In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chua, K.P.; Fischer, M.A.; Linder, J.A. Appropriateness of outpatient antibiotic prescribing among privately insured US patients: ICD-10-CM based cross sectional study. BMJ 2019, 364, k5092. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Saito, M.; Sato, J.; Goda, K.; Mitsutake, N.; Kitsuregawa, M.; Nalgai, R.; Hatakeyama, S. Indications and classes of outpatient antibiotic prescriptions in Japan: A descriptive study using the national database of electronic health insurance claims, 2012–2015. Int. J. Infect. Dis. 2020, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Cullen, I.M.; Manecksha, R.P.; McCullagh, E.; Ahmad, S.; O’kelly, F.; Flynn, R.; McDermott, T.E.D.; Murphy, P.; Grainger, R.; Fennell, J.P.; et al. An 11-year analysis of the prevalent uropathogens and the changing pattern of Escherichia coli antibiotic resistance in 38,530 community urinary tract infections, Dublin 1999–2009. Ir. J. Med. Sci. 2013, 182, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; McCarthy, N.; Paul, P.; McDonald, L.C.; Kallen, A.; et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N. Engl. J. Med. 2020, 382, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Jain, A.; Mendes, R.E. Resistance among urinary tract pathogens collected in Europe during 2018. J. Glob. Antimicrob. Resist. 2020, 23, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Scangarella-Oman, N.E.; Yu, K.; Ye, G.; Mitrani-Gold, F.S. Antimicrobial resistance trends in urine Escherichia coli isolates from adult and adolescent females in the United States from 2011 to 2019: Rising ESBL strains and impact on patient management. Clin. Infect. Dis. 2021, 73, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. Geneva. 2017. Available online: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (accessed on 4 May 2023).
- Macone, A.B.; Caruso, B.K.; Leahy, R.G.; Donatelli, J.; Weir, S.; Draper, M.P.; Tanaka, S.K.; Levy, S.B. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob. Agents Chemother. 2014, 58, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; et al. Omadacycline: A novel oral and intravenous aminomethylcycline antibiotic agent. Drugs 2020, 80, 285–313. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- USFaDARasticfo. Available online: https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria (accessed on 3 April 2020).
- Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis. 2001, 183 (Suppl. S1), S1–S4. [Google Scholar] [CrossRef]
- Raya, G.B.; Dhoubhadel, B.G.; Shrestha, D.; Raya, S.; Laghu, U.; Shah, A.; Raya, B.B.; Kafle, R.; Parry, C.M.; Ariyoshi, K. Multidrug-resistant and extended-spectrum beta-lactamase-producing uropathogens in children in Bhaktapur, Nepal. Trop. Med. Health 2020, 48, 65. [Google Scholar] [CrossRef]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Mendes, R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS ONE 2019, 14, e0220265. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Lin, H.C.; Lin, Y.C.; Yu, S.-H.; Wu, W.-H.; Lee, Y.-J. Antimicrobial susceptibilities of urinary extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J. Microbiol. Immunol. Infect. 2011, 44, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Overcash, J.S.; Tzanis, E.; Manley, A.; Sirbu, A.; Serio, A.W.; White, T.; Wright, K.; Chitra, S.; Eckburg, P.B. Omadacycline in female adults with cystitis: Results from a randomized, double-blinded, adaptive phase 2 study. In Proceedings of the ID Week 2020, Virtual Event, 21–25 October 2020. [Google Scholar]
- Overcash, J.S.; Tzanis, E.; Manley, A.; Sirbu, A.; Serio, A.W.; White, T.; Wright, K.; Chitra, S.; Eckburg, P.B. Omadacycline in female adults with acute pyelonephritis: Results from a randomized, double-blind, adaptive phase 2 study. In Proceedings of the ID Week 2020, Virtual Event, 21–25 October 2020. [Google Scholar]
- Pagano, P.; Marra, A.; Shinabarger, D.; Pillar, C. In vitro activity of omadacycline and levofloxacin against Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus in human urine supplemented with calcium and magnesium. J. Antimicrob. Chemother. 2020, 75, 2160–2163. [Google Scholar] [CrossRef] [PubMed]
- Huband, M.D.; Pfaller, M.A.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. J. Glob. Antimicrob. Resist. 2019, 19, 56–63. [Google Scholar] [CrossRef]
- Xiao, M.; Huang, J.J.; Zhang, G.; Yang, W.H.; Kong, F.; Kudinha, T.; Xu, Y.C. Antimicrobial activity of omadacycline in vitro against bacteria isolated from 2014 to 2017 in China, a multi-center study. BMC Microbiol. 2020, 20, 350. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Rhomberg, P.R.; Huband, M.D.; Flamm, R.K. Activity of omadacycline tested against Enterobacteriaceae causing urinary tract infections from a global surveillance program (2014). Diagn. Microbiol. Infect. Dis. 2018, 91, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Huband, M.D.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e02488-19. [Google Scholar] [CrossRef] [PubMed]
Microorganisms (n a) | Antibiotics | MIC µg/mL | S% | ||||
---|---|---|---|---|---|---|---|
MIC50 | MIC90 | Minimum MIC | Maximum MIC | Modal MIC | |||
All ESBL-producing isolates (102) | Omadacycline | 4 | >32 | 0.25 | >32 | 4 | 54.9 b |
Tetracycline | >8 | >8 | ≤4 | >8 | >8 | 26.1 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | ≤4/2 | >16/8 | 16/8 | 51.1 | |
Trimethoprim-sulfamethoxazole | >2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 19.6 | |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | 14.1 | |
Nitrofurantoin | ≤32 | >64 | ≤32 | >64 | ≤32 | 72.8 | |
All non-ESBL-producing isolates (102) | Omadacycline | 3 | 6 | 0.25 | >32 | 4 | 91.2 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 80.4 | |
Amoxicillin-clavulanate | ≤4/2 | 16/8 | ≤4/2 | >16/8 | ≤4/2 | 89.2 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 79.4 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 87.3 | |
Nitrofurantoin | ≤32 | 64 | ≤32 | >64 | ≤32 | 77.5 | |
ESBL-Producing E. coli (51) | Omadacycline | 4 | 16 | 0.25 | >32 | 4 | 74.5 b |
Tetracycline | >8 | >8 | ≤4 | >8 | >8 | 26.5 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | <4/2 | 16/8 | 16/8 | 63.3 | |
Trimethoprim-sulfamethoxazole | >2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 26.5 | |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | 10.2 | |
Nitrofurantoin | ≤32 | ≤32 | ≤32 | >64 | ≤32 | 91.8 | |
Non-ESBL-Producing E. coli (51) | Omadacycline | 2 | 4 | 1 | 8 | 3 | 100 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 72.6 | |
Amoxicillin-clavulanate | <4/2 | 16/8 | <4/2 | >16/8 | <4/2 | 86.3 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 78.4 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 82.4 | |
Nitrofurantoin | ≤32 | ≤32 | ≤32 | >64 | ≤32 | 94.1 | |
ESBL-Producing K. pneumoniae (51) | Omadacycline | 8 | >32 | 2 | >32 | 4 | 35.3 |
Tetracycline | ≤4 | >8 | >8 | >8 | >8 | 25.6 | |
Amoxicillin-clavulanate | <4/2 | >16/8 | <4/2 | >16/8 | 16/8 | 37.2 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 11.6 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | >2 | 18.6 | |
Nitrofurantoin | ≤32 | >64 | ≤32 | >64 | ≤32 | 51.2 | |
Non-ESBL-Producing K. pneumoniae (51) | Omadacycline | 4 | 8 | 2 | >32 | 4 | 82.3 |
Tetracycline | ≤4 | 8 | ≤4 | >8 | ≤4 | 86.3 | |
Amoxicillin-clavulanate | <4/2 | 8/4 | <4/2 | >16/8 | <4/2 | 92.2 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 80.4 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 92.2 | |
Nitrofurantoin | <32 | >64 | ≤32 | >64 | ≤32 | 60.8 | |
All E. coli (102) | Omadacycline | 4 | 8 | 0.25 | >32 | 4 | 87.3 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 47.3 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | <4/2 | >16/8 | <4/2 | 73.1 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 49.5 | |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | 45.2 | |
Nitrofurantoin | ≤32 | ≤32 | ≤32 | >64 | ≤32 | 92.5 | |
All K. pneumoniae (102) | Omadacycline | 4 | >32 | 1.5 | >32 | 4 | 61.8 |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 58.0 | |
Amoxicillin-clavulanate | <4/2 | >16/8 | <4/2 | >16/8 | <4/2 | 65.9 | |
Trimethoprim-sulfamethoxazole | >2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 45.5 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 55.7 | |
Nitrofurantoin | ≤32 | >64 | ≤32 | >64 | ≤32 | 55.7 | |
Total (204) | Omadacycline | 4 | 16 | 0.25 | >32 | 4 | 74.5 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 52.5 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | <4/2 | >16/8 | <4/2 | 69.6 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 47.5 | |
Ciprofloxacin | 2 | >2 | ≤1 | >2 | ≤1 | 50.3 | |
Nitrofurantoin | 64 | >64 | ≤32 | >64 | ≤32 | 74.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stone, T.J.; Kilic, A.; Williamson, J.C.; Palavecino, E.L. In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates. Antibiotics 2023, 12, 953. https://doi.org/10.3390/antibiotics12060953
Stone TJ, Kilic A, Williamson JC, Palavecino EL. In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates. Antibiotics. 2023; 12(6):953. https://doi.org/10.3390/antibiotics12060953
Chicago/Turabian StyleStone, Tyler J., Abdullah Kilic, John C. Williamson, and Elizabeth L. Palavecino. 2023. "In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates" Antibiotics 12, no. 6: 953. https://doi.org/10.3390/antibiotics12060953
APA StyleStone, T. J., Kilic, A., Williamson, J. C., & Palavecino, E. L. (2023). In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates. Antibiotics, 12(6), 953. https://doi.org/10.3390/antibiotics12060953