Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Differences and Trends Regarding the Prevalence of Uropathogens in Relation to the Patient’s Age
3.2. Evolution of the Resistance Patterns of Gram-Negative Uropathogens
3.3. Evolution of the Resistance Patterns of Gram-Positive Uropathogens
3.4. The Implications of the COVID-19 Pandemic on the AMR of Uropathogens
3.5. Limitations
4. Materials and Methods
4.1. Study Design and Setting
4.2. Study Population
4.3. Data and Sample Collection
4.4. Quantitative Urine Culture, Bacterial Identification, and Antibiotic Susceptibility Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Schappert, S.M.; Rechtsteiner, E.A. Ambulatory medical care utilization estimates for 2007. Vital Health Stat. 13 2011, 169, 1–38. [Google Scholar] [PubMed]
- Simmering, J.E.; Tang, F.; Cavanaugh, J.E.; Polgreen, L.A.; Polgreen, P.M. The increase in hospitalizations for urinary tract infections and the associated costs in the United States, 1998–2011. Open Forum Infect. Dis. 2017, 4, ofw281. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, G.V.; Babiker, A.; Master, R.N.; Luu, T.; Mathur, A.; Bordon, J. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob. Agents Chemother. 2016, 60, 2680–2683. [Google Scholar] [CrossRef]
- Mortazavi-Tabatabaei, S.A.R.; Ghaderkhani, J.; Nazari, A.; Sayehmiri, K.; Sayehmiri, F.; Pakzad, I. Pattern of antibacterial resistance in urinary tract infections: A systematic review and meta-analysis. Int. J. Prev. Med. 2019, 10, 169. [Google Scholar]
- Fihn, S.D. Clinical practice. Acute uncomplicated urinary tract infection in women. N. Engl. J. Med. 2003, 349, 259–266. [Google Scholar] [CrossRef]
- Griebling, T.L. Urologic diseases in America project: Trends in resource use for urinary tract infections in women. J. Urol. 2005, 173, 1281–1287. [Google Scholar] [CrossRef]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Ikäheimo, R.; Siitonen, A.; Heiskanen, T.; Kärkkäinen, U.; Kuosmanen, P.; Lipponen, P.; Mäkelä, P.H. Recurrence of urinary tract infection in a primary care setting: Analysis of a 1-year follow-up of 179 women. Clin. Infect. Dis. 1996, 22, 91–99. [Google Scholar] [CrossRef]
- Hooton, T.M. Clinical practice. Uncomplicated urinary tract infection. N. Engl. J. Med. 2012, 366, 1028–1037. [Google Scholar] [CrossRef]
- Beerepoot, M.A.; ter Riet, G.; Nys, S.; van der Wal, W.M.; de Borgie, C.A.; de Reijke, T.M.; Prins, J.M.; Koeijers, J.; Verbon, A.; Stobberingh, E.; et al. Lactobacilli vs antibiotics to prevent urinary tract infections: A randomized, double-blind, noninferiority trial in postmenopausal women. Arch. Intern. Med. 2012, 172, 704–712. [Google Scholar] [CrossRef]
- Pfau, A.; Sacks, T. The bacterial flora of the vaginal vestibule, urethra and vagina in premenopausal women with recurrent urinary tract infections. J. Urol. 1981, 126, 630–634. [Google Scholar] [CrossRef]
- Raz, R. Urinary tract infection in postmenopausal women. Korean J. Urol. 2011, 52, 801–808. [Google Scholar] [CrossRef]
- Petca, R.-C.; Negoita, S.; Mares, C.; Petca, A.; Popescu, R.-I.; Chibelean, C.B. Heterogeneity of antibiotics multidrug-resistance profile of uropathogens in Romanian population. Antibiotics 2021, 10, 523. [Google Scholar] [CrossRef]
- Bonkat, G.; Bartoletti, R.; Bruyere, F.; Cai, T.; Geerlings, S.E.; Köves, B.; Schubert, S.; Wagenlehner, F. EAU Guidelines on Urological Infections; European Association of Urology: Arnhem, The Netherlands, 2022. [Google Scholar]
- Chibelean, C.B.; Petca, R.-C.; Mareș, C.; Popescu, R.-I.; Enikő, B.; Mehedințu, C.; Petca, A. A clinical perspective on the antimicrobial resistance spectrum of uropathogens in a Romanian male population. Microorganisms 2020, 8, 848. [Google Scholar] [CrossRef]
- Petca, R.-C.; Mareș, C.; Petca, A.; Negoiță, S.; Popescu, R.-I.; Boț, M.; Barabás, E.; Chibelean, C.B. Spectrum and antibiotic resistance of uropathogens in Romanian females. Antibiotics 2020, 9, 472. [Google Scholar] [CrossRef]
- Mareș, C.; Petca, R.-C.; Petca, A.; Popescu, R.-I.; Jinga, V. Does the COVID pandemic modify the antibiotic resistance of uropathogens in female patients? A new storm? Antibiotics 2022, 11, 376. [Google Scholar] [CrossRef]
- Lee Ventola, C. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Rowe, T.A.; Juthani-Mehta, M. Urinary tract infection in older adults. Aging Health 2013, 9, 519–528. [Google Scholar] [CrossRef]
- Eriksson, I.; Gustafson, Y.; Fagerström, L.; Olofsson, B. Prevalence and factors associated with urinary tract infections (UTIs) in very old women. Arch. Gerontol. Geriatr. 2010, 50, 132–135. [Google Scholar] [CrossRef]
- Rodriguez-Mañas, L. Urinary tract infections in the elderly: A review of disease characteristics and current treatment options. Drugs Context 2020, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Caljouw, M.A.; den Elzen, W.P.; Cools, H.J.; Gussekloo, J. Predictive factors of urinary tract infections among the oldest old in the general population. A population-based prospective follow-up study. BMC Med. 2011, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Farewell, D.; Jones, H.M.; Francis, N.A.; Paranjothy, S.; Butler, C.C. Incidence and antibiotic prescribing for clinically diagnosed urinary tract infection in older adults in UK primary care, 2004–2014. PLoS ONE 2018, 13, e0190521. [Google Scholar] [CrossRef] [PubMed]
- Arsalane, L.; Kamouni, Y.; Yahyaoui, H.; Bennouar, N.; Berraha, M.; Zouhair, S. Profil actuel de résistance aux antibiotiques des souches d’Escherichia coli uropathogènes et conséquences thérapeutiques. Prog. Urol. 2014, 24, 1058–1062. [Google Scholar]
- Silva, A.; Costa, E.; Freitas, A.; Almeida, A. Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Antibiotics 2022, 11, 768. [Google Scholar] [CrossRef]
- Ramrakhia, S.; Raja, K.; Dev, K.; Kumar, A.; Kumar, V.; Kumar, B. Comparison of Incidence of Urinary Tract Infection in Diabetic vs Non-Diabetic and Associated Pathogens. Cureus 2020, 12, e10500. [Google Scholar] [CrossRef]
- Schito, G.C.; Naber, K.G.; Botto, H.; Palou, J.; Mazzei, T.; Gualco, L.; Marchese, A. The ARESC study: An international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int. J. Antimicrob. Agents 2009, 34, 407–413. [Google Scholar] [CrossRef]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification. Antibiotics 2021, 10, 1098. [Google Scholar] [CrossRef]
- Folliero, V.; Caputo, P.; Della Rocca, M.T.; Chianese, A.; Galdiero, M.; Iovene, M.R.; Hay, C.; Franci, G.; Galdiero, M. Prevalence and antimicrobial susceptibility patterns of bacterial pathogens in urinary tract infections in University Hospital of Campania “Luigi Vanvitelli” between 2017 and 2018. Antibiotics 2020, 9, 215. [Google Scholar] [CrossRef]
- Ismail, F.; Haq, S.; Aiayad, M.; Abushiba, M.; Zorgani, A. Antibiotic resistance patterns of urinary pathogens in outpatients and inpatients: A report from Eastern Libya. Int. J. Urol. Nurs. 2022, 16, 55–61. [Google Scholar] [CrossRef]
- Polse, R.F.; Qarani, S.M.; Assafi, M.S.; Sabaly, N.; Ali, F. Incidence and Antibiotic Sensitivity of Klebsiella pneumonia isolated from urinary tract infection patients in Zakho emergency hospital/Iraq. J. Educ. Sci. 2020, 29, 257–268. [Google Scholar] [CrossRef]
- Muhammad, A.; Khan, S.N.; Ali, N.; Rehman, M.U.; Ali, I. Prevalence and antibiotic susceptibility pattern of uropathogens in outpatients at a tertiary care hospital. New Microbes New Infect. 2020, 36, 100716. [Google Scholar] [CrossRef]
- Pandey, B.; Pandit, M.; Jaiswal, S.; Sah, A.K.; Chand, R.S.; Shrestha, R. Antimicrobial susceptibility pattern of pathogenic bacteria causing urinary tract infection in tertiary care hospital in Kathmandu, Nepal. Int. J. Pharm. Sci. Res. 2020, 11, 6448–6455. [Google Scholar] [CrossRef]
- Ballesteros-Monrreal, M.G.; Mendez-Pfeiffer, P.; Barrios-Villa, E.; Arenas-Hernández, M.M.P.; Enciso-Martínez, Y.; Sepúlveda-Moreno, C.O.; Bolado-Martínez, E.; Valencia, D. Uropathogenic Escherichia coli in Mexico, an overview of virulence and resistance determinants: Systematic review and meta-analysis. Arch. Med. Res. 2023, 54, 247–260. [Google Scholar] [CrossRef]
- Faine, B.A.; Rech, M.A.; Vakkalanka, P.; Gross, A.; Brown, C.; Harding, S.J.; Slocum, G.; Zimmerman, D.; Zepeski, A.; Rewitzer, S.; et al. High prevalence of fluoroquinolone-resistant UTI among US emergency department patients diagnosed with urinary tract infection, 2018–2020. Acad. Emerg. Med. 2022, 29, 1096–1105. [Google Scholar] [CrossRef]
- Ballén, V.; Gabasa, Y.; Ratia, C.; Ortega, R.; Tejero, M.; Soto, S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front. Cell. Infect. Microbiol. 2021, 11, 738223. [Google Scholar] [CrossRef]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021, 6, e00202-21. [Google Scholar] [CrossRef]
- Tabatabaei, A.; Ahmadi, K.; Shabestari, A.N.; Khosravi, N.; Badamchi, A. Virulence genes and antimicrobial resistance pattern in Proteus mirabilis strains isolated from patients attended with urinary infections to Tertiary Hospitals, in Iran. Afr. Health Sci. 2021, 21, 1677–1684. [Google Scholar] [CrossRef]
- Gajdács, M.; Bátori, Z.; Ábrók, M.; Lázár, A.; Burián, K. Characterization of resistance in Gram-negative urinary isolates using existing and novel indicators of clinical relevance: A 10-year data analysis. Life 2020, 10, 16. [Google Scholar] [CrossRef]
- Huang, L.; Huang, C.; Yan, Y.; Sun, L.; Li, H. Urinary tract infection etiological profiles and antibiotic resistance patterns varied among different age categories: A retrospective study from a tertiary general hospital during a 12-year period. Front. Microbiol. 2022, 12, 813145. [Google Scholar] [CrossRef]
- Kasew, D.; Desalegn, B.; Aynalem, M.; Tila, S.; Diriba, D.; Afework, B.; Getie, M.; Biset, S.; Baynes, H.W. Antimicrobial resistance trend of bacterial uropathogens at the university of Gondar comprehensive specialized hospital, northwest Ethiopia: A 10 years retrospective study. PLoS ONE 2022, 17, e0266878. [Google Scholar] [CrossRef] [PubMed]
- AL-Khikani, F.H.; Ayit, A.S. Pseudomonas Aeruginosa a tenacious uropathogen: Increasing challenges and few solutions. Biomed. Biotechnol. Res. J. 2022, 6, 311–318. [Google Scholar] [CrossRef]
- Kraszewska, Z.; Skowron, K.; Kwiecinska-Piróg, J.; Grudlewska-Buda, K.; Przekwas, J.; Wiktorczyk-Kapischke, N.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Antibiotic resistance of Enterococcus spp. isolated from the urine of patients hospitalized in the university hospital in North-Central Poland, 2016–2021. Antibiotics 2022, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Ferede, Z.T.; Tullu, K.D.; Derese, S.G.; Yeshanew, A.G. Prevalence and antimicrobial susceptibility pattern of Enterococcus species isolated from different clinical samples at Black Lion Specialized Teaching Hospital, Addis Ababa, Ethiopia. BMC Res. Notes 2018, 11, 793. [Google Scholar] [CrossRef]
- Khalil, M.A.; Alorabi, J.A.; Al-Otaibi, L.M.; Ali, S.S.; Elsilk, S.E. Antibiotic resistance and biofilm formation in Enterococcus spp. isolated from urinary tract infections. Pathogens 2023, 12, 34. [Google Scholar] [CrossRef]
- Silago, V.; Moremi, N.; Mtebe, M.; Komba, E.; Masoud, S.; Mgaya, F.X.; Mirambo, M.M.; Nyawale, H.A.; Mshana, S.E.; Matee, M.I. Multidrug-resistant uropathogens causing community acquired urinary tract infections among patients attending health facilities in Mwanza and Dar es Salaam, Tanzania. Antibiotics 2022, 11, 1718. [Google Scholar] [CrossRef]
- Joya, M.; Aalemi, A.K.; Baryali, A.T. Prevalence and antibiotic susceptibility of the common bacterial uropathogen among uti patients in French Medical Institute for Children. Infect. Drug Resist. 2022, 15, 4291–4297. [Google Scholar] [CrossRef]
- Looney, A.T.; Redmond, E.J.; Davey, N.M.; Daly, P.J.; Troy, C.; Carey, B.F.; Cullen, I.M. Methicillin-resistant Staphylococcus aureus as a uropathogen in an Irish setting. Medicine 2017, 96, e4635. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Stoichitoiu, L.E.; Pinte, L.; Ceasovschih, A.; Cernat, R.C.; Vlad, N.D.; Padureanu, V.; Sorodoc, L.; Hristea, A.; Purcarea, A.; Badea, C.; et al. In-Hospital antibiotic use for COVID-19: Facts and rationales assessed through a mixed-methods study. J. Clin. Med. 2022, 11, 3194. [Google Scholar] [CrossRef]
- Fukushige, M.; Ngo, N.H.; Lukmanto, D.; Fukuda, S.; Ohneda, O. Effect of the COVID-19 pandemic on antibiotic consumption: A systematic review comparing 2019 and 2020 data. Front. Public Health 2022, 10, 946077. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Philbin, M.; Hughes, G.; Bergin, C.; Fe Talento, A. Antimicrobial stewardship challenges and innovative initiatives in the acute hospital setting during the COVID-19 pandemic. J. Antimicrob. Chemother. 2021, 76, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Abdel Gawad, A.M.; Ashry, W.M.O.; El-Ghannam, S.; Hussein, M.; Yousef, A. Antibiotic resistance profile of common uropathogens during COVID-19 pandemic: Hospital based epidemiologic study. BMC Microbiol. 2023, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Khoshbakht, R.; Kabiri, M.; Neshani, A.; Khaksari, M.N.; Sadrzadeh, S.M.; Mousavi, S.M.; Ghazvini, K.; Ghavidel, M. Assessment of antibiotic resistance changes during the Covid-19 pandemic in northeast of Iran during 2020–2022: An epidemiological study. Antimicrob. Resist. Infect. Control 2022, 11, 121. [Google Scholar] [CrossRef]
- El Omari, L.; Sakhi, A.; Miloudi, M.; Elkamouni, Y.; Zouhair, S.; Arsalane, L. The impact of the COVID pandemic on the uropathogenic bacterial resistance profile: Experience of the bacteriology lab of the military hospital Avicenne in Marrakech. GSC Adv. Res. Rev. 2023, 14, 59–65. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Collection of Clinical Specimens during Field Investigation of Outbreaks; World Health Organization: Geneva, Switzerland, 2000; pp. 1–51. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Petca, R.C.; Popescu, R.I.; Mares, C.; Petca, A.; Mehedintu, C.; Sandu, I.; Maru, N. Antibiotic resistance profile of common uropathogens implicated in urinary tract infections in Romania. Farmacia 2019, 67, 994–1004. [Google Scholar] [CrossRef]
Isolated Bacteria | 19–29 Years | 30–44 Years | 45–59 Years | >60 Years | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2020 | 2022 | 2018 | 2020 | 2022 | 2018 | 2020 | 2022 | 2018 | 2020 | 2022 | ||
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Gram-negative | 24 (5.02) | 16 (5.77) | 13 (3.52) | 44 (9.2) | 36 (12.99) | 26 (7.04) | 64 (13.38) | 59 (21.29) | 69 (18.69) | 247 (51.67) | 132 (47.65) | 192 (52.03) | 922 (82.02) |
Escherichia coli | 23 (4.81) | 10 (3.61) | 8 (2.16) | 30 (6.27) | 25 (9.02) | 17 (4.6) | 45 (9.41) | 35 (12.63) | 44 (11.92) | 155 (32.42) | 85 (30.68) | 136 (36.85) | 613 (54.53) |
Klebsiella spp. | 0 | 3 (1.08) | 3 (0.81) | 10 (2.09) | 6 (2.16) | 8 (2.16) | 11 (2.3) | 14 (5.05) | 18 (4.87) | 57 (11.92) | 24 (8.66) | 32 (8.67) | 186 (16.54) |
Proteus spp. | 0 | 3 (1.08) | 2 (0.54) | 3 (0.62) | 5 (1.8) | 1 (0.27) | 7 (1.46) | 4 (1.44) | 4 (1.08) | 24 (5.02) | 14 (5.05) | 14 (3.79) | 81 (7.2) |
Pseudomonas spp. | 1 (0.2) | 0 | 0 | 1 (0.2) | 0 | 0 | 1 (0.2) | 6 (2.16) | 3 (0.81) | 11 (2.3) | 9 (3.24) | 10 (2.71) | 42 (3.73) |
Gram-positive | 5 (1.04) | 2 (7.22) | 7 (1.89) | 16 (3.34) | 4 (1.44) | 6 (1.62) | 21 (4.39) | 5 (1.8) | 17 (4.6) | 57 (11.92) | 23 (8.3) | 39 (10.56) | 202 (17.97) |
Enterococcus spp. | 5 (1.04) | 1 (0.36) | 5(1.35) | 12 (2.51) | 2 (0.72) | 3 (0.81) | 18 (3.76) | 5 (1.8) | 13 (3.52) | 49 (10.25) | 17 (6.13) | 34 (9.21) | 164 (14.59) |
Staphylococcus spp. | 0 | 1 (0.36) | 2 (0.54) | 4 (0.83) | 2 (0.72) | 3 (0.81) | 3 (0.62) | 0 | 4 (1.08) | 8 (1.67) | 6 (2.16) | 5 (1.35) | 38 (3.38) |
Total | 29 (6.06) | 18 (6.49) | 20 (5.42) | 60 (12.55) | 40 (14.44) | 32 (8.67) | 85 (17.78) | 64 (23.1) | 86 (23.3) | 304 (63.59) | 155 (55.95) | 231 (62.6) | 1124 |
Tested Antibiotics | 2018 | 2020 | 2022 | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | NA | S | R | NA | S | R | NA | S | R | NA | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Amikacin | 244 (96.44) | 9 (3.55) | – | 148 (95.48) | 3 (1.93) | 4 (2.58) | 152 (74.14) | 46 (22.43) | 7 (3.41) | 544 (88.74) | 58 (9.46) | 11 (1.79) |
Amoxicillin— Clavulanic ac. | 198 (78.26) | 54 (21.34) | 1 (0.39) | 107 (69.03) | 42 (27.09) | 6 (3.87) | 127 (61.95) | 76 (37.07) | 2 (0.97) | 432 (70.47) | 172 (28.05) | 9 (1.46) |
Ceftazidime | 232 (91.69) | 18 (7.11) | 3 (1.18) | 143 (92.25) | 12 (7.74) | – | 170 (82.92) | 35 (17.07) | – | 545 (88.9) | 65 (10.6) | 3 (4.89) |
Fosfomycin | 226 (89.23) | – | 27 (10.67) | 143 (92.25) | 1 (0.64) | 11 (7.09) | 201 (98.04) | – | 4 (1.95) | 570 (92.98) | 1 (0.16) | 42 (6.85) |
Imipenem | 249 (98.41) | – | 4 (1.58) | 148 (95.48) | 2 (1.29) | 5 (3.22) | 187 (91.21) | 1 (0.48) | 17 (8.29) | 584 (95.26) | 3 (0.48) | 26 (4.24) |
Levofloxacin | 176 (69.56) | 72 (28.45) | 5 (1.97) | 110 (70.96) | 43 (27.74) | 2 (1.29) | 131 (63.9) | 73 (35.6) | 1 (4.87) | 417 (68.02) | 188 (30.66) | 8 (1.3) |
Meropenem | 248 (98.02) | 1 (0.39) | 4 (1.58) | 151 (97.41) | – | 4 (2.58) | 155 (75.6) | – | 50 (24.93) | 554 (90.37) | 1 (0.16) | 58 (9.46) |
Nitrofurantoin | 148 (58.49) | 17 (6.71) | 88 (34.78) | 110 (70.96) | 9 (5.8) | 36 (23.22) | 150 (73.17) | – | 55 (26.82) | 408 (66.55) | 26 (4.24) | 179 (29.2) |
Tested Antibiotics | 2018 | 2020 | 2022 | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | NA | S | R | NA | S | R | NA | S | R | NA | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Amikacin | 71 (91.02) | 7 (8.97) | - | 42 (89.36) | 3 (6.38) | 2 (4.25) | 56 (91.8) | 5 (9.8) | - | 169 (90.86) | 15 (8.06) | 2 (1.07) |
Amoxicillin— Clavulanic ac. | 50 (4.1) | 27 (34.61) | 1 (1.28) | 25 (53.19) | 18 (38.29) | 4 (8.51) | 36 (59.01) | 23 (37.7) | 2 (3.27) | 111 (59.67) | 68 (36.55) | 7 (3.76) |
Ceftazidime | 60 (76.92) | 16 (20.51) | 2 (2.56) | 37 (78.72) | 9 (19.14) | 1 (2.12) | 50 (81.96) | 11 (18.03) | - | 147 (79.03) | 36 (19.35) | 3 (1.61) |
Imipenem | 72 (92.3) | 5 (6.41) | 1 (1.28) | 43 (91.8) | 1 (2.12) | 3 (6.38) | 55 (90.16) | 1 (1.63) | 5 (8.19) | 170 (91.39) | 7 (3.76) | 9 (4.83) |
Levofloxacin | 66 (84.61) | 11 (14.1) | 1 (1.28) | 30 (63.82) | 15 (31.91) | 2 (4.25) | 44 (72.13) | 16 (26.22) | 1 (1.63) | 140 (75.26) | 42 (22.58) | 4 (2.15) |
Meropenem | 72 (2.3) | 5 (6.41) | 1 (1.28) | 43 (91.48) | 1 (2.12) | 3 (6.38) | 50 (81.96) | 3 (4.91) | 8 (13.11) | 165 (88.7) | 9 (4.83) | 12 (6.45) |
Tested Antibiotics | 2018 | 2020 | 2022 | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | NA | S | R | NA | S | R | NA | S | R | NA | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Amikacin | 12 (85.71) | 2 (14.28) | - | 7 (46.66) | 7 (46.66) | 1 (0.66) | 8 (61.53) | 4 (30.76) | 1 (7.69) | 27 (64.28) | 13 (30.95) | 2 (4.76) |
Ceftazidime | 10 (71.42) | 3 (21.42) | 1 (7.14) | 4 (26.66) | 11 (73.33) | - | 7 (53.84) | 5 (38.46) | 1 (7.69) | 21 (50.0) | 19 (45.23) | 2 (4.76) |
Imipenem | 11 (78.57) | 2 (14.28) | 1 (7.14) | 4 (26.66) | 11 (73.33) | - | 8 (61.53) | 4 (30.76) | 1 (7.69) | 23 (54.76) | 17 (40.47) | 2 (4.76) |
Levofloxacin | 11 (78.57) | 3 (21.42) | - | 1 (0.66) | 14 (93.33) | - | 7 (53.84) | 6 (46.15) | - | 19 (45.23) | 23 (54.76) | - |
Meropenem | 11 (78.57) | 2 (14.28) | 1 (7.14) | 4 (26.66) | 10 (66.66) | 1 (0.66) | 9 (69.23) | 4 (30.76) | - | 24 (57.14) | 16 (38.09) | 2 (4.76) |
Tested Antibiotics | 2018 | 2020 | 2022 | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | NA | S | R | NA | S | R | NA | S | R | NA | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Amikacin | 30 (88.23) | 4 (11.76) | - | 23 (88.46) | 1 (3.84) | 2 (7.69) | 21 (100.0) | - | - | 74 (91.35) | 5 (6.17) | 2 (2.46) |
Amoxicillin— Clavulanic ac. | 20 (58.82) | 11 (32.35) | 3 (8.82%) | 11 (24.3) | 8 (30.76) | 7 (26.92) | 15 (71.42) | 6 (28.57) | - | 46 (56.79) | 25 (30.86) | 10 (12.34) |
Ceftazidime | 29 (85.29) | 5 (14.7) | - | 25 (96.15) | 1 (3.84) | - | 20 (95.43) | 1 (4.76) | - | 74 (91.35) | 7 (8.64) | - |
Imipenem | 33 (97.05) | - | 1 (2.94%) | 20 (76.92) | 4 (15.38) | 2 (7.69) | 19 (90.47) | - | 2 (9.52) | 72 (88.88) | 4 (4.93) | 5 (6.17) |
Levofloxacin | 21 (61.76) | 11 (32.35) | 2 (5.88%) | 17 (65.38) | 9 (34.61) | - | 11 (52.38) | 10 (47.61) | - | 49 (60.49) | 30 (37.03) | 2 (2.46) |
Meropenem | 31 (91.17) | 1 (2.94) | 2 (5.88) | 24 (92.3) | 1 (3.84) | 1 (3.84) | 16 (76.19) | - | 5 (23.8) | 71 (87.65) | 2 (2.46) | 8 (9.87) |
Tested Antibiotics | 2018 | 2020 | 2022 | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | NA | S | R | NA | S | R | NA | S | R | NA | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Ampicillin | 60 (71.42) | 17 (20.23) | 7 (8.33) | 15 (60.0) | 8 (32.0) | 2 (8.0) | 48 (87.27) | 6 (10.9) | 1 (1.81) | 123 (75.0) | 31 (18.9) | 10 (6.09) |
Fosfomycin | 78 (92.85) | 1 (1.19) | 5 (5.95) | 22 (88.0) | 2 (8.0) | 1 (4.0) | 53 (96.36) | 2 (3.63) | - | 153 (93.29) | 5 (3.04) | 6 (3.65) |
Levofloxacin | 51 (60.71) | 32 (38.09) | 1 (1.19) | 8 (32.0) | 14 (56.0) | 3 (12.0) | 25 (45.45) | 29 (52.72) | 1 (1.81) | 84 (51.21) | 75 (45.73) | 5 (3.04) |
Linezolid | 77 (91.66) | - | 7 (8.33) | 24 (96.0) | - | 1 (4.0) | 54 (98.18) | - | 1 (1.81) | 155 (94.51) | - | 9 (5.48) |
Nitrofurantoin | 76 (90.47) | 3 (3.57) | 5 (5.95) | 24 (96.0) | 1 (4.0) | - | 47 (85.45) | 6 (10.9) | 2 (3.63) | 147 (89.63) | 10 (6.09) | 7 (4.26) |
Penicillin | 46 (54.76) | 29 (34.52) | 9 (10.71) | 14 (56.0) | 10 (40.0) | 1 (4.0) | 38 (69.09) | 17 (30.9) | - | 98 (59.75) | 56 (34.14) | 10 (6.09) |
Vancomycin | 79 (94.04) | - | 5 (5.95) | 25 (100.0) | - | - | 49 (89.09) | 5 (9.09) | 1 (1.81) | 153 (93.29) | 5 (3.04) | 6 (3.65) |
Tested Antibiotics | 2018 | 2020 | 2022 | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | NA | S | R | NA | S | R | NA | S | R | NA | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Trimethoprim— Sulfamethoxazole | 9 (60.0) | 4 (26.66) | 2 (13.33) | 8 (88.88) | 1 (11.11) | - | 10 (71.42) | 3 (21.42) | 1 (7.14) | 27 (71.05) | 8 (21.05) | 3 (7.89) |
Levofloxacin | 11 (73.33) | 2 (13.33) | 2 (13.33) | 6 (66.66) | 3 (33.33) | - | 12 (85.71) | 2 (14.28) | - | 29 (76.31) | 7 (18.42) | 2 (5.26) |
Linezolid | 12 (80.0) | 2 (13.3) | 1 (6.66) | 8 (88.88) | - | 1 (11.11) | 14 (100.0) | - | - | 34 (89.47) | 2 (5.26) | 2 (5.26) |
Nitrofurantoin | 13 (86.66) | - | 2 (13.33) | 7 (77.77) | - | 2 (22.22) | 8 (57.14) | 1 (7.14) | 5 (35.71) | 28 (73.68) | 1 (2.63) | 9 (23.68) |
Penicillin | 8 (53.33) | 7 (46.66) | - | 5 (55.55) | 4 (44.44) | - | 4 (28.57) | 9 (64.28) | 1 (7.14) | 17 (44.73) | 20 (52.63) | 1 (2.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mareș, C.; Petca, R.-C.; Popescu, R.-I.; Petca, A.; Geavlete, B.F.; Jinga, V. Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis. Antibiotics 2023, 12, 948. https://doi.org/10.3390/antibiotics12060948
Mareș C, Petca R-C, Popescu R-I, Petca A, Geavlete BF, Jinga V. Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis. Antibiotics. 2023; 12(6):948. https://doi.org/10.3390/antibiotics12060948
Chicago/Turabian StyleMareș, Cristian, Răzvan-Cosmin Petca, Răzvan-Ionuț Popescu, Aida Petca, Bogdan Florin Geavlete, and Viorel Jinga. 2023. "Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis" Antibiotics 12, no. 6: 948. https://doi.org/10.3390/antibiotics12060948
APA StyleMareș, C., Petca, R. -C., Popescu, R. -I., Petca, A., Geavlete, B. F., & Jinga, V. (2023). Uropathogens’ Antibiotic Resistance Evolution in a Female Population: A Sequential Multi-Year Comparative Analysis. Antibiotics, 12(6), 948. https://doi.org/10.3390/antibiotics12060948