Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates (Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Sample Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sistema Nacional de Areas de Conservacion (SINAC). SEMEC 2018 Annual Statistics Report: SINAC in Numbers; Comp. B Pavlotsky: San José, Costa Rica, 2019; 82p. [Google Scholar]
- Muehlenbein, M.P.; Wallis, J. Considering risks of pathogen transmission associated with primate-based tourism. In Primate Tourism: A Tool for Conservation? Russon, A.E., Wallis, J., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org (accessed on 3 August 2022).
- Jimenez-Soto, M.; Blanco, K.; Hagnauer, I.; Vega-Benavides, K. Centros de acopio de animales silvestres y su relación con la salud pública. Revista. Ambientico. 2013, 239, 38. [Google Scholar]
- Woods, R.; Reiss, A.; Cox-Witton, K.; Grillo, T.; Peters, A. The Importance of Wildlife Disease Monitoring as Part of Global Surveillance for Zoonotic Diseases: The Role of Australia. Trop. Med. Infect. Dis. 2019, 4, 29. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Bird, B.H.; Mazet, J.A.K. Detection of Emerging Zoonotic Pathogens: An Integrated One Health Approach. Annu. Rev. Anim. Biosci. 2018, 6, 121–139. [Google Scholar] [CrossRef]
- Carrillo-Bilbao, G.; Martin-Solano, S.; Saegerman, C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens. 2021, 10, 1009. [Google Scholar] [CrossRef]
- Dong, H.; Li, J.; Qi, M.; Wang, R.; Yu, F.; Jian, F.; Ning, C.; Zhang, L. Prevalence, molecular epidemiology, and zoonotic potential of Entamoeba spp. In nonhuman primates in China. Infect. Genet. Evol. 2017, 54, 216–220. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Machalaba, C.C.; Tang, H.; Chmura, A.A.; Fielder, M.D.; Daszak, P. Wild animal and zoonotic disease risk management and regulation in China: Examining gaps and One Health opportunities in scope, mandates, and monitoring systems. One Health 2021, 13, 100301. [Google Scholar] [CrossRef]
- Miller, E.R.; Fowler, M.E. Fowler’s Zoo and Wild Animal Medicine; Elsevier Health Sciences: St. Louis, MO, USA, 2014; Volume 8. [Google Scholar]
- Farias, L.F.P.; Oliveira, C.J.B.; Medardus, J.J.; Molla, B.Z.; Wolfe, B.A.; Gebreyes, W.A. Phenotypic and Genotypic Characterization of Salmonella enterica in Captive Wildlife and Exotic Animal Species in Ohio, USA. Zoonoses Public Health 2015, 62, 438–444. [Google Scholar] [CrossRef]
- Milton, A.A.P.; Agarwal, R.K.; Priya, G.B.; Athira, C.K.; Saminathan, M.; Reddy, A.; Aravind, M.; Kumar, A. Occurrence, antimicrobial susceptibility patterns and genotypic relatedness of Salmonella spp. isolates from captive wildlife, their caretakers, feed and water in India. Epidemiol. Infect. 2018, 146, 1543–1549. [Google Scholar] [CrossRef]
- Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, R.; Swaminathan, B. Salmonella Nomenclature. J. Clin. Microbiol. 2000, 38, 2465–2467. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; O′Dwyer, J.; Adley, C.C. Evaluation of the Complex Nomenclature of the Clinically and Veterinary Significant Pathogen Salmonella. BioMed. Res. Int. 2017, 2017, 3782182. [Google Scholar] [CrossRef] [PubMed]
- Pires, S.M.; Vieira, A.R.; Hald, T.; Cole, D. Source Attribution of Human Salmonellosis: An Overview of Methods and Estimates. Foodborne Pathog. Dis. 2014, 11, 667–676. [Google Scholar] [CrossRef]
- Spickler, A.R.; Leedom Larson, K. Salmonellosis. 2013. Available online: http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php (accessed on 3 August 2022).
- Zachary, J.F.; McGavin, M.D. Pathologic Basis of Veterinary Disease; Elsevier Health Sciences: London, UK; Elsevier Inc.: St. Louis, MO, USA, 2016. [Google Scholar]
- Kruse, H.; Kirkemo, A.-M.; Handeland, K. Wildlife as source of zoonotic infections. Emerg. Infect. Dis. 2004, 10, 2067–2072. [Google Scholar] [CrossRef]
- Chomel, B.B.; Belotto, A.; Meslin, F.X. Wildlife, exotic pets, and emerging zoonoses. Emerg. Infect. Dis. 2007, 13, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Gopee, N.V.; Adesiyun, A.A.; Caesar, K. Retrospective And Longitudinal Study Of Salmonellosis In Captive Wildlife In Trinidad. J. Wildl. Dis. 2000, 36, 284–293. [Google Scholar] [CrossRef]
- Jang, Y.H.; Lee, S.J.; Lim, J.G.; Lee, H.S.; Kim, T.J.; Park, J.H.; Chung, B.H.; Choe, N.H. The rate of Salmonella spp. Infection in zoo animals at Seoul Grand Park, Korea. J. Vet. Sci. 2008, 9, 177–181. [Google Scholar] [CrossRef]
- Jijón, S.; Wetzel, A.; LeJeune, J. Salmonella enterica isolated from wildlife at two Ohio rehabilitation centers. J. Zoo Wildl. Med. 2007, 38, 409–413. [Google Scholar] [CrossRef]
- Molina-López, R.A.; Vidal, A.; Obón, E.; Martín, M.; Darwich, L. Multidrug-resistant Salmonella enterica Serovar Typhimurium Monophasic Variant 4,12:i:- Isolated from Asymptomatic Wildlife in a Catalonian Wildlife Rehabilitation Center, Spain. J. Wildl. Dis. 2015, 51, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Silva-Hidalgo, G.; Ortiz-Navarrete, V.F.; Alpuche-Aranda, C.M.; Rendón-Maldonado, J.G.; López-Valenzuela, M.; Juárez-Barranco, F.; López-Moreno, H.S. Non-typhi Salmonella serovars found in Mexican zoo animals. Res. Vet. Sci. 2012, 93, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.A.; Mazet, J.A.K.; Hirsh, D.C. Salmonella in California Wildlife Species: Prevalence in Rehabilitation Centers and Characterization of Isolates. J. Zoo Wildl. Med. 2002, 33, 228–235. [Google Scholar]
- Renquist, D.M.; Whitney, R.A. Zoonoses acquired from pet primates. Vet. Clin. North Am. Small Anim. Pract. 1987, 17, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Literak, I. Wildlife Is Overlooked in the Epidemiology of Medically Important Antibiotic-Resistant Bacteria. Antimicrob. Agents Chemother. 2019, 63, e01167-19. [Google Scholar] [CrossRef]
- Hoelzer, K.; Moreno Switt, A.I.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef]
- Gebreyes, W.A.; Dupouy-Camet, J.; Newport, M.J.; Oliveira, C.J.B.; Schlesinger, L.S.; Saif, Y.M.; Kariuki, S.; Saif, L.J.; Saville, W.; Wittum, T.; et al. The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings. PLoS Negl. Trop. Dis. 2014, 8, e3257. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- Baldi, M.; Barquero Calvo, E.; Hutter, S.E.; Walzer, C. Salmonellosis detection and evidence of antibiotic resistance in an urban raccoon population in a highly populated area, Costa Rica. Zoonoses Public Health 2019, 66, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, H.M.; Acuña, M.T.; Tijerino, A.; Jiménez, A.; Duarte, F.; Sánchez, L.M.; Dittel, I.; Vargas, J.L.; Campos, E. Red Nacional de Laboratorios de Bacteriología. Informe de Vigilancia Basada en Laboratorio: “Vigilancia Basada en Laboratorio de Salmonella, Costa Rica, 2013”; Inciensa: Tres Ríos, Costa Rica, 2014. [Google Scholar]
- Carroll, D.; Wang, J.; Fanning, S.; McMahon, B.J. Antimicrobial Resistance in Wildlife: Implications for Public Health. Zoonoses Public Health 2015, 62, 534–542. [Google Scholar] [CrossRef]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-Spectrum Beta-Lactamases Producing, E. coli in Wildlife, yet Another Form of Environmental Pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef]
- Arnold, K.E.; Williams, N.J.; Bennett, M. Disperse abroad in the land’: The role of wildlife in the dissemination of antimicrobial resistance. Biol. Lett. 2016, 12, 20160137. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). CLSI M100-ED32 Performance Standards for Antimicrobial Susceptibility Testing. 2022. Available online: http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED32:2022&scope=user (accessed on 3 August 2022).
- Kim, S.; Frye, J.G.; Hu, J.; Fedorka-Cray, P.J.; Gautom, R.; Boyle, D.S. Multiplex PCR-Based Method for Identification of Common Clinical Serotypes of Salmonella enterica subsp. enterica. J. Clin. Microbiol. 2006, 44, 3608–3615. [Google Scholar] [CrossRef] [PubMed]
- Nizeyi, J.B.; Innocent, R.B.; Erume, J.; Kalema, G.R.; Cranfield, M.R.; Graczyk, T.K. Campylobacteriosis, salmonellosis, and shigellosis in free-ranging human-habituated mountain gorillas of Uganda. J. Wildl. Dis. 2001, 37, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Calderón, L.G.R.; Ortegón, L.H.; Cely, G.E.E.; Granja, Y.T.; Nuñez, J.M. Aislamiento, identificación y patrón de sensibilidad antimicrobiana de Salmonella spp. en primates en cautiverio. Rev. Colomb. Cienc. Animal 2013, 5, 131–144. [Google Scholar]
- Knöbl, T.; Rocha, L.T.; Menão, M.C.; Igayara, C.A.S.; Paixão, R.; Moreno, A.M. Salmonella Yoruba infection in white-tufted-ear marmoset (Callithrix jacchus). Pesqui. Veterinária Bras. 2011, 31, 707–710. [Google Scholar] [CrossRef]
- Kourany, M.; Rossan, R.N. A subcutaneous abscess associated with Salmonella typhimurium in a black howler monkey (Alouatta villosa). Lab. Anim. Sci. 1971, 21, 412–414. [Google Scholar] [PubMed]
- Good, R.C.; May, B.D.; Kawatomari, T. Enteric pathogens in monkeys. J. Bacteriol. 1969, 97, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, K.D.; Palmer, M.B.; Köster, W.L.; White, A.P. Examining the Link between Biofilm Formation and the Ability of Pathogenic Salmonella Strains to Colonize Multiple Host Species. Front. Vet. Sci. 2017, 4, 138. [Google Scholar] [CrossRef]
- Vittecoq, M.; Godreuil, S.; Prugnolle, F.; Durand, P.; Brazier, L.; Renaud, N.; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M.; et al. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2006, 53, 519–529. [Google Scholar] [CrossRef]
- Almeida, C.; Cerqueira, L.; Azevedo, N.F.; Vieira, M.J. Detection of Salmonella enterica serovar Enteritidis using real time PCR, immunocapture assay, PNA FISH and standard culture methods in different types of food samples. Int. J. Food Microbiol. 2013, 161, 16–22. [Google Scholar] [CrossRef]
- Molina, A.; Granados-Chinchilla, F.; Jiménez, M.; Acuña-Calvo, M.T.; Alfaro, M.; Chavarría, G. Vigilance for Salmonella in Feedstuffs Available in Costa Rica: Prevalence, Serotyping and Tetracycline Resistance of Isolates Obtained from 2009 to 2014. Foodborne Pathog. Dis. 2016, 13, 119–127. [Google Scholar] [CrossRef]
- Richter, E.R.; al-Sheddy, I. Microbiological quality and safety of zoo food. Appl. Env. Microbiol. 1990, 56, 877–880. [Google Scholar] [CrossRef]
- Lenzi, A.; Marvasi, M.; Baldi, A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control. 2020, 119, 107486. [Google Scholar] [CrossRef]
- Bintsis, T. Microbial pollution and food safety. AIMS Microbiol. 2018, 4, 377–396. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Jarvis, K.G.; Ottesen, A.R.; McFarland, M.A.; Brown, E.W. Recent and emerging innovations in Salmonella detection: A food and environmental perspective. Microb. Biotechnol. 2016, 9, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Rodríguez, C.; Alt, K.; Grobbel, M.; Hammerl, J.A.; Irrgang, A.; Szabo, I.; Stingl, K.; Schuh, E.; Wiehle, L.; Pfefferkorn, B.; et al. Wildlife as Sentinels of Antimicrobial Resistance in Germany? Front. Vet. Sci. 2021, 7, 627821. [Google Scholar] [CrossRef]
- Shane, A.L.; Mody, R.K.; Crump, J.A.; Tarr, P.I.; Steiner, T.S.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017, 65, e45–e80. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.C. Fluoroquinolone Resistance in Salmonella and the Utility of Perfloxacin Disk Diffusion. J. Clin. Microbiol. 2015, 53, 3401–3404. [Google Scholar] [CrossRef]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M.; et al. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef]
- Cuypers, W.L.; Jacobs, J.; Wong, V.; Klemm, E.J.; Deborggraeve, S.; Van Puyvelde, S. Fluoroquinolone resistance in Salmonella: Insights by whole-genome sequencing. Microb. Genom. 2018, 4, e000195. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef]
- Hernandez Rojas, R. Determination of antibiotic susceptibility profiles and blaCMY-2 and blaCTX-M genes in bacteria of the genus Salmonella isolated from three matrices of the Costa Rican poultry production chain. Licentiate Thesis, Universidad Nacional, Heredia, Costa Rica, 2022. [Google Scholar]
- Huertas Sánchez, G. Descriptive analysis of the prevalence and antimicrobial resistance of non-typhoid Salmonella enterica during the postpartum period of dairy cows in the Central and North Region of Costa Rica. Licentiate Thesis, Universidad Nacional, Heredia, Costa Rica, 2020. [Google Scholar]
- Ismael-Acle Esquivel, F. Prevalence of non-typhoidal Salmonella enterica in feces and lymphatic tissues of calves for human consumption in two harvest plants in Costa Rica. Licentiate Thesis, Universidad Nacional, Heredia, Costa Rica, 2020. [Google Scholar]
- Jimenez Madrigal, L. Prevalence and determination of antibiotic resistance profiles of non-typhoidal Salmonella enterica in the production chain of pigs for human consumption in Costa Rica. Licentiate Thesis, Universidad Nacional, Heredia, Costa Rica, 2022. [Google Scholar]
- Tijerino Ayala, A.; Oropeza Barrios, G.; Sanchez Salazar, L.M.; Vargas Morales, J.L.; Duarte Martinez, F.; Bolaños Acuña, H.M. Red Nacional de Laboratorios de Bacteriología. Informe de vigilancia basada en laboratorio: Salmonella spp.; Costa Rica. 2018. Available online: https://www.inciensa.sa.cr/vigilancia_epidemiologica/informes_vigilancia/2020/CNRB/Vigilancia%20de%20laboratorio%20de%20Salmonella%20spp.,%20Costa%20Rica%202018.pdf (accessed on 3 August 2022).
- García, V.; Montero, I.; Bances, M.; Rodicio, R.; Rodicio, M.R. Incidence and Genetic Bases of Nitrofurantoin Resistance in Clinical Isolates of Two Successful Multidrug-Resistant Clones of Salmonella enterica Serovar Typhimurium: Pandemic “DT 104” and pUO-StVR2. Microb. Drug Resist. 2017, 23, 405–412. [Google Scholar] [CrossRef]
- Ministerio de Salud de Costa Rica (MINSA). Consultation of Products Registered on the Platform (Nitrofurantoin). Available online: https://registrelo.go.cr/cfmx/ms/consultasPublicas/productos_Registrados/reporte.cfm (accessed on 4 April 2022).
- Lentz, S.A.M.; Dalmolin, T.V.; Barth, A.L.; Martins, A.F. Mcr-1 Gene in Latin America: How Is It Disseminated Among Humans, Animals, and the Environment? Front. Public Health 2021, 9, 222. [Google Scholar] [CrossRef]
- D’Incau, M.; Salogni, C.; Giovannini, S.; Ruggeri, J.; Scali, F.; Tonni, M.; Formenti, N.; Guarneri, F.; Pasquali, P.; Alborali, G.L. Occurrence of Salmonella Typhimurium and its monophasic variant (4, [5],12:i:-) in healthy and clinically ill pigs in northern Italy. Porc. Health Manag. 2021, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Salmonella Surveillance Annual Report, 2016; US Department of Health and Human Services, CDC.: Atlanta, GA, USA, 2018. Available online: https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf (accessed on 22 September 2022).
- Simpson, K.M.J.; Hill-Cawthorne, G.A.; Ward, M.P.; Mor, S.M. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect. Dis. 2018, 18, 623. [Google Scholar] [CrossRef]
- Soyer, Y.; Switt, A.M.; Davis, M.A.; Maurer, J.; McDonough, P.L.; Schoonmaker-Bopp, D.J.; Dumas, N.B.; Root, T.; Warnick, L.D.; Gröhn, Y.T.; et al. Salmonella enterica Serotype 4,5,12:i:−, an Emerging Salmonella Serotype That Represents Multiple Distinct Clones. J. Clin. Microbiol. 2009, 47, 3546–3556. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, F.; Dong, N.; Tian, S.; Zhang, H.; Du, X.; Zhou, X.; Xu, X.; Yang, H.; Xie, J.; et al. Investigation of a Salmonellosis Outbreak Caused by Multidrug Resistant Salmonella Typhimurium in China. Front. Microbiol. 2020, 11, 801. [Google Scholar] [CrossRef]
- McClure, H.M.; Brodie, A.R.; Anderson, D.C.; Brent Swenson, R. Bacterial Infections of Nonhuman Primates. In Primates: The Road to Self-Sustaining Populations; Benirschke, K., Ed.; Springer: New York, NY, USA, 1986; pp. 531–556. [Google Scholar]
- Anselmo, R.J.; Viora, S.; Barrios, H.; Terragno, R.; Alcaín, A.; Caffer, M.I. Serotypes of Salmonella isolated from the Luján River, Argentina. Rev. Lat. Microbiol. 1999, 41, 77–82. [Google Scholar]
- Kidie, D.H.; Bae, D.H.; Lee, Y.J. Prevalence and antimicrobial resistance of Salmonella isolated from poultry slaughterhouses in Korea. Jpn. J. Vet. Res. 2013, 61, 129–136. [Google Scholar] [PubMed]
- Raufu, I.A.; Odetokun, I.A.; Oladunni, F.S.; Adam, M.; Kolapo, U.T.; Akorede, G.J.; Ghali, I.M.; Ameh, J.A.; Ambali, A. Serotypes, antimicrobial profiles, and public health significance of Salmonella from camels slaughtered in Maiduguri central abattoir, Nigeria. Vet. World 2015, 8, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Motsoela, C.; Collison, E.K.; Gashe, B.A. Prevalence of Salmonella in two Botswana abattoir environments. J. Food Prot. 2002, 65, 1869–1872. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Salmonella Braenderup Infections Associated with Mangoes (Final Update). 2012. Available online: https://www.cdc.gov/Salmonella/braenderup-08-12/index.html#:~:text=CDC%20is%20collaborating%20with%20public,likely%20source%20of%20this%20outbreak (accessed on 3 August 2022).
- European Centre for Disease Prevention and Control (ECDC). Rapid Outbreak Assessment: Multi-Country Outbreak of Salmonella Braenderup ST22, Presumed to Be Linked to Imported Melons; European Centre for Disease Prevention and Control (ECDC): Solna, Sweden, 2021; Available online: https://www.ecdc.europa.eu/en/publications-data/rapid-outbreak-assessment-multi-country-outbreak-Salmonella-braenderup-st22 (accessed on 3 August 2022).
- Gajraj, R.; Pooransingh, S.; Hawker, J.I.; Olowokure, B. Multiple outbreaks of Salmonella braenderup associated with consumption of iceberg lettuce. Int. J. Environ. Health Res. 2012, 22, 150–155. [Google Scholar] [CrossRef]
- Gupta, S.K.; Nalluswami, K.; Snider, C.; Perch, M.; Balasegaram, M.; Burmeister, D.; Lockett, J.; Sandt, C.; Hoekstra, R.M.; Montgomery, S. Outbreak of Salmonella Braenderup infections associated with Roma tomatoes, northeastern United States, 2004: A useful method for subtyping exposures in field investigations. Epidemiol. Infect. 2007, 135, 1165–1173. [Google Scholar] [CrossRef]
- Reche, M.P.; Jiménez, P.A.; Alvarez, F.; García de los Rios, J.E.; Rojas, A.M.; de Pedro, P. Incidence of Salmonellae in captive and wild free-living raptorial birds in central Spain. J. Vet. Med. B Infect Dis. Vet. Public Health 2003, 50, 42–44. [Google Scholar] [CrossRef]
- Bertrand, S.; Dierick, K.; Heylen, K.; de Baere, T.; Pochet, B.; Robesyn, E.; Lokietek, S.; Van Meervenne, E.; Imberechts, H.; Zutter, L.; et al. Lessons Learned from the Management of a National Outbreak of Salmonella Ohio Linked to Pork Meat Processing and Distribution. J. Food Prot. 2010, 73, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Soto, S.M.; Martínez, N.; Guerra, B.; González-Hevia, M.A.; Mendoza, M.C. Usefulness of genetic typing methods to trace epidemiologically Salmonella serotype Ohio. Epidemiol. Infect. 2000, 125, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Poppe, C.; Martin, L.; Muckle, A.; Archambault, M.; McEwen, S.; Weir, E. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can. J. Vet. Res. 2006, 70, 105–114. [Google Scholar] [PubMed]
- Varma, J.K.; Marcus, R.; Stenzel, S.A.; Hanna, S.S.; Gettner, S.; Anderson, B.J.; Hayes, T.; Shiferaw, B.; Crume, T.L.; Joyce, K.; et al. Highly Resistant Salmonella Newport-MDRAmpC Transmitted through the Domestic US Food Supply: A FoodNet Case-Control Study of Sporadic Salmonella Newport Infections, 2002–2003. J. Infect. Dis. 2006, 194, 222–230. [Google Scholar] [CrossRef]
- Angelo, K.M.; Chu, A.; Anand, M.; Nguyen, T.-A.; Bottichio, L.; Wise, M.; Williams, I.; Seelman, S.; Bell, R.; Fatica, M.; et al. Outbreak of Salmonella Newport Infections Linked to Cucumbers—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 144–147. [Google Scholar]
- Espié, E.; De Valk, H.; Vaillant, V.; Quelquejeu, N.; Le Querrec, F.; Weill, F.X. An outbreak of multidrug-resistant Salmonella enterica serotype Newport infections linked to the consumption of imported horse meat in France. Epidemiol. Infect. 2005, 133, 373–376. [Google Scholar] [CrossRef]
- Greene, S.K.; Daly, E.R.; Talbot, E.A.; Demma, L.J.; Holzbauer, S.; Patel, N.J.; Hill, T.A.; Walderhaug, M.O.; Hoekstra, R.M.; Lynch, M.F.; et al. Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect. 2008, 136, 157–165. [Google Scholar] [CrossRef]
- da Cunha-Neto, A.; Carvalho, L.A.; Castro, V.S.; Barcelos, F.G.; Carvalho, R.C.T.; Rodrigues, D.d.P.; Conte-Junior, C.A.; Figueiredo, E.E.d.S. Salmonella Anatum, S. Infantis and S. Schwarzengrund in Brazilian Cheeses: Occurrence and antibiotic resistance profiles. Int. J. Dairy Technol. 2020, 73, 296–300. [Google Scholar] [CrossRef]
- Hassan, R.; Rounds, J.; Sorenson, A.; Leos, G.; Concepción-Acevedo, J.; Griswold, T.; Tesfai, A.; Blessington, T.; Hardy, C.; Basler, C. Multistate Outbreak of Salmonella Anatum Infections Linked to Imported Hot Peppers—United States, May–July 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Pakalniskiene, J.; Falkenhorst, G.; Lisby, M.; Madsen, S.B.; Olsen, K.E.P.; Nielsen, E.M.; Mygh, A.; Boel, J.; Mølbak, K. A foodborne outbreak of enterotoxigenic E. coli and Salmonella Anatum infection after a high-school dinner in Denmark. Epidemiol. Infect. 2006, 137, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Santiago, C.; Rodas-Suárez, O.; Vázquez, Q.; Fernández, F.; Quiñones-Ramírez, E.; Vázquez-Salinas, C. Prevalence of Salmonella in Vegetables from Mexico. J. Food Prot. 2009, 72, 1279–1282. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chang, Y.J.; Pan, S.C.; Su, L.H.; Li, H.C.; Yang, H.P.; Yu, M.J.; Chiu, C.H. Characterization and Source Investigation of Multidrug-Resistant Salmonella Anatum from a Sustained Outbreak, Taiwan. Emerg. Infect. Dis. J. 2020, 26, 2951–2955. [Google Scholar] [CrossRef]
- Dargatz, D.A.; Traub-Dargatz, J.L. Multidrug-resistant Salmonella and nosocomial infections. Vet. Clin. Equine Pract. 2004, 20, 587–600. [Google Scholar] [CrossRef]
- Balansard, I.; Cleverley, L.; Cutler, K.L.; Spångberg, M.G.; Thibault-Duprey, K.; Langermans, J.A. Revised recommendations for health monitoring of non-human primate colonies (2018): FELASA Working Group Report. Lab. Anime. 2019, 53, 429–446. [Google Scholar] [CrossRef]
- de Blas, I. inWpi: Working in Epidemiology. 2006. Available online: http://www.winepi.net (accessed on 3 October 2019).
- Fuentes, A. Detección molecular de especies de Plasmodium y bacterias del complejo Mycobacterium tuberculosis en primates no humanos en cautiverio de Costa Rica. Master’s Thesis, Universidad Nacional, Heredia, Costa Rica, April 2016. [Google Scholar]
- Muñoz-Vargas, L.; Finney, S.K.; Hutchinson, H.; Masterson, M.A.; Habing, G. Impact of Clinical Salmonellosis in Veal Calves on the Recovery of Salmonella in Lymph Nodes at Harvest. Foodborne Pathog. Dis. 2017, 14, 678–685. [Google Scholar] [CrossRef]
- Cardona-Castro, N.; Restrepo-Pineda, E.; Correa-Ochoa, M. Detection of hilA gene sequences in serovars of Salmonella enterica sufigbspecies enterica. Mem. Inst. Oswaldo. Cruz. 2002, 97, 1153–1156. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Laboratory Standard Operating Procedure for PulseNet NexTera XT Library Prep and Run Setup for the Illumina MiSeq.:46. 2016. Available online: https://www.cdc.gov/pulsenet/pdf/pnl32-miseq-nextera-xt.pdf (accessed on 13 June 2022).
- Wellcome Trust. Genomic and Epidemiological Surveillance of Bacterial Pathogens Course Manual; Wellcome Trust: San Jose, Costa Rica, 2015. [Google Scholar]
- Jean-Gilles Beaubrun, J.; Cheng, C.M.; Chen, K.S.; Ewing, L.; Wang, H.; Agpaoa, M.C.; Huang, M.C.J.; Dickey, E.; Du, J.M.; Williams-Hill, D.M.; et al. The evaluation of a PCR-based method for identification of Salmonella enterica serotypes from environmental samples and various food matrices. Food Microbiol. 2012, 31, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Minitab 19 Statistical Software (2022); Minitab, Inc.: State College, PA, USA, 2022; Available online: www.minitab.com (accessed on 2 May 2022).
Wildlife Center | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Primate Species | 1 * | 2 | 3 | 4 * | 5 | 6 | 7 | 8 | 9 * | 10 | Total (%) |
A. palliata | - | - | 1/5 | 2/31 | 0/1 | - | - | 1/3 | 3/13 | 0/1 | 7/54 (12.9) |
A. geoffroyi | 2/5 | 0/1 | 3/9 | - | 0/2 | 0/1 | 0/6 | 1/4 | 0/5 | 1/12 | 7/45 (15.5) |
C. imitator | - | 0/4 | 0/6 | - | 0/1 | 0/10 | 2/9 | 3/10 | 0/3 | 3/7 | 8/50 (16) |
S. oerstedii | 1/2 | 0/5 | - | - | - | - | - | - | 2/24 | - | 3/31 (9.6) |
Total (%) | 3/7 | 0/10 | 4/20 | 2/31 | 0/4 | 0/11 | 2/15 | 5/17 | 5/45 | 4/19 | 25/180 |
(42.9) | (0) | (20) | (6.5) | (0) | (0) | (13.3) | (29.7) | (11.1) | (21) | (13.89) |
Wildlife Center | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Surface Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total (% by Group) |
1. Animal Contact * | 0/2 | 0/3 | 1/7 | 0/4 | 0/1 | 0/2 | 0/4 | 0/4 | 4/7 | 3/7 | 8/41 (19.5) |
2. Human Contact * | 0/2 | 0/5 | 1/7 | 0/5 | 0/4 | 0/4 | 0/6 | 0/2 | 0/9 | 1/9 | 2/53 (3.8) |
3. Mixed Contact | 1/3 | 0/4 | 0/3 | 0/2 | 0/4 | 0/3 | 0/1 | 1/4 | 2/7 | 1/8 | 5/39 (12.8) |
Total (% Prevalence per site) | 1/7 | 0/12 | 2/17 | 0/11 | 0/9 | 0/9 | 0/11 | 1/10 | 6/23 | 5/24 | 15/133 |
(14.3) | (0) | (11.8) | (0) | (0) | (0) | (0) | (10) | (26) | (20.8) | (11.27) |
Wildlife Center | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Feed Source Protein Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total (% per Protein Type) (p = 0.898) |
Vegetable | 0/2 | 0/3 | 1/4 | 0/2 | 0/4 | 0/5 | 0/3 | 0/2 | 0/2 | 0/4 | 1/31 (3.22) |
Animal Mixed | 0/2 | 0/2 | 0/1 | 0/2 | - | 0/2 | 0/1 | - | 0/2 0/1 | - | 0/11 (0) 0/1 (0) |
Total (% by site) (p = 0.938) | 0/4 | 0/5 | 1/5 | 0/4 | 0/4 | 0/7 | 0/4 | 0/2 | 0/5 | 1/4 | 1/43 |
(0) | (0) | (20) | (0) | (0) | (0) | (0) | (0) | (0) | (0) | (2.32) |
Variable | Classification | n | (%) | Positives (%) | p-Value |
---|---|---|---|---|---|
Sex | Female | 91 | 50.56 | 12 (48%) | 0.967 |
Male | 89 | 49.44 | 13 (52%) | ||
Life stage | Infant | 18 | 10.00 | 2 (8%) | |
Youth | 20 | 11.11 | 1 (4%) | 0.972 | |
Adult | 142 | 78.89 | 22 (88%) | ||
Stool consistency | Normal | 155 | 86.11 | 22 (88%) | 0.879 |
Abnormal | 25 | 13.89 | 3 (12%) | ||
Time under human care | ≤1 year | 36 | 20.00 | 4 (16%) | |
>1 year–≤ 5 year | 40 | 22.23 | 8 (32%) | 0.832 | |
>5 year–≤ 10 year | 53 | 29.44 | 8 (32%) | ||
>10 year | 51 | 28.33 | 5 (20%) |
Class | (g/mL) | 0.1 | 0.3 | 0.6 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 20 | 32 | 64 | 76 | 128 | 256 | 512 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | |||||||||||||||||||
Beta-Lactams | Ampicillin | 41 | |||||||||||||||||
Ampicillin sulbactam | 41 | ||||||||||||||||||
Piperacillin/Tazobactam | 41 | ||||||||||||||||||
Cefotaxime | 41 | ||||||||||||||||||
Ceftazidime | 41 | ||||||||||||||||||
Cefepime | 41 | ||||||||||||||||||
Imipenem | 41 | ||||||||||||||||||
Meropenem | 41 | ||||||||||||||||||
Aminoglycosides | Amikacin | 39 | 2 | ||||||||||||||||
Gentamicin | 41 | ||||||||||||||||||
Quinolones | Nalidixic acid | 7 | 31 | 3 | |||||||||||||||
Ciprofloxacin | 35 | 6 | |||||||||||||||||
Nitrofuran | Nitrofurantoin | 16 | 21 | 4 | |||||||||||||||
Polymyxin | Colistin | 40 | 1 | ||||||||||||||||
Folate Antagonist | Trimethoprim sulfamethoxazole | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Sánchez, E.; Jiménez-Soto, M.; Barquero-Calvo, E.; Duarte-Martínez, F.; Mollenkopf, D.F.; Wittum, T.E.; Muñoz-Vargas, L. Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates (Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica. Antibiotics 2023, 12, 844. https://doi.org/10.3390/antibiotics12050844
Rojas-Sánchez E, Jiménez-Soto M, Barquero-Calvo E, Duarte-Martínez F, Mollenkopf DF, Wittum TE, Muñoz-Vargas L. Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates (Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica. Antibiotics. 2023; 12(5):844. https://doi.org/10.3390/antibiotics12050844
Chicago/Turabian StyleRojas-Sánchez, Ernesto, Mauricio Jiménez-Soto, Elias Barquero-Calvo, Francisco Duarte-Martínez, Dixie F. Mollenkopf, Thomas E. Wittum, and Lohendy Muñoz-Vargas. 2023. "Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates (Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica" Antibiotics 12, no. 5: 844. https://doi.org/10.3390/antibiotics12050844
APA StyleRojas-Sánchez, E., Jiménez-Soto, M., Barquero-Calvo, E., Duarte-Martínez, F., Mollenkopf, D. F., Wittum, T. E., & Muñoz-Vargas, L. (2023). Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates (Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica. Antibiotics, 12(5), 844. https://doi.org/10.3390/antibiotics12050844