Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Bacterial Isolates
4.3. Antimicrobial Susceptibility Testing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S521–S528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Wright, H.; Bonomo, R.; Paterson, D. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tompkins, K.; van Duin, D. Treatment for carbapenem-resistant Enterobacterales infections: Recent advances and future directions. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2053–2068. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Comini, S.; Iannaccone, M.; Casale, R.; Allizond, V.; Barbui, A.M.; Banche, G.; Cavallo, R.; Costa, C. Activity of ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, cefiderocol and comparators against Gram-negative organisms causing bloodstream infections in Northern Italy (2019–2021): Emergence of complex resistance phenotypes. J. Chemother. 2022, 34, 302–310. [Google Scholar] [CrossRef]
- Comini, S.; Bianco, G.; Boattini, M.; Banche, G.; Ricciardelli, G.; Allizond, V.; Cavallo, R.; Costa, C. Evaluation of a diagnostic algorithm for rapid identification of Gram-negative species and detection of extended-spectrum β-lactamase and carbapenemase directly from blood cultures. J. Antimicrob. Chemother. 2022, 77, 2632–2641. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306, Erratum in Nat. Rev. Microbiol. 2019, 17, 459–460. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yang, D.; Wang, Y.; Ni, W. Cefiderocol for the Treatment of Multidrug-Resistant Gram-Negative Bacteria: A Systematic Review of Currently Available Evidence. Front. Pharmacol. 2022, 13, 896971, Erratum in Front Pharmacol. 2022, 13, 976792. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Comini, S.; Iannaccone, M.; Bondi, A.; Cavallo, R.; Costa, C. In vitro activity of cefiderocol against ceftazidime-avibactam susceptible and resistant KPC-producing Enterobacterales: Cross-resistance and synergistic effects. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 41, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Shields, R.K.; Doi, Y.; Takemura, M.; Echols, R.; Matsunaga, Y.; Yamano, Y. Mechanisms of Reduced Susceptibility to Cefiderocol Among Isolates from the CREDIBLE-CR and APEKS-NP Clinical Trials. Microb. Drug Resist. 2022, 28, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Smoke, S.M.; Brophy, A.; Reveron, S.; Iovleva, A.; Kline, E.G.; Marano, M.; Miller, L.P.; Shields, R.K. Evolution and Transmission of Cefiderocol-Resistant Acinetobacter baumannii During an Outbreak in the Burn Intensive Care Unit. Clin. Infect. Dis. 2022, 76, e1261–e1265. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef]
- Fröhlich, C.; Sørum, V.; Tokuriki, N.; Johnsen, P.J.; Samuelsen. Evolution of β-lactamase-mediated cefiderocol resistance. J. Antimicrob. Chemother. 2022, 77, 2429–2436. [Google Scholar] [CrossRef]
- Bianco, G.; Gaibani, P.; Comini, S.; Boattini, M.; Banche, G.; Costa, C.; Cavallo, R.; Nordmann, P. Synergistic Effect of Clinically Available Beta-Lactamase Inhibitors Combined with Cefiderocol against Carbapenemase-Producing Gram-Negative Organisms. Antibiotics 2022, 11, 1681. [Google Scholar] [CrossRef]
- Matuschek, E.; Longshaw, C.; Takemura, M.; Yamano, Y.; Kahlmeter, G. Cefiderocol: EUCAST criteria for disc diffusion and broth microdilution for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2022, 77, 1662–1669. [Google Scholar] [CrossRef]
- Morris, C.P.; Bergman, Y.; Tekle, T.; Fissel, J.A.; Tamma, P.D.; Simner, P.J. Cefiderocol Antimicrobial Susceptibility Testing against Multidrug-Resistant Gram-Negative Bacilli: A Comparison of Disk Diffusion to Broth Microdilution. J. Clin. Microbiol. 2020, 59, e01649-20. [Google Scholar] [CrossRef]
- Devoos, L.; Biguenet, A.; Rousselot, J.; Bour, M.; Plésiat, P.; Fournier, D.; Jeannot, K. Performance of discs, sensititre EUMDROXF microplates and MTS gradient strips for the determination of the susceptibility of multidrug-resistant Pseudomonas aeruginosa to cefiderocol. Clin. Microbiol. Infect. 2022, in press. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Emeraud, C.; Jousset, A.B.; Naas, T.; Dortet, L. Comparison of disk diffusion, MIC test strip and broth microdilution methods for cefiderocol susceptibility testing on carbapenem-resistant enterobacterales. Clin. Microbiol. Infect. 2022, 28, 1156.e1–1156.e5. [Google Scholar] [CrossRef]
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-resistance to cefiderocol and ceftazidime–avibactam in KPC β-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 2021, 27, 1172.e7–1172.e10. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Sadek, M.; Kusaksizoglu, A.; Nordmann, P. Co-resistance to ceftazidime-avibactam and cefiderocol in clinical isolates producing KPC variants. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Boattini, M.; Comini, S.; Bianco, G.; Iannaccone, M.; Casale, R.; Cavallo, R.; Costa, C. Activity of cefiderocol and synergy of novel β-lactam-β-lactamase inhibitor-based combinations against metallo-β-lactamase-producing gram-negative bacilli: Insights from a two-year study (2019–2020). J. Chemother. 2022, 1–7. [Google Scholar] [CrossRef] [PubMed]
- A Parsels, K.; A Mastro, K.; Steele, J.M.; Thomas, S.J.; Kufel, W.D. Cefiderocol: A novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections. J. Antimicrob. Chemother. 2021, 76, 1379–1391. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Comini, S.; Casale, R.; Iannaccone, M.; Cavallo, R.; Costa, C. Occurrence of multi-carbapenemases producers among carbapenemase-producing Enterobacterales and in vitro activity of combinations including cefiderocol, ceftazidime-avibactam, meropenem-vaborbactam, and aztreonam in the COVID-19 era. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Comini, S.; Bianco, G.; Boattini, M.; Iannaccone, M.; Casale, R.; Banche, G.; Cavallo, R.; Costa, C. Evaluation of the Amplex eazyplex SuperBug Acineto test for direct detection of multi-drug-resistant Acinetobacter baumannii bloodstream infections in high endemicity settings. J. Hosp. Infect. 2021, 117, 179–181. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Guidance Document on Broth Microdilution Testing of Cefiderocol. 2020. Available online: https://www.eucast.org/eucast_news/news_singleview/?%20tx_ttnews%5Btt_news%5D=408&cHash=c9c0227d00aa8ff6971ace8334a7ee81 (accessed on 5 January 2023).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Di-Ameters. Version 13.0. 2023. Available online: http://www.eucast.org (accessed on 5 January 2023).
Susceptible | Resistant | Area of Uncertainty | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | No., % | Range Zones | Median Zones | No., % | Range Zones | Median Zones | No., % | Range Zones | Median Zones | |
Enterobacterales | ||||||||||
KPC producer CZA-susceptible | 70 | 60, 85.7% | 23–28 | 26 | 2, 2.8% | 15–16 | - | 8, 11.4% | 19–22 | 20 |
KPC producer CZA-resistant | 44 | 4, 9.1% | 23–25 | 23 | 21, 47.7% | 8–17 | 15 | 19, 43.2% | 18–21 | 19 |
NDM producer | 19 | 7, 36.8% | 23–26 | 24 | 6, 31.6% | 6–14 | 13 | 6, 31.6% | 18–22 | 20 |
VIM producer | 31 | 26, 83.9% | 23–29 | 27 | 0 | - | - | 5, 16.1% | 21–22 | 21 |
OXA-48-like producer | 10 | 9, 90% | 24–28 | 27 | 1, 10% | 22 | - | |||
KPC/VIM co-producer | 4 | 4, 100% | 25–26 | 25 | 0 | - | - | 0 | - | - |
P. aeruginosa | ||||||||||
VIM producers | 10 | 7, 70% | 23–26 | 25 | 0 | - | - | 3, 30% | 19–22 | 19 |
MβL non-producer | 32 | 30, 93.7% | 23–30 | 26 | 0 | - | - | 2, 6.2% | 19–22 | - |
A. baumannii | ||||||||||
OXA-23 producers | 46 | 41, 89.1% | 18–25 | 21 | - | - | - | 5, 10.9% | 6–15 | 6 |
OXA-23/NDM co-producer | 2 | 0 | - | - | - | - | - | 2, 100% | 6 | - |
S. maltophilia | 18 | 18, 100% | 28–31 | 29 | 0 | - | - | 0 | - | - |
Species | Genotype/Phenotype | Inhibition Zones mm | Reference Microdilution MIC mg/L | ComASP® Cefiderocol Microdilution Panel MIC mg/L |
---|---|---|---|---|
K. pneumoniae | KPC-p CZA-R | 18 | 16 | 4 |
K. pneumoniae | KPC-p CZA-R | 18 | 4 | 2 |
K. pneumoniae | KPC-p CZA-R | 19 | 8 | 16 |
K. pneumoniae | KPC-p CZA-R | 19 | 8 | 8 |
K. pneumoniae | KPC-p CZA-R | 19 | 2 | 1 |
K. pneumoniae | KPC-p CZA-R | 19 | 2 | 4 |
K. pneumoniae | KPC-p CZA-R | 19 | 2 | 0.5 |
K. pneumoniae | KPC-p CZA-R | 19 | 2 | 1 |
K. pneumoniae | KPC-p CZA-R | 19 | 0.25 | 0.5 |
K. pneumoniae | KPC-p CZA-R | 19 | 1 | 2 |
K. pneumoniae | KPC-p CZA-R | 20 | 2 | 1 |
K. pneumoniae | KPC-p CZA-R | 20 | 0.5 | 1 |
K. pneumoniae | KPC-p CZA-R | 20 | 1 | 1 |
K. pneumoniae | KPC-p CZA-R | 20 | 1 | 2 |
K. pneumoniae | KPC-p CZA-R | 20 | 0.5 | 0.125 |
K. pneumoniae | KPC-p CZA-R | 20 | 4 | 8 |
K. pneumoniae | KPC-p CZA-R | 20 | 0.5 | 1 |
K. pneumoniae | KPC-p CZA-R | 20 | 1 | 2 |
K. pneumoniae | KPC-p CZA-R | 21 | 2 | 0.5 |
K. pneumoniae | KPC-p CZA-S | 19 | 8 | 4 |
K. pneumoniae | KPC-p CZA-S | 19 | 1 | 2 |
K. pneumoniae | KPC-p CZA-S | 20 | 2 | 4 |
K. pneumoniae | KPC-p CZA-S | 20 | 2 | 1 |
K. pneumoniae | KPC-p CZA-S | 20 | 1 | 2 |
K. pneumoniae | KPC-p CZA-S | 20 | 0.5 | 0.5 |
K. pneumoniae | KPC-p CZA-S | 22 | 0.25 | 0.5 |
K. pneumoniae | KPC-p CZA-S | 22 | 0.25 | 0.125 |
K. pneumoniae | NDM-p | 18 | 8 | 4 |
K. pneumoniae | NDM-p | 18 | 4 | 8 |
K. pneumoniae | NDM-p | 19 | 1 | 2 |
K. pneumoniae | NDM-p | 21 | 2 | 1 |
E. coli | NDM-p | 21 | 4 | 8 |
K. pneumoniae | NDM-p | 22 | 0.5 | 1 |
E. cloacae | VIM-p | 22 | 0.25 | 0.5 |
E. cloacae | VIM-p | 22 | 0.12 | 1 |
E. cloacae | VIM-p | 21 | 2 | 2 |
E. aerogenes | VIM-p | 21 | 1 | 1 |
M. morganii | VIM-p | 21 | 1 | 0.25 |
P. aeruginosa | VIM-p | 19 | 1 | 0.5 |
P. aeruginosa | MβL-np | 19 | 0.25 | 0.5 |
P. aeruginosa | VIM-p | 20 | 2 | 2 |
P. aeruginosa | VIM-p | 22 | 0.5 | 1 |
P. aeruginosa | MβL-np | 22 | 0.06 | 0.25 |
A. baumannii | OXA-23-p | 6 | 16 | 32 |
A. baumannii | OXA-23-p | 6 | 8 | 4 |
A. baumannii | OXA-23-p | 6 | 4 | 8 |
A. baumannii | OXA-23-p | 10 | 4 | 4 |
A. baumannii | OXA-23-p | 15 | 2 | 1 |
A. baumannii | OXA-23/NDM-p | 6 | 8 | 32 |
A. baumannii | OXA-23/NDM-p | 6 | 16 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, G.; Boattini, M.; Comini, S.; Banche, G.; Cavallo, R.; Costa, C. Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine. Antibiotics 2023, 12, 604. https://doi.org/10.3390/antibiotics12030604
Bianco G, Boattini M, Comini S, Banche G, Cavallo R, Costa C. Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine. Antibiotics. 2023; 12(3):604. https://doi.org/10.3390/antibiotics12030604
Chicago/Turabian StyleBianco, Gabriele, Matteo Boattini, Sara Comini, Giuliana Banche, Rossana Cavallo, and Cristina Costa. 2023. "Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine" Antibiotics 12, no. 3: 604. https://doi.org/10.3390/antibiotics12030604
APA StyleBianco, G., Boattini, M., Comini, S., Banche, G., Cavallo, R., & Costa, C. (2023). Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine. Antibiotics, 12(3), 604. https://doi.org/10.3390/antibiotics12030604