34. [Google Scholar] [CrossRef]
- Abebe, W.; Endris, M.; Tiruneh, M.; Moges, F. Prevalence of vancomycin resistant Enterococci and associated risk factors among clients with and without HIV in Northwest Ethiopia: A cross-sectional study. BMC Public Health 2014, 14, 185. [Google Scholar] [CrossRef]
- Agegne, M.; Abera, B.; Derbie, A.; Yismaw, G.; Shiferaw, M.B. Magnitude of Vancomycin-resistant enterococci (VRE) colonization among HIV-infected patients attending ART Clinic in West Amhara government hospitals. Int. J. Microbiol. 2018, 2018, 7510157. [Google Scholar] [CrossRef]
- Axelrad, J.E.; Lebwohl, B.; Cuaresma, E.; Cadwell, K.; Green, P.H.; Freedberg, D.E. Gut colonization with vancomycin-resistant Enterococcus and risk for subsequent enteric infection. Gut Pathog. 2018, 10, 28. [Google Scholar] [CrossRef]
- Said, M.S.; Tirthani, E.; Lesho, E. Enterococcus Infections; StatPearls: Tampa, FL, USA, 2021. [Google Scholar]
- Hashem, Y.A.; Abdelrahman, K.A.; Aziz, R.K. Phenotype–Genotype Correlations and Distribution of Key Virulence Factors in Enterococcus faecalis Isolated from Patients with Urinary Tract Infections. Infect. Drug Resist. 2021, 14, 1713. [Google Scholar] [CrossRef]
- Kreft, A.; Marre, R.; Schramm, U.; Wirth, R. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 1992, 60, 25–30. [Google Scholar] [CrossRef]
- Chow, J.W.; Thal, L.A.; Perri, M.B.; Vazquez, J.A.; Donabedian, S.M.; Clewell, D.B.; Zervos, M.J. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 1993, 37, 2474–2477. [Google Scholar] [CrossRef]
- Del Papa, M.F.; Hancock, L.E.; Thomas, V.C.; Perego, M. Full activation of Enterococcus faecalis gelatinase by a C-terminal proteolytic cleavage. J. Bacteriol. 2007, 189, 8835–8843. [Google Scholar] [CrossRef]
- Jahansepas, A.; Aghazadeh, M.; Rezaee, M.A.; Hasani, A.; Sharifi, Y.; Aghazadeh, T.; Mardaneh, J. Occurrence of Enterococcus faecalis and Enterococcus faecium in various clinical infections: Detection of their drug resistance and virulence determinants. Microb. Drug Resist. 2018, 24, 76–82. [Google Scholar] [CrossRef]
- Tripathi, A.; Shukla, S.K.; Singh, A.; Prasad, K.N. Prevalence, outcome and risk factor associated with vancomycin-resistant Enterococcus faecalis and Enterococcus faecium at a Tertiary Care Hospital in Northern India. Indian J. Med. Microbiol. 2016, 34, 38–45. [Google Scholar] [CrossRef]
- Yilema, A.; Moges, F.; Tadele, S.; Endris, M.; Kassu, A.; Abebe, W.; Ayalew, G. Isolation of enterococci, their antimicrobial susceptibility patterns and associated factors among patients attending at the University of Gondar Teaching Hospital. BMC Infect. Dis. 2017, 17, 449. [Google Scholar] [CrossRef]
- Nasaj, M.; Mousavi, S.M.; Hosseini, S.M.; Arabestani, M.R. Prevalence of virulence factors and vancomycin-resistant genes among Enterococcus faecalis and E. faecium isolated from clinical specimens. Iran J. Public Health. 2016, 45, 806. [Google Scholar]
- Vidyalakshmi, P.R.; Gopalakrishnan, R.; Ramasubramanian, V.; Ghafur, K.A.; Nambi, P.S.; Thirunarayana, M.A. Clinical, epidemiological, and microbiological profile of patients with vancomycin-resistant Enterococci from a tertiary care hospital. J. Glob. Infect. Dis. 2012, 4, 137. [Google Scholar] [CrossRef]
- Shokoohizadeh, L.; Ekrami, A.; Labibzadeh, M.; Ali, L.; Alavi, S.M. Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. BMC Res. Notes 2018, 11, 451. [Google Scholar] [CrossRef]
- Regasa Dadi, B.; Solomon, Z.; Tesfaye, M. Vancomycin resistant Enterococci and its associated factors among HIV infected patients on anti-retroviral therapy in Ethiopia. PLoS ONE 2021, 16, e0251727. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Patel, A.; Sahni, A.K.; Praharaj, A.K.; Grover, N.; Chaudhari, C.N.; Das, N.K.; Kulkarni, M. Emergence of multidrug resistant enterococci at a tertiary care centre. Med. J. Armed India 2015, 71, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Golob, M.; Pate, M.; Kušar, D.; Dermota, U.; Avberšek, J.; Papić, B.; Zdovc, I. Antimicrobial resistance and virulence genes in Enterococcus faecium and Enterococcus faecalis from humans and retail red meat. Biomed. Res. Int. 2019, 2019, 2815279. [Google Scholar] [CrossRef] [PubMed]
- Buetti, N.; Wassilew, N.; Rion, V.; Senn, L.; Gardiol, C.; Widmer, A.; Marschall, J. Emergence of vancomycin-resistant enterococci in Switzerland: A nation-wide survey. Antimicrob. Resis. Infect. Control 2019, 8, 1–5. [Google Scholar] [CrossRef]
- Sreeja, S.; Sreenivasa Babu, P.R.; Prathab, A.G. The prevalence and the characterization of the enterococcus species from various clinical samples in a tertiary care hospital. J. Clin. Diagnostic. Res. 2012, 6, 1486. [Google Scholar] [CrossRef]
- Abamecha, A.; Wondafrash, B.; Abdissa, A. Antimicrobial resistance profile of Enterococcus species isolated from intestinal tracts of hospitalized patients in Jimma, Ethiopia. BMC Res. Notes 2015, 8, 213. [Google Scholar] [CrossRef]
- Sassi, M.; Guérin, F.; Zouari, A.; Beyrouthy, R.; Auzou, M.; Fines-Guyon, M.; Potrel, S.; Dejoies, L.; Collet, A.; Boukthir, S.; et al. Emergence of optrA-mediated linezolid resistance in enterococci from France, 2006–2016. J. Antimicrob. Chemother. 2019, 74, 1469–1472. [Google Scholar] [CrossRef]
- Mendes, R.E.; Deshpande, L.; Streit, J.M.; Sader, H.S.; Castanheira, M.; Hogan, P.A.; Flamm, R.K. ZAAPS programme results for 2016: An activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J. Antimicrob. Chemother. 2018, 73, 1880–1887. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Maschieto, A.; Martinez, R.; Palazzo, I.C.V.; Darini, A.L.; Da, C. Antimicrobial resistance of Enterococcus sp. isolated from the intestinal tract of patients from a university hospital in Brazil. Mem. Inst. Oswaldo. Cruz. 2004, 99, 763–767. [Google Scholar] [CrossRef]
- Esmail, M.A.M.; Abdulghany, H.M.; Khairy, R.M. Prevalence of multidrug-resistant Enterococcus faecalis in hospital-acquired surgical wound infections and bacteremia: Concomitant analysis of antimicrobial resistance genes. Infect. Dis. Res. Treat. 2019, 12, 1178633719882929. [Google Scholar] [CrossRef]
- Benamrouche, N.; Guettou, B.; Henniche, F.Z.; Assaous, F.; Laouar, H.; Ziane, H.; Djennane, F.; Tiouit, D.; Bentchouala, C.; Yamouni, F.; et al. Vancomycin-resistant Enterococcus faecium in Algeria: Phenotypic and genotypic characterization of clinical isolates. J. Infect. Dev. Ctries. 2021, 15, 95–101. [Google Scholar] [CrossRef]
- Kobayashi, I.; Muraoka, H.; Iyoda, T.; Nishida, M.; Hasegawa, M.; Yamaguchi, K. Antimicrobial susceptibility testing of vancomycin-resistant Enterococcus by the VITEK 2 system, and comparison with two NCCLS reference methods. J. Med. Microbiol. 2004, 53, 1229–1232. [Google Scholar] [CrossRef]
- Garcia-Garrote, F.; Cercenado, E.; Bouza, E. Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. J. Clin. Microbiol. 2000, 38, 2108–2111. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009, 155, 1749–1757. [Google Scholar] [CrossRef]
- Heidari, H.; Emaneini, M.; Dabiri, H.; Jabalameli, F. Virulence factors, antimicrobial resistance pattern and molecular analysis of Enterococcal strains isolated from burn patients. Microb. Pathog. 2016, 90, 93–97. [Google Scholar] [CrossRef]
- Eaton, T.J.; Gasson, M.J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef]
- Ghoshal, U.; Garg, A.; Tiwari, D.P.; Ayyagari, A. Emerging vancomycin resistance in enterococci in India. Indian J. Pathol. Microbiol. 2006, 49, 620. [Google Scholar]
- Talebi, M.; Eshraghi, S.; Pourshafie, M.; Pourmand, M.R. Characterization of Vancomycin Resistant Enterococcus faecium. Iran J. Publ. Health. 2012, 36, 20–25. [Google Scholar]
- George, S.K.; Suseela, M.R.; El Safi, S.; Elnagi, E.A.; Al-Naam, Y.A.; Adam, A.A.M.; Jacob, A.M.; Al-Maqati, T.; Ks, H.K. Molecular determination of van genes among clinical isolates of enterococci at a hospital setting. Saudi J. Biol. Sci. 2021, 28, 2895–2899. [Google Scholar] [CrossRef]
- Moosavian, M.; Ghadri, H.; Samli, Z. Molecular detection of vanA and vanB genes among vancomycin-resistant enterococci in ICU-hospitalized patients in Ahvaz in southwest of Iran. Infect. Drug. Resist. 2018, 11, 2269. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.A.; Pot, B.; Collins, M.D. Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J. Appl. Bacteriol. 1993, 75, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Feng, L.; Zhang, L.; He, J.; An, T.; Fu, X.; Li, C.; Zhao, X.; Zhai, Y.; Li, H.; et al. Antimicrobial resistance, virulence genes, and biofilm formation capacity among enterococcus species from yaks in Aba Tibetan Autonomous Prefecture, China. Front. Microbiol. 2020, 11, 1250. [Google Scholar] [CrossRef]
Type of Specimen | Age Group in Years | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 | 11–20 | 21–40 | 41–60 | 61–80 | Total | ||||||||
M | F | M | F | M | F | M | F | M | F | M | F | ||
Urine | 18 | 21 | 178 | 221 | 120 | 284 | 74 | 143 | 41 | 21 | 431 | 690 | 1121 |
Blood | 11 | 13 | 31 | 24 | 48 | 23 | 27 | 25 | 15 | 17 | 132 | 102 | 234 |
Pus | 5 | 7 | 13 | 9 | 17 | 13 | 13 | 3 | 6 | 0 | 54 | 32 | 86 |
Tissue | 3 | 2 | 8 | 5 | 5 | 3 | 2 | 0 | 0 | 0 | 18 | 10 | 28 |
Catheter | 0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 6 | 0 | 6 |
Vaginal wash | 0 | 0 | 0 | 2 | 0 | 14 | 0 | 16 | 0 | 0 | 0 | 32 | 32 |
Semen | 0 | 0 | 27 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 48 |
Endotracheal wash | 0 | 0 | 0 | 4 | 3 | 1 | 5 | 1 | 2 | 4 | 10 | 10 | 20 |
Total | 699 | 876 | 1575 |
Socio-Demographic Details | Frequency (No/%) | ||||
---|---|---|---|---|---|
Enterococcus faecalis (388/45%) | Enterococcus faecium (246/29%) | Enterococcus durans (120/14%) | Enterococcus hirae (108/13%) | Total (862/100%) | |
Sex | |||||
Male | 166/43% | 72/29% | 47/39% | 63/58% | 348/40% |
Female | 222/57% | 174/71% | 73/61% | 45/42% | 514/60% |
Age | |||||
1–5 | 28/7% | 14/6% | 0 | 4/4% | 46/5% |
6–20 | 39/10% | 19/8% | 8/7% | 11/10% | 77/9% |
21–40 | 68/18% | 17/7% | 54/45 | 39/36% | 178/21% |
41–65 | 167/43% | 121/50% | 37/31% | 34/32% | 359/42% |
>65 | 86/22% | 75/31% | 21/18% | 20/19% | 202/23% |
Nature of native | |||||
Rural | 126/33% | 33/13% | 46/38% | 37/34% | 242/28% |
Urban | 262/68% | 213/87% | 74/62% | 71/66% | 620/72% |
Patients visited ward | |||||
Out patient | 174/45% | 55/22% | 20/17% | 32/30% | 281/33% |
ICU | 24/6% | 19/7.7% | - | - | 43/5% |
Surgery | 20/5% | 15/6% | 10/8.3% | - | 45/5% |
Pediatric | 14/4% | 10/4% | - | - | 24/3% |
Urology | 111/29% | 108/44% | 62/52% | 48/44% | 329/38% |
Hematology | 45/12% | 39/16% | 28/23% | 28/26% | 140/16% |
Specimen collected | |||||
Urine | 164/42% | 98/40% | 47/39% | 26/24% | 335/39% |
Blood | 36/9% | 24/10% | 19/16% | 16/15% | 95/11% |
Pus | 60/16% | 35/14% | 28/23% | 21/19% | 144/17% |
Tissue | 27/9% | 28/11% | 11/9% | 13/12% | 79/9% |
Catheter sample | 62/16% | 33/13% | 10/8% | 18/17% | 123/14% |
Vaginal wash | 28/7% | 21/9% | 4/3% | 10/9% | 63/7% |
Semen | 4/1% | 7/3% | 0 | 0 | 11/1% |
Endotracheal secretion | 7/2% | 0/0 | 1/1% | 4/4% | 12/1% |
Enterococcal sp. | Resistant to 3 Antibiotics | Resistant to 4 Antibiotics | Resistant to 5 Antibiotics |
---|---|---|---|
E. faecalis | 106/27.3 | 72/18.6 | 37/9.6 |
E. faecium | 129/52.4 | 91/37 | 54/22 |
E. durans | 5/4.2 | 0 | 0 |
E. hirae | 0 | 0 | 0 |
Total | 240/27.8 | 163/18.9 | 91/10.6 |
Antibiotics | MIC Value | S/I/R Pattern | VITEK 2 System * | MDT * |
---|---|---|---|---|
Benzylpenicillin | <1 | S | 0 | 0 |
2 | 0 | 0 | ||
4 | 0 | 0 | ||
8 | I | 0 | 0 | |
16 | R | 19 | 19 | |
>32 | 72 | 72 | ||
Erythromycin | 0.12 | S | 0 | 0 |
0.25 | 0 | 0 | ||
0.5 | 0 | 0 | ||
1.0 | I | 0 | 0 | |
2 | 0 | 0 | ||
4 | R | 34 | 34 | |
>8 | 57 | 57 | ||
Ciprofloxacin | <1 | S | 0 | 0 |
2 | 0 | 0 | ||
4 | I | 0 | 7 | |
8 | R | 91 | 84 | |
16 | 0 | 0 | ||
>32 | 0 | 0 | ||
Teicoplanin | <1 | S | 0 | 0 |
2 | 0 | 3 | ||
4 | I | 5 | 0 | |
8 | 0 | 0 | ||
16 | R | 6 | 0 | |
>32 | 80 | 88 | ||
Vancomycin | <1 | S | 0 | 0 |
2 | 0 | 0 | ||
4 | 0 | 0 | ||
8 | 0 | 0 | ||
16 | I | 0 | 0 | |
>32 | S | 91 | 91 |
Antibiotics | No. of Errors | ||
---|---|---|---|
Very Major | Major | Minor | |
Benzyl penicillin | 0 | 0 | 0 |
Erythromycin | 0 | 0 | 0 |
Ciprofloxacin | 0 | 0 | 6 |
Teichoplanin | 0 | 1 | 5 |
Vancomycin | 0 | 0 | 0 |
Genotype | E. faecalis (n = 37) | E. faecium (n = 54) | ||||
---|---|---|---|---|---|---|
Phenotype | gelE + ve (n) | gelE + ve (%) | Total | gelE + ve (n) | gelE + ve (%) | Total |
Gelatinase + ve | 28 | 90 | 31 | 37 | 88 | 42 |
Gelatinase − ve | 0 | 0 | 6 | 0 | 0 | 12 |
Total | 28 | 90 | 37 | 37 | 88 | 54 |
Chi-square p < 0.0001 | Chi-square p < 0.0001 | |||||
Fisher’s exact test p < 0.0001 | Fisher’s exact test p < 0.0001 |
Genotype | E. faecalis (n = 37) | E. faecium (n = 54) | ||||
---|---|---|---|---|---|---|
Phenotype | sprE +ve (n) | sprE +ve (%) | Total | sprE +ve (n) | sprE +ve (%) | Total |
Protease + ve | 16 | 73 | 22 | 26 | 84 | 31 |
Protease − ve | 8 | 13 | 15 | 0 | 100 | 23 |
Total | 24 | 65 | 37 | 26 | 48 | 54 |
Chi-square p = 0.03884 | Chi-square p < 0.0001 | |||||
Fisher’s exact test p = 0.03003 | Fisher’s exact test p < 0.0001 |
Genotype | E. faecalis (n = 37) | E. faecium (n = 54) | ||||
---|---|---|---|---|---|---|
Phenotype | cylA + ve (n) | cylA + ve (%) | Total | cylA + ve | cylA + ve (%) | Total |
Hemolysis + ve | 23 | 70 | 33 | 28 | 93 | 30 |
Hemolysis − ve | 0 | 100 | 4 | 2 | 8 | 24 |
Total | 23 | 62 | 37 | 30 | 56 | 54 |
Chi-square p < 0.0001 | Chi-square p = 0.0301 | |||||
Fisher’s exact test p < 0.0001 | Fisher’s exact test p = 0.0152 |
Genotype | E. faecalis (n = 37) | E. faecium (n = 54) | ||||||
---|---|---|---|---|---|---|---|---|
Phenotype | gelE + ve (n) | gelE + ve (%) | sprE + ve (n) | sprE + ve (%) | gelE + ve (n) | gelE + ve (%) | sprE + ve (n) | sprE + ve (%) |
Strong | 17 | 46 | 15 | 41 | 11 | 20 | 9 | 17 |
Medium | 8 | 22 | 8 | 22 | 11 | 20 | 8 | 15 |
Weak | 2 | 5 | 0 | 0 | 7 | 13 | 3 | 6 |
Biofilm negative | 1 | 3 | 1 | 3 | 8 | 15 | 6 | 11 |
Chi-square p = 0.9388 | Chi-square p = 0.02 | Chi-square p = 0.3595 | Chi-square p = 0.7417 | |||||
Fisher’s exact test p = 0.3996 | Fisher’s exact test p = 0.01 | Fisher’s exact test p = 0.3029 | Fisher’s exact test p = 0.6750 |
Genotype | E. faecalis (n = 37) | E. faecium (n = 54) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenotype | esp + ve (n) | esp + ve (%) | ace + ve (n) | ace + ve (%) | asaI + ve (n) | asaI + ve (%) | esp + ve (n) | esp + ve (%) | ace + ve (n) | ace + ve (%) | asaI + ve (n) | asaI + ve (%) |
Strong | 15 | 41 | 17 | 46 | 17 | 46 | 15 | 28 | 14 | 1 | 1 | 2 |
Medium | 8 | 22 | 7 | 19 | 9 | 24 | 14 | 26 | 13 | 1 | 13 | 24 |
Weak | 0 | 0 | 1 | 3 | 1 | 3 | 5 | 2 | 4 | 4 | 4 | 7 |
Biofilm negative | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 18 | 33 | 18 | 1 | 2 |
Chi-square p = 0.02 | Chi-square p = 0.0215 | Chi-square p = 0.0450 | Chi-square p = 0.0411 | Chi-square p = 0.0084 | Chi-square p = 0.0428 | |||||||
Fisher’s exact test p = 0.01 | Fisher’s exact test p = 0.0129 | Fisher’s exact test p = 0.0365 | Fisher’s exact test p = 0.0333 | Fisher’s exact test p = 0.0076 | Fisher’s exact test p = 0.0404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doss Susai backiam, A.; Duraisamy, S.; Karuppaiya, P.; Balakrishnan, S.; Chandrasekaran, B.; Kumarasamy, A.; Raju, A. Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals. Antibiotics 2023, 12, 981. https://doi.org/10.3390/antibiotics12060981
Doss Susai backiam A, Duraisamy S, Karuppaiya P, Balakrishnan S, Chandrasekaran B, Kumarasamy A, Raju A. Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals. Antibiotics. 2023; 12(6):981. https://doi.org/10.3390/antibiotics12060981
Chicago/Turabian StyleDoss Susai backiam, Arockia, Senbagam Duraisamy, Palaniyandi Karuppaiya, Senthilkumar Balakrishnan, Balaji Chandrasekaran, Anbarasu Kumarasamy, and Amutha Raju. 2023. "Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals" Antibiotics 12, no. 6: 981. https://doi.org/10.3390/antibiotics12060981
APA StyleDoss Susai backiam, A., Duraisamy, S., Karuppaiya, P., Balakrishnan, S., Chandrasekaran, B., Kumarasamy, A., & Raju, A. (2023). Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals. Antibiotics, 12(6), 981. https://doi.org/10.3390/antibiotics12060981