Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Data Collection
2.3. Definitions
2.4. Procedures and Antimicrobial Treatment
2.5. Microbiological Identification and Susceptibility Testing
2.6. Study Outcomes
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Patients Stratified by Primary Outcome
3.2. Characteristics and Outcomes of Patients Stratified by First-Line Antibiotic Regimen
3.3. Independent Predictors of Clinical Failure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Cai, B.; Echols, R.; Magee, G.; Arjona Ferreira, J.C.; Morgan, G.; Ariyasu, M.; Sawada, T.; Nagata, T.D. Prevalence of Carbapenem-Resistant Gram-Negative Infections in the United States Predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2017, 4, ofx176. [Google Scholar] [CrossRef] [Green Version]
- Segala, F.V.; Bavaro, D.F.; Di Gennaro, F.; Salvati, F.; Marotta, C.; Saracino, A.; Murri, R.; Fantoni, M. Impact of SARS-CoV-2 Epidemic on Antimicrobial Resistance: A Literature Review. Viruses 2021, 13, 2110. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit. Care 2016, 20, 22. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC-Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- versus colistin-containing regimen for treatment of bacteremic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in COVID-19 patients. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0. 2023. Available online: http://www.eucast.org (accessed on 25 April 2023).
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111, Erratum in Clin. Infect. Dis. 2017, 64, 1298; Erratum in Clin. Infect. Dis. 2017, 65, 1435; Erratum in Clin. Infect. Dis. 2017, 65, 2161. [Google Scholar] [CrossRef] [Green Version]
- CDC/NHSN Surveillance Definitions for Ventilator-Associated Events (VAE). Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/10-vae_final.pdf (accessed on 31 January 2023).
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [Green Version]
- Bilbao-Meseguer, I.; Rodríguez-Gascón, A.; Barrasa, H.; Isla, A.; Solinís, M.Á. Augmented Renal Clearance in Critically Ill Patients: A Systematic Review. Clin. Pharmacokinet. 2018, 57, 1107–1121. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- De Backer, D.; Cecconi, M.; Chew, M.S.; Hajjar, L.; Monnet, X.; Ospina-Tascón, G.A.; Ostermann, M.; Pinsky, M.R.; Vincent, J.L. A plea for personalization of the hemodynamic management of septic shock. Crit. Care 2022, 26, 372. [Google Scholar] [CrossRef]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. An Evidence-Based Multidisciplinary Approach Focused on Creating Algorithms for Targeted Therapy of Infection-Related Ventilator-Associated Complications (IVACs) Caused by Pseudomonas aeruginosa and Acinetobacter baumannii in Critically Ill Adult Patients. Antibiotics 2022, 11, 33. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [CrossRef] [Green Version]
- Dalfino, L.; Puntillo, F.; Ondok, M.J.; Mosca, A.; Monno, R.; Coppolecchia, S.; Spada, M.L.; Bruno, F.; Brienza, N. Colistin-associated Acute Kidney Injury in Severely Ill Patients: A Step Toward a Better Renal Care? A Prospective Cohort Study. Clin. Infect. Dis. 2015, 61, 1771–1777. [Google Scholar] [CrossRef]
- Fectroja, INN-Cefiderocol–European Medicine Agency. Available online: https://www.ema.europa.eu/en/documents/product-information/fetcroja-epar-product-information_en.pdf (accessed on 20 January 2023).
- Loeuille, G.; Vigneron, J.; D’Huart, E.; Charmillon, A.; Demoré, B. Physicochemical stability of cefiderocol, a novel siderophore cephalosporin, in syringes at 62.5 mg/mL for continuous administration in intensive care units. Eur. J. Hosp. Pharm. 2023, 30, e29–e34. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute Disease Quality Initiative Workgroup 16.: Acute kidney disease and renal recovery: Consensus report of the acute disease quality initiative (ADQI) 16 workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrmann, S.; Luyt, C.E. Optimizing aerosol delivery of antibiotics in ventilated patients. Curr. Opin. Infect. Dis. 2020, 33, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/Colistin_guidance_2022.pdf (accessed on 20 January 2023).
- Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Cefiderocol_Rationale_Document_1.1_20220411.pdf (accessed on 15 January 2023).
- Amoah, J.; Stuart, E.A.; Cosgrove, S.E.; Harris, A.D.; Han, J.H.; Lautenbach, E.; Tamma, P.D. Comparing Propensity Score Methods Versus Traditional Regression Analysis for the Evaluation of Observational Data: A Case Study Evaluating the Treatment of Gram-Negative Bloodstream Infections. Clin. Infect. Dis. 2020, 71, e497–e505. [Google Scholar] [CrossRef]
- Eikenboom, A.M.; Le Cessie, S.; Waernbaum, I.; Groenwold, R.H.H.; de Boer, M.G.J. Quality of Conduct and Reporting of Propensity Score Methods in Studies Investigating the Effectiveness of Antimicrobial Therapy. Open Forum Infect. Dis. 2022, 9, ofac110. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.F.; Armand-Lefevre, L. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. Crit. Care 2020, 24, 366. [Google Scholar] [CrossRef]
- Drwiega, E.N.; Rodvold, K.A. Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update. Clin. Pharmacokinet. 2022, 61, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Bidell, M.R.; Gandhi, R.G.; Alshehri, S.; Enani, M.A.; Al-Jedai, A.; Lee, T.C. Colistin Nephrotoxicity: Meta-Analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2021, 8, ofab026. [Google Scholar] [CrossRef]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 2013, 141, 1214–1222. [Google Scholar] [CrossRef]
- Candel, F.J.; Santerre Henriksen, A.; Longshaw, C.; Yamano, Y.; Oliver, A. In vitro activity of the novel siderophore cephalosporin, cefiderocol, in Gram-negative pathogens in Europe by site of infection. Clin. Microbiol. Infect. 2022, 28, 447.e1–447.e6. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T.; Nicolau, D.P. Intrapulmonary Pharmacokinetic Modeling and Simulation of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia and Healthy Subjects. J. Clin. Pharmacol. 2022, 62, 670–680. [Google Scholar] [CrossRef]
- Katsube, T.; Nicolau, D.P.; Rodvold, K.A.; Wunderink, R.G.; Echols, R.; Matsunaga, Y.; Menon, A.; Portsmouth, S.; Wajima, T. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J. Antimicrob. Chemother. 2021, 76, 2902–2905, Erratum in J. Antimicrob. Chemother. 2021, 76, 3069. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- François, B.; Laterre, P.F.; Luyt, C.E.; Chastre, J. The challenge of ventilator-associated pneumonia diagnosis in COVID-19 patients. Crit. Care 2020, 24, 289. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Kritsotakis, E.I. Systematic review and meta-analysis of the proportion and associated mortality of polymicrobial (vs monomicrobial) pulmonary and bloodstream infections by Acinetobacter baumannii complex. Infection 2021, 49, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, M.H.; Maranchick, N.; Bai, C.; Maguigan, K.L.; Shoulders, B.; Felton, T.W.; Mathew, S.K.; Mardini, M.T.; Peloquin, C.A. Using Machine Learning To Define the Impact of Beta-Lactam Early and Cumulative Target Attainment on Outcomes in Intensive Care Unit Patients with Hospital-Acquired and Ventilator-Associated Pneumonia. Antimicrob. Agents Chemother. 2022, 66, e0056322. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.J.; Miller, B.W.; Huntington, J.A.; Nicolau, D.P. Ceftolozane/Tazobactam Pharmacokinetic/Pharmacodynamic-Derived Dose Justification for Phase 3 Studies in Patients With Nosocomial Pneumonia. J. Clin. Pharmacol. 2016, 56, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A descriptive case series of pharmacokinetic/pharmacodynamic target attainment and microbiological outcome in critically ill patients with documented severe extensively drug-resistant Acinetobacter baumannii bloodstream infection and/or ventilator-associated pneumonia treated with cefiderocol. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar] [CrossRef]
- De Waele, J.J.; Lipman, J.; Akova, M.; Bassetti, M.; Dimopoulos, G.; Kaukonen, M.; Koulenti, D.; Martin, C.; Montravers, P.; Rello, J.; et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med. 2014, 40, 1340–1351. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Falagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Crass, R.L.; Rodvold, K.A.; Mueller, B.A.; Pai, M.P. Renal dosing of antibiotics: Are we jumping the gun? Clin. Infect. Dis. 2019, 68, 1596–1602. [Google Scholar] [CrossRef]
- McGovern, P.C.; Wible, M.; El-Tahtawy, A.; Biswas, P.; Meyer, R.D. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int. J. Antimicrob. Agents 2013, 41, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Brienza, N.; Giglio, M.T.; Dalfino, L. Protocoled resuscitation and the prevention of acute kidney injury. Curr. Opin. Crit. Care 2012, 18, 613–622. [Google Scholar] [CrossRef] [PubMed]
Clinical Resolution (n = 56) | Clinical Failure (n = 34) | |
---|---|---|
Age (years) | 62 (52–69) | 71 (64–78) * |
Male sex | 38 (68) | 16 (47) |
Surgical admission | 30 (54) | 18 (53) |
Immunodepression | 12 (21) | 15 (44) * |
Charlson comorbidity index | 4 (2–6) | 8 (6–8) * |
Main comorbidities | ||
Diabetes mellitus | 8 (14) | 17 (50) * |
Cardiovascular disease | 13 (23) | 18 (53) * |
Chronic respiratory disease | 6 (11) | 15 (44) * |
Chronic kidney disease | 4 (7) | 6 (18) |
Chronic liver disease | 2 (4) | 3 (9) |
Solid cancer | 6 (11) | 5 (15) |
Active hematologic malignancies | 2 (4) | 5 (15) |
Solid organ transplantation | 3 (5) | 6 (18) |
Obesity (BMI > 30 kg/m2) | 5 (9) | 4 (12) |
APACHE II score upon ICU admission | 22 (20–25) | 23 (20–25) |
VAP onset from ICU admission (days) | 8 (6–11) | 9 (7–11) |
SOFA score at VAP onset | 9 (7–11) | 10 (9–11) * |
Oxygenation at VAP onset | ||
PaO2 to FiO2 ratio >200 | 9 (16) | 4 (12) |
PaO2 to FiO2 ratio >100 and <200 | 41 (73) | 26 (76) |
PaO2 to FiO2 ratio <100 | 6 (11) | 4 (12) |
Infection severity at VAP onset | ||
Uncomplicated infection | 13 (23) | 2 (6) * |
Sepsis | 19 (34) | 10 (29) |
Septic shock | 25 (45) | 22 (65) |
Bacteraemic VAP | 15 (26.8) | 14 (41.2) |
Augmented renal clearance | 10 (18) | 5 (15) |
CRRT | 8 (14) | 8 (24) |
vv-ECMO | 3 (5) | 1 (3) |
Known respiratory CRAB colonization | 34 (61) | 18 (53) |
Fast molecular diagnostics at VAP onset | 17 (30.3) | 3 (8.8) * |
Timely (≤24 h) targeted therapy | 50 (89) | 22 (65) * |
Cefiderocol-based regimens | 30 (54) | 10 (29) * |
Cefiderocol–inhaled colistin | 10 (17.8) | 9 (26.5) |
Cefiderocol–fosfomycin–inhaled colistin | 20 (35.7) | 1 (3) * |
Colistin-based regimens | 26 (46) | 24 (71) * |
Colistin–tigecycline–inhaled colistin | 11 (20) | 16 (47) * |
Colistin–ampicillin/sulbactam–inhaled colistin | 8 (14) | 7 (21) |
Colistin–meropenem–inhaled colistin | 7 (13) | 1 (3) |
14-day mortality | 0 (0) | 14 (41) * |
28-day mortality | 12 (21) | 24 (71) * |
ICU length of stay (days) | 24 (21–28) | 21 (17–25) * |
Cefiderocol Group (n = 40) | Colistin Group (n = 50) | |
---|---|---|
Age (years) | 67 (59–72) | 64 (55–76) |
Male gender | 35 (86) | 19 (38) * |
Surgical admission | 20 (50) | 28 (56) |
Immunosuppression | 13 (33) | 14 (28) |
Charlson Comorbidity Index | 5 (2–6) | 7 (2–8) |
Comorbidities | ||
Diabetes mellitus | 7 (18) | 18 (36) |
Cardiovascular disease | 12 (30) | 19 (50) |
Chronic respiratory disease | 6 (15) | 15 (30) |
Chronic kidney disease | 3 (8) | 7 (14) |
Chronic liver disease | 1 (3) | 1 (2) |
Solid cancer | 5 (13) | 6 (12) |
Active hematologic malignancies | 3 (8) | 4 (8) |
Solid organ transplantation | 4 (10) | 5 (10) |
Obesity (BMI > 30 kg/m2) | 4 (10) | 5 (10) |
APACHE II score on ICU admission | 24 (22–29) | 22 (20–24) * |
VAP onset from ICU admission (days) | 8 (6–12) | 9 (7–10) |
SOFA score at VAP onset | 9 (8–12) | 9 (8–11) |
Oxygenation at VAP onset | ||
PaO2 to FiO2 ratio >200 | 6 (15) | 7 (14) |
PaO2 to FiO2 ratio >100 and <200 | 27 (68) | 40 (80) |
PaO2 to FiO2 ratio <100 | 7 (18) | 3 (6) |
Infection severity at VAP onset | ||
Uncomplicated infection | 9 (23) | 6 (12) |
Sepsis | 10 (25) | 18 (36) |
Septic shock | 21 (53) | 26 (52) |
Bacteraemic VAP | 13 (33) | 16 (32) |
Augmented renal clearance | 8 (20) | 7 (14) |
Acute kidney injury at VAP onset # | 7 (19) | 12 (33) |
De novo acute kidney injury § | 13 (45) | 17 (47) |
CRRT | 7 (18) | 9 (18) |
vv-ECMO | 3 (8) | 1 (2) |
Known respiratory CRAB colonization | 22 (55) | 30 (60) |
Fast molecular diagnostics at VAP onset | 8 (20) | 12 (24) |
Timely (<24 h) targeted therapy | 30 (75) | 42 (84) |
Antibiotic therapy duration (days) | 13 (10–15) | 12 (10–14) |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
aHR | 95% CI | p-Value | aHR | 95% CI | p-Value | |
Immunodepression | 1.97 | 0.98–3.83 | 0.06 | 1.56 | 0.76–3.19 | 0.23 |
Charlson comorbidity index | 1.28 | 1.12–1.47 | <0.0001 | 1.21 | 1.04–1.42 | 0.01 |
SOFA score | 1.15 | 1.02–1.30 | 0.02 | 1.07 | 0.92–1.25 | 0.35 |
Septic shock | 1.91 | 0.93–3.87 | 0.07 | 1.52 | 0.69–3.33 | 0.29 |
Bacteremic VAP | 1.46 | 0.74–2.90 | 0.28 | / | ||
Augmented renal clearance | 1.07 | 0.41–2.76 | 0.41 | / | ||
CRRT | 1.10 | 0.50–2.47 | 0.81 | / | ||
Timely targeted therapy | 0.44 | 0.22–0.90 | 0.02 | 0.40 | 0.19–0.84 | 0.01 |
Cefiderocol-based first-line regimens | 0.37 | 0.17–0.79 | 0.01 | 0.38 | 0.17–0.85 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalfino, L.; Stufano, M.; Bavaro, D.F.; Diella, L.; Belati, A.; Stolfa, S.; Romanelli, F.; Ronga, L.; Di Mussi, R.; Murgolo, F.; et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics 2023, 12, 1048. https://doi.org/10.3390/antibiotics12061048
Dalfino L, Stufano M, Bavaro DF, Diella L, Belati A, Stolfa S, Romanelli F, Ronga L, Di Mussi R, Murgolo F, et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics. 2023; 12(6):1048. https://doi.org/10.3390/antibiotics12061048
Chicago/Turabian StyleDalfino, Lidia, Monica Stufano, Davide Fiore Bavaro, Lucia Diella, Alessandra Belati, Stefania Stolfa, Federica Romanelli, Luigi Ronga, Rosa Di Mussi, Francesco Murgolo, and et al. 2023. "Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study" Antibiotics 12, no. 6: 1048. https://doi.org/10.3390/antibiotics12061048
APA StyleDalfino, L., Stufano, M., Bavaro, D. F., Diella, L., Belati, A., Stolfa, S., Romanelli, F., Ronga, L., Di Mussi, R., Murgolo, F., Loconsole, D., Chironna, M., Mosca, A., Montagna, M. T., Saracino, A., & Grasso, S. (2023). Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics, 12(6), 1048. https://doi.org/10.3390/antibiotics12061048