Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain)
Abstract
:1. Introduction
2. Results
2.1. Quality of Sequencing Reads, Genome Assembly, and Annotation
2.2. Comparison between Phenotypic and In Silico Typing
2.3. Core Genome and Phylogenetic Analysis
2.4. Antimicrobial Resistance Analysis
2.5. Cluster Definitions and Epidemiological Investigations
3. Discussion
4. Materials and Methods
4.1. Sample Selection
4.2. Whole-Genome Sequencing and Gene Annotation
4.3. In Silico Isolate Characterization: Serotypes, STs, and AMR
4.4. Core Genome and Evolutionary Analysis
4.5. Cluster Definition and Epidemiological Investigation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grimont, P.A.D.; Weill, F.-X. Others Antigenic Formulae of the Salmonella Serovars. WHO Collab. Cent. Ref. Res. Salmonella 2007, 9, 1–166. [Google Scholar]
- Alikhan, N.-F.; Zhou, Z.; Sergeant, M.J.; Achtman, M. A Genomic Overview of the Population Structure of Salmonella. PLoS Genet. 2018, 14, e1007261. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Paul, S.; Kisiela, D.I.; Linardopoulou, E.V.; Sokurenko, E.V. Convergent Molecular Evolution of Genomic Cores in Salmonella enterica and Escherichia coli. J. Bacteriol. 2012, 194, 5002–5011. [Google Scholar] [CrossRef]
- Ibrahim, G.M.; Morin, P.M. Salmonella Serotyping Using Whole Genome Sequencing. Front. Microbiol. 2018, 9, 2993. [Google Scholar] [CrossRef] [PubMed]
- Wattiau, P.; Boland, C.; Bertrand, S. Methodologies for Salmonella enterica Subsp. enterica Subtyping: Gold Standards and Alternatives. Appl. Environ. Microbiol. 2011, 77, 7877–7885. [Google Scholar] [CrossRef]
- Achtman, M.; Wain, J.; Weill, F.-X.; Nair, S.; Zhou, Z.; Sangal, V.; Krauland, M.G.; Hale, J.L.; Harbottle, H.; Uesbeck, A.; et al. Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica. PLoS Pathog. 2012, 8, e1002776. [Google Scholar] [CrossRef]
- Mather, A.E.; Reid, S.W.J.; Maskell, D.J.; Parkhill, J.; Fookes, M.C.; Harris, S.R.; Brown, D.J.; Coia, J.E.; Mulvey, M.R.; Gilmour, M.W.; et al. Distinguishable Epidemics of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts. Science 2013, 341, 1514–1517. [Google Scholar] [CrossRef]
- Scaltriti, E.; Sassera, D.; Comandatore, F.; Morganti, M.; Mandalari, C.; Gaiarsa, S.; Bandi, C.; Zehender, G.; Bolzoni, L.; Casadei, G.; et al. Differential Single Nucleotide Polymorphism-Based Analysis of an Outbreak Caused by Salmonella enterica Serovar Manhattan Reveals Epidemiological Details Missed by Standard Pulsed-Field Gel Electrophoresis. J. Clin. Microbiol. 2015, 53, 1227–1238. [Google Scholar] [CrossRef]
- Taylor, A.J.; Lappi, V.; Wolfgang, W.J.; Lapierre, P.; Palumbo, M.J.; Medus, C.; Boxrud, D. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection. J. Clin. Microbiol. 2015, 53, 3334–3340. [Google Scholar] [CrossRef]
- Imanian, B.; Donaghy, J.; Jackson, T.; Gummalla, S.; Ganesan, B.; Baker, R.C.; Henderson, M.; Butler, E.K.; Hong, Y.; Ring, B.; et al. The Power, Potential, Benefits, and Challenges of Implementing High-Throughput Sequencing in Food Safety Systems. NPJ Sci. Food 2022, 6, 35. [Google Scholar] [CrossRef]
- Yachison, C.A.; Yoshida, C.; Robertson, J.; Nash, J.H.E.; Kruczkiewicz, P.; Taboada, E.N.; Walker, M.; Reimer, A.; Christianson, S.; Nichani, A.; et al. The Validation and Implications of Using Whole Genome Sequencing as a Replacement for Traditional Serotyping for a National Salmonella Reference Laboratory. Front. Microbiol. 2017, 8, 1044. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Simon, S.; Tille, A.; Fruth, A.; Flieger, A. Genome-Based Salmonella Serotyping as the New Gold Standard. Sci. Rep. 2020, 10, 4333. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Whole Genome Sequencing and Metagenomics for Outbreak Investigation, Source Attribution and Risk Assessment of Food-Borne Microorganisms. EFSA J. 2019, 17, e05898. [Google Scholar] [PubMed]
- Tewolde, R.; Dallman, T.; Schaefer, U.; Sheppard, C.L.; Ashton, P.; Pichon, B.; Ellington, M.; Swift, C.; Green, J.; Underwood, A. MOST: A Modified MLST Typing Tool Based on Short Read Sequencing. PeerJ 2016, 4, e2308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; den Bakker, H.C.; Li, S.; Chen, J.; Dinsmore, B.A.; Lane, C.; Lauer, A.C.; Fields, P.I.; Deng, X. SeqSero2: Rapid and Improved Salmonella Serotype Determination Using Whole-Genome Sequencing Data. Appl. Environ. Microbiol. 2019, 85, e01746-19. [Google Scholar] [CrossRef]
- Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.J.; Nash, J.H.E.; Taboada, E.N. The Salmonella in Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef] [PubMed]
- Rounds, J.M.; Taylor, A.J.; Eikmeier, D.; Nichols, M.M.; Lappi, V.; Wirth, S.E.; Boxrud, D.J.; Smith, K.E.; Medus, C. Prospective Salmonella Enteritidis Surveillance and Outbreak Detection Using Whole Genome Sequencing, Minnesota 2015–2017. Epidemiol. Infect. 2020, 148, e254. [Google Scholar] [CrossRef]
- Ford, L.; Carter, G.P.; Wang, Q.; Seemann, T.; Sintchenko, V.; Glass, K.; Williamson, D.A.; Howard, P.; Valcanis, M.; Castillo, C.F.S.; et al. Incorporating Whole-Genome Sequencing into Public Health Surveillance: Lessons from Prospective Sequencing of Salmonella typhimurium in Australia. Foodborne Pathog. Dis. 2018, 15, 161–167. [Google Scholar] [CrossRef]
- Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_R7-en.pdf (accessed on 6 April 2023).
- Foodborne Antimicrobial Resistance; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2022; ISBN 978925135734.
- Available online: https://www.ecdc.europa.eu/sites/default/files/documents/framework-for-genomic-surveillance.pdf (accessed on 6 April 2023).
- World Health Organization. GLASS Whole-Genome Sequencing for Surveillance of Antimicrobial Resistance. Available online: https://apps.who.int/iris/bitstream/handle/10665/334354/9789240011007-eng.pdf (accessed on 6 April 2023).
- Mancilla-Becerra, L.M.; Lías-Macías, T.; Ramírez-Jiménez, C.L.; Barba León, J. Multidrug-Resistant Bacterial Foodborne Pathogens: Impact on Human Health and Economy. In Pathogenic Bacteria; IntechOpen: London, UK, 2020; ISBN 9781789859874. [Google Scholar]
- Doyle, M.E. Multidrug-Resistant Pathogens in the Food Supply. Foodborne Pathog. Dis. 2015, 12, 261–279. [Google Scholar] [CrossRef]
- Caniça, M.; Manageiro, V.; Abriouel, H.; Moran-Gilad, J.; Franz, C.M.A.P. Antibiotic Resistance in Foodborne Bacteria. Trends Food Sci. Technol. 2019, 84, 41–44. [Google Scholar] [CrossRef]
- Pightling, A.W.; Pettengill, J.B.; Luo, Y.; Baugher, J.D.; Rand, H.; Strain, E. Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations. Front. Microbiol. 2018, 9, 1482. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.; Dwivedi, V.D.; Kirtipal, N. Application of Whole Genome Sequencing (WGS) Approach against Identification of Foodborne Bacteria. In Microbial Genomics in Sustainable Agroecosystems; Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Eds.; Springer: Singapore, 2019; Volume 1, pp. 131–148. ISBN 9789811387395. [Google Scholar]
- Collineau, L.; Boerlin, P.; Carson, C.A.; Chapman, B.; Fazil, A.; Hetman, B.; McEwen, S.A.; Parmley, E.J.; Reid-Smith, R.J.; Taboada, E.N.; et al. Integrating Whole-Genome Sequencing Data into Quantitative Risk Assessment of Foodborne Antimicrobial Resistance: A Review of Opportunities and Challenges. Front. Microbiol. 2019, 10, 1107. [Google Scholar] [CrossRef] [PubMed]
- Gerner-Smidt, P.; Besser, J.; Concepción-Acevedo, J.; Folster, J.P.; Huffman, J.; Joseph, L.A.; Kucerova, Z.; Nichols, M.C.; Schwensohn, C.A.; Tolar, B. Whole Genome Sequencing: Bridging One-Health Surveillance of Foodborne Diseases. Front Public Health 2019, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Nadon, C.; Van Walle, I.; Gerner-Smidt, P.; Campos, J.; Chinen, I.; Concepcion-Acevedo, J.; Gilpin, B.; Smith, A.M.; Man Kam, K.; Perez, E.; et al. PulseNet International: Vision for the Implementation of Whole Genome Sequencing (WGS) for Global Food-Borne Disease Surveillance. Eurosurveillance 2017, 22, 30544. [Google Scholar] [CrossRef]
- Uelze, L.; Borowiak, M.; Deneke, C.; Szabó, I.; Fischer, J.; Tausch, S.H.; Malorny, B. Performance and Accuracy of Four Open-Source Tools for In Silico Serotyping of Salmonella Spp. Based on Whole-Genome Short-Read Sequencing Data. Appl. Environ. Microbiol. 2020, 86, e02265-19. [Google Scholar] [CrossRef]
- Rau, R.B.; de Lima-Morales, D.; Wink, P.L.; Ribeiro, A.R.; Barth, A.L. Salmonella enterica mcr-1 Positive from Food in Brazil: Detection and Characterization. Foodborne Pathog. Dis. 2020, 17, 202–208. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Gomes, V.T.M.; Moreira, J.; de Oliveira, C.H.; Peres, B.P.; Silva, A.P.S.; Thakur, S.; La Ragione, R.M.; Moreno, A.M. First Report of Mcr-1-Harboring Salmonella enterica Serovar Schwarzengrund Isolated from Poultry Meat in Brazil. Diagn. Microbiol. Infect. Dis. 2019, 93, 376–379. [Google Scholar] [CrossRef]
- Garcia-Graells, C.; De Keersmaecker, S.C.J.; Vanneste, K.; Pochet, B.; Vermeersch, K.; Roosens, N.; Dierick, K.; Botteldoorn, N. Detection of Plasmid-Mediated Colistin Resistance, Mcr-1 and Mcr-2 Genes, in Salmonella Spp. Isolated from Food at Retail in Belgium from 2012 to 2015. Foodborne Pathog. Dis. 2018, 15, 114–117. [Google Scholar] [CrossRef]
- Migura-Garcia, L.; González-López, J.J.; Martinez-Urtaza, J.; Aguirre Sánchez, J.R.; Moreno-Mingorance, A.; Perez de Rozas, A.; Höfle, U.; Ramiro, Y.; Gonzalez-Escalona, N. Mcr-Colistin Resistance Genes Mobilized by IncX4, IncHI2, and IncI2 Plasmids in Escherichia coli of Pigs and White Stork in Spain. Front. Microbiol. 2019, 10, 3072. [Google Scholar] [CrossRef]
- Hernández, M.; Iglesias, M.R.; Rodríguez-Lázaro, D.; Gallardo, A.; Quijada, N.; Miguela-Villoldo, P.; Campos, M.J.; Píriz, S.; López-Orozco, G.; de Frutos, C.; et al. Co-Occurrence of Colistin-Resistance Genes mcr-1 and mcr-3 among Multidrug-Resistant Escherichia coli Isolated from Cattle, Spain, September 2015. Eurosurveillance 2017, 22, 30586. [Google Scholar] [CrossRef]
- Lima, T.; Domingues, S.; Da Silva, G.J. Plasmid-Mediated Colistin Resistance in Salmonella enterica: A Review. Microorganisms 2019, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf (accessed on 6 April 2023).
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th revision; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151552-8. [Google Scholar]
- Worley, J.; Meng, J.; Allard, M.W.; Brown, E.W.; Timme, R.E. Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements. mBio 2018, 9, 2303. [Google Scholar] [CrossRef] [PubMed]
- Sangal, V.; Harbottle, H.; Mazzoni, C.J.; Helmuth, R.; Guerra, B.; Didelot, X.; Paglietti, B.; Rabsch, W.; Brisse, S.; Weill, F.-X.; et al. Evolution and Population Structure of Salmonella enterica Serovar Newport. J. Bacteriol. 2010, 192, 6465–6476. [Google Scholar] [CrossRef] [PubMed]
- Timme, R.E.; Pettengill, J.B.; Allard, M.W.; Strain, E.; Barrangou, R.; Wehnes, C.; Van Kessel, J.S.; Karns, J.S.; Musser, S.M.; Brown, E.W. Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica Subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters. Genome Biol. Evol. 2013, 5, 2109–2123. [Google Scholar] [CrossRef]
- Nguyen, M.; Long, S.W.; McDermott, P.F.; Olsen, R.J.; Olson, R.; Stevens, R.L.; Tyson, G.H.; Zhao, S.; Davis, J.J. Using Machine Learning to Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella. J. Clin. Microbiol. 2019, 57, e01260-18. [Google Scholar] [CrossRef]
- Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: An Emerging Model for Translational Research. J. Clin. Microbiol. 2021, 59, e0126020. [Google Scholar] [CrossRef]
- Khaledi, A.; Weimann, A.; Schniederjans, M.; Asgari, E.; Kuo, T.-H.; Oliver, A.; Cabot, G.; Kola, A.; Gastmeier, P.; Hogardt, M.; et al. Predicting Antimicrobial Resistance in Pseudomonas aeruginosa with Machine Learning-Enabled Molecular Diagnostics. EMBO Mol. Med. 2020, 12, e10264. [Google Scholar] [CrossRef]
- Eyre, D.W.; De Silva, D.; Cole, K.; Peters, J.; Cole, M.J.; Grad, Y.H.; Demczuk, W.; Martin, I.; Mulvey, M.R.; Crook, D.W.; et al. WGS to Predict Antibiotic MICs for Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2017, 72, 1937–1947. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality Control and Preprocessing of Metagenomic Datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, 1–12. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M. seq2mlst: In Silico Multi-Locus Sequence Typing 2017. Available online: https://github.com/lmc297/seq2mlst (accessed on 23 April 2023).
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A Novel Web Tool for WGS-Based Detection of Antimicrobial Resistance Associated with Chromosomal Point Mutations in Bacterial Pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Möller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Lechner, M.; Findeiß, S.; Steiner, L.; Marz, M.; Stadler, P.F.; Prohaska, S.J. Proteinortho: Detection of (Co-) orthologs in Large-Scale Analysis. BMC Bioinform. 2011, 12, 124. [Google Scholar] [CrossRef]
- Borowiec, M.L. AMAS: A Fast Tool for Alignment Manipulation and Computing of Summary Statistics. PeerJ 2016, 4, e1660. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Waldram, A.; Dolan, G.; Ashton, P.M.; Jenkins, C.; Dallman, T.J. Epidemiological Analysis of Salmonella Clusters Identified by Whole Genome Sequencing, England and Wales 2014. Food Microbiol. 2018, 71, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.S. Using DECIPHER v2. 0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352. [Google Scholar] [CrossRef]
Se_V_3 | Se_V_139 | Se_V_141 | Se_V_142 | ||
---|---|---|---|---|---|
Serology | Schleissheim | Senftemberg | ND | ND | |
SISTR cgMLST | - | Kentucky | Hadar | Kentucky | |
SISTR antigens | Serotype | Paratyphi B | Jedburgh|Llandoff | Kapemba|Miyazaki | Jedburgh|Llandoff |
O antigen | 1, 4, 5, 12 | ND | ND | ND | |
H1 antigen | b | z29 | l, v | z29 | |
H2 antigen | 1, 2 | - | 1, 7 | - | |
SeqSero2 | Serotype | Paratyphi B | Llandoff | Mendoza | Llandoff |
O antigen | 4 | 1, 3, 19 | 9 | 1, 3, 19 | |
H1 antigen | b | z29 | l, v | z29 | |
H2 antigen | 1, 2 | - | 1, 2 | - |
Serotype | Number of Isolates | Number of STs | STs | |||
---|---|---|---|---|---|---|
Study Isolates | RefSeq Genomes | Study Isolates | RefSeq Genomes | Study Isolates | RefSeq Genomes | |
Agona | 2 | 12 | 1 | 1 | ST13 | ST13 |
Anatum | 1 | 15 | 1 | 1 | ST64 | ST64 |
Bovismorbificans | 2 | 0 | 1 | - | ST142 | - |
Brandenburg | 1 | 3 | 1 | 1 | ST334 | ST65 |
Bredeney | 5 | 2 | 2 | 1 | ST241 | ST241 |
Cerro | 2 | 1 | 2 | 1 | ST1291, ST1593 | ST367 |
Chester | 5 | 0 | 1 | - | ST1954 | - |
Derby | 6 | 2 | 2 | 2 | ST40, ST682 | ST71, ST72 |
Enteritidis | 7 | 57 | 1 | 5 | ST11 | ST11, ST3175, ST136, ST1972, ST3304 |
Infantis | 12 | 8 | 1 | 2 | ST32 | ST32, ST493 |
Kentucky | 14 | 3 | 1 | 1 | ST198 | ST198 |
Litchfield | 1 | 0 | 1 | - | ST214 | - |
Llandoff | 2 | 0 | 1 | - | ST5689 | - |
London | 1 | 0 | 1 | - | ST155 | - |
Mendoza | 1 | 0 | 1 | - | ST5104 | - |
Mikawashima | 1 | 2 | 1 | 1 | ST1815 | ST5372 |
Montevideo | 1 | 3 | 1 | 2 | ST316 | ST138, ST316 |
Newport | 2 | 6 | 1 | 2 | ST166 | ST45, ST350 |
Paratyphi B | 1 | 45 | 1 | 8 | ST127 | ST28, ST110, ST42, ST86, ST89, ST43, ST88, ST3927 |
Rissen | 9 | 1 | 1 | 1 | ST469 | ST469 |
Rubislaw | 1 | 0 | 1 | - | ST1575 | - |
Senftenberg | 4 | 10 | 1 | 4 | ST14 | ST14, ST217, ST290, ST185 |
Thompson | 1 | 6 | 1 | 1 | ST26 | ST26 |
Typhimurium | 49 | 57 | 3 | 10 | ST34, ST5237, ST19 | ST19, ST36, ST34, ST313, ST2210, ST213, ST2066, ST5036, ST99, ST7910 |
Virchow | 4 | 2 | 1 | 1 | ST16 | ST16 |
MIC Predictor | STARAMR | ||
---|---|---|---|
Antibiotic | Number of Resistant Isolates | Number of Resistant Isolates | Genes Detected |
Streptomycin | 112 (82.96%) | 70 (51.85%) | aadA7, aadA16, aadA1, aadA2, ant(3″)-Ia, aph(3″)-Ib, strA |
Tetracycline | 72 (53.33%) | 73 (54.07%) | tet(A), tet(B), tet(C), tet(G), tet(M) |
Ampicillin | 20 (14.81%) | 49 (36.30%) | blaTEM-1B, blaTEM-1A, blaCARB-2, BlaOXA-1 |
Ciprofloxacin | 0 | 49 (36.29%) | aac(6′)-Ib-cr, qnrB6, qnrB19, qnrD1, QnrS1 |
Sulfisoxazole | 16 (11.85%) | 70 (51.85.74%) | sul1, sul2, sul3, dfrA12 |
Chloramphenicol | 2 (1.48%) | 11 (8.15%) | cmlA1, floR, CatA1 |
Ceftriaxone | 1 (0.74%) | NA | |
Kanamicina | 1 (0.74%) | 44 (32.59%) | aph(6)-Id, aph(3′)-Ia |
Ceftiofur | 1 (0.74%) | NA | |
Augmentin | 2 (1.48%) | NA | |
Azithromycin | 0 | NA | |
Co-trimoxazole | 0 | NA | |
Cefoxitin | 0 | NA | |
Gentamicin | 0 | 9 (6.67%) | aac(3)-Id, aac(6′)-Ib-cr, aac(3)-Via, aac(3)-Iia |
Nalidixic acid, Ciprofloxacin | 0 | 49 (36.30%) | gyrA |
Colistin | NA | 1 (0.74%) | mcr-1 |
Rifampicin | NA | 1 (0.74%) | ARR-3 |
Trimethoprim | NA | 28 (36.30%) | sul1, sul2, sul3, dfrA12 |
Erythromycin, Azithromycin | NA | 2 (1.48%) | mph(A) |
Isolate | Serology | SeqSero2 | SISTR | Cluster (3 SNPs) | Cluster (5 SNPs) | Cluster (10 SNPs) | ST | Product | Place | Year | |
---|---|---|---|---|---|---|---|---|---|---|---|
Different sample sources | Se_V_62 | Typhimurium | Typhimurium | Typhimurium | C7 | C48 | C84 | 19 | Egg | Enguera | 2016 |
Se_V_64 | Typhimurium | Typhimurium | Typhimurium | C7 | C48 | C84 | 19 | Humboldt squid | Ayora | 2017 | |
Se_V_65 | Typhimurium | Typhimurium | Typhimurium | C7 | C48 | C84 | 19 | Octopus | Torrent | 2017 | |
Se_V_84 | Typhimurium | Typhimurium | Typhimurium | C7 | C48 | C84 | 19 | Ice cream | Alcalà de Xivert | 2016 | |
Se_V_85 | Enteritidis | Enteritidis | Enteritidis | C18 | C59 | C94 | 11 | Salad | Valencia | 2014 | |
Se_V_86 | Enteritidis | Enteritidis | Enteritidis | C18 | C59 | C94 | 11 | Chicken | Valencia | 2014 | |
Se_V_87 | Enteritidis | Enteritidis | Enteritidis | C26 | C65 | C99 | 11 | Oysters | Valencia | 2017 | |
Se_V_89 | Enteritidis | Enteritidis | Enteritidis | C25 | C65 | C99 | 11 | Pork | Gandia | 2017 | |
Distant sampling times | Se_V_53 | Infantis | Infantis | Infantis | C6 | C47 | C83 | 32 | Chicken | Valencia | 2017 |
Se_V_71 | Infantis | Infantis | Infantis | C6 | C47 | C83 | 32 | Chicken | Gandía | 2015 | |
Se_V_72 | Infantis | Infantis | Infantis | C6 | C47 | C83 | 32 | Chicken | Rafelbunyol | 2016 | |
Se_V_49 | Infantis | Infantis | Infantis | C6 | C47 | C83 | 32 | Chicken | Rafelbunyol | 2016 |
Antibiotic | MIC Breakpoints (μg/mL) |
---|---|
Ampicillin (AMP) | ≥32 |
Augmentin (AUG) | ≥16 |
Ceftriaxone (AXO) | ≥4 |
Azithromycin (AZI) | ≥32 |
Chloramphenicol (CHL) | ≥32 |
Ciprofloxacin (CIP) | ≥1 |
Co-trimoxazole (COT) | ≥4 |
Sulfisoxazole (FIS) | ≥512 |
Cefoxitin (FOX) | ≥32 |
Gentamicin (GEN) | ≥16 |
Kanamicina (KAN) | ≥64 |
Nalidixic acid (NAL) | ≥32 |
Streptomycin (STR) | ≥32 |
Tetracycline (TET) | ≥16 |
Ceftiofur (TIO) | ≥8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Serrano, A.; Mejía, L.; Camaró, M.L.; Ortolá-Malvar, S.; Llácer-Luna, M.; García-González, N.; González-Candelas, F. Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain). Antibiotics 2023, 12, 883. https://doi.org/10.3390/antibiotics12050883
Sánchez-Serrano A, Mejía L, Camaró ML, Ortolá-Malvar S, Llácer-Luna M, García-González N, González-Candelas F. Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain). Antibiotics. 2023; 12(5):883. https://doi.org/10.3390/antibiotics12050883
Chicago/Turabian StyleSánchez-Serrano, Andrea, Lorena Mejía, Maria Luisa Camaró, Susana Ortolá-Malvar, Martín Llácer-Luna, Neris García-González, and Fernando González-Candelas. 2023. "Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain)" Antibiotics 12, no. 5: 883. https://doi.org/10.3390/antibiotics12050883
APA StyleSánchez-Serrano, A., Mejía, L., Camaró, M. L., Ortolá-Malvar, S., Llácer-Luna, M., García-González, N., & González-Candelas, F. (2023). Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain). Antibiotics, 12(5), 883. https://doi.org/10.3390/antibiotics12050883