Antimicrobial Defined Daily Dose in Neonatal Population: Validation in the Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Data Analysis
2.4. DDD Selection Criteria
2.5. Ethical Approval
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Turkait, A.; Szatkowski, L.; Choonara, I.; Ojha, S. Review of Drug Utilization Studies in Neonatal Units: A Global Perspective. Int. J. Environ. Res. Public Health 2020, 17, 5669. [Google Scholar] [CrossRef] [PubMed]
- Croche-Santander, B.; Campos-Alonso, E.; Sánchez-Carrión, A.; Marcos-Fuentes, L.; Diaz-Flores, I.; Vargas, J.C.; Domínguez, B.F.; Ibañez, C.T. Adecuación de la prescripción de antimicrobianos en población pediátrica en un servicio de urgencias hospitalario [Appropriateness of antibiotic prescribing in paediatric patients in a hospital emergency department]. An. Pediatr. 2018, 88, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.L.; Neubert, A.; Caudri, D.; Picelli, G.; Sen, E.F.; Giaquinto, C.; Cantarutti, L.; Baiardi, P.; Felisi, M.G.; Ceci, A.; et al. Drug use in children: Cohort study in three European countries. BMJ 2008, 337, a2245. [Google Scholar]
- Pauwels, I.; Versporten, A.; Vermeulen, H.; Vlieghe, E.; Goossens, H. Assessing the impact of the Global Point Prevalence Survey of Antimicrobial Consumption and Resistance (Global-PPS) on hospital antimicrobial stewardship programmes: Results of a worldwide survey. Antimicrob. Resist. Infect. Control. 2021, 10, 138. [Google Scholar] [CrossRef]
- Gutiérrez-Urbón, J.M.; Arenere-Mendoza, M.; Fernández-de-Gamarra-Martínez, E.; Fernández-Polo, A.; González-Suárez, S.; Nicolás-Picó, J.; Rodríguez-Mateos, M.E.; Sánchez-Yáñez, E. Estudio PAUSATE: Prevalencia y adecuación del uso hospitalario de antimicrobianos en España. Farm Hosp. 2022, 46, 271–281. [Google Scholar] [PubMed]
- Al-Judaibi, E.A.; Altammar, K.A.; Alshareef, S.A.; Alrashedi, M.E.; Al-Gamdee, Y.A.; Al Gamdee, M.A.; Al Jabre, S.M.; Ashy, R.A.; Al-Judaibi, A.A. Antibiotic sensitivity and resistance of gastrointestinal microflora isolated from preterm neonates. Future Microbiol. 2021, 16, 1029–1039. [Google Scholar]
- Reyman, M.; van Houten, M.A.; Watson, R.L.; Chu, M.L.J.N.; Arp, K.; de Waal, W.J.; Schiering, I.; Plötz, F.B.; Willems, R.J.L.; van Schaik, W.; et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A randomized trial. Nat. Commun. 2022, 13, 893. [Google Scholar] [CrossRef]
- Gibson, M.K.; Wang, B.; Ahmadi, S.; Burnham, C.-A.D.; Tarr, P.I.; Warner, B.B.; Dantas, G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 2016, 1, 16024. [Google Scholar] [CrossRef] [Green Version]
- Torres, D.; Muñoz, T.; Bancalari, A.; Manríquez, C. Tratamiento antibiótico empírico inicial prolongado y riesgo de morbimortalidad en recién nacidos de muy bajo peso al nacer [Prolonged initial empirical antibiotic treatment and the risk of morbidity and mortality in very low birthweight infants]. Rev. Chil. Pediatr. 2018, 89, 600–605. [Google Scholar]
- Nogacka, A.M.; Salazar, N.; Arboleya, S.; Suárez, M.; Fernández, N.; Solís, G.; de Los Reyes-Gavilán, C.G.; Gueimonde, M. Early microbiota, antibiotics and health. Cell Mol. Life Sci. 2018, 75, 83–91. [Google Scholar] [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, J.H.; Au, A.K.M.; Fuhrman, D.D.; Zullo, J.M.; Thompson, A.E.M.; Clark, R.S.; Horvat, C.M. An Evaluation of Antimicrobial Prescribing and Risk-adjusted Mortality. Pediatr. Qual. Saf. 2021, 6, e481. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Kler, N.; Oberoi, J.K.; Fursule, A.; Kumar, A.; Thakur, A. Neonatal Sepsis: Mortality and Morbility in Neonatal Sepsis due to multidrugs-Resistant (MDR) Organisms: Part 1. Indian J. Pediatr. 2020, 87, 880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H.; ARPEC Project Group. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- ATC/DDD Index 2022 by WHO Collaborating Centre for Drug Statistics Methodology. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 2 February 2023).
- Versporten, A.; Sharland, M.; Bielicki, J.; Drapier, N.; Vankerckhoven, V.; Goossens, H.; Berger, C. The antibiotic resistance and prescribing in European Children Project: A neonatal and pediatric antimicrobial web-based point prevalence survey in 73 hospitals worldwide. Pediatr. Infect. Dis. J. 2013, 32, e242–e253. [Google Scholar] [CrossRef] [PubMed]
- Goycochea-Valdivia, W.A.; Moreno-Ramos, F.; Paño-Pardo, J.R.; Aracil-Santos, F.J.; Baquero-Artigao, F.; Del Rosal-Rabes, T.; Mellado-Peña, M.J.; Escosa-García, L. Identifying priorities to improve paediatric in-hospital antimicrobial use by cross-sectional evaluation of prevalence and appropriateness of prescription. Enferm. Infecc. Microbiol. Clin. 2017, 35, 556–562. [Google Scholar] [CrossRef]
- Ibrahim, O.M.; Polk, R.E. Antimicrobial use metrics and benchmarking to improve stewardship outcomes: Methodology, opportunities, and challenges. Infect. Dis. Clin. North Am. 2014, 28, 195–214. [Google Scholar] [CrossRef]
- Villanueva-Bueno, C.; Montecatine-Alonso, E.; Jiménez-Parrilla, F.; Fernández-Llamazares, C.M.; Manrique-Rodríguez, S.; Zamora-Flores, E.; Dolz, E.; Fernández-Polo, A.; Catillo-Salinas, F.; Comuñas, J.; et al. Antimicrobial defined daily dose in neonatal population. Enferm. Infecc. Microbiol. Clin. 2022, 40, 59–65. [Google Scholar] [CrossRef]
- Hsieh, E.M.; Hornik, C.P.; Clark, R.H.; Laughon, M.M.; Benjamin, D.K., Jr.; Smith, P.B. Best Pharmaceuticalsfor Children Act-Pediatric Trials Network. Medication use in the neonatal intensive care unit. Am. J. Perinatol. 2014, 31, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Stark, A.; Smith, P.B.; Hornik, C.P.; Zimmerman, K.O.; Hornik, C.D.; Pradeep, S.; Clark, R.H.; Benjamin, D.K.; Laughon, M.; Greenberg, R.G. Medication Use in the Neonatal Intensive Care Unit and Changes from 2010 to 2018. J. Pediatr. 2021, 240, 66–71.e4. [Google Scholar] [CrossRef]
- Porta, A.; Hsia, Y.; Doerholt, K.; Spyridis, N.; Bielicki, J.; Menson, E.; Tsolia, M.; Esposito, S.; Wong, I.C.K.; Sharland, M. Comparing neonatal and paediatric antibiotic prescribing between hospitals: A new algorithm to help international benchmarking. J. Antimicrob. Chemother. 2012, 67, 1278–1286. [Google Scholar] [CrossRef] [Green Version]
- De Basagoiti, A.; Fernández, A.; Mendiola, S.; De Miguel, M.; Guerra, E.; Loureiro, B.; Campino, A. Intravenous drug use in neonatal intensive care units. Eur. J. Hosp. Pharm. 2021, 28, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Rosli, R.; Dali, A.F.; Aziz, N.A.; Abdullah, A.H.; Ming, L.C.; Manan, M.M. Drug Utilization on Neonatal Wards: A Systematic Review of Observational Studies. Front. Pharmacol. 2017, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liem, T.B.Y.; Heerdink, E.R.; Egberts, A.C.G.; Rademaker, C.M.A. Quantifying antibiotic use in paediatrics: A proposal for neonatal DDDs. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1301–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Channon-Wells, S.; Kwok, M.; Booth, J.; Bramford, A.; Konstanty, P.; Hatcher, J.; Dixon, G.; Diggle, P.J.; Standing, J.F.; Irwin, A.D. The use of continuous electronic prescribing data to infer trends in antimicrobial consumption and estimate the impact of stewardship interventions in hospitalized children. J. Antimicrob. Chemother. 2021, 76, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Lezcano, A.C.; Longás, A.F.; Fernández, D.Y.; Villanova, J.G.-D.; Montejo, A.R.; Copil, A.C.; Mendoza, J.A.; Abizanda, S.S.; Canadell, M.G.; Mor, L.B. Estudio transversal español de crecimiento 2008. Parte I: Valores de peso y longitud en recién nacidos de 26–42 semanas de edad gestacional [Spanish cross-sectional growth study 2008. Part I: Weight and height values in newborns of 26–42 weeks of gestational age]. An. Pediatr. 2008, 68, 544–551. [Google Scholar]
- Suryawanshi, S.; Pandit, V.; Suryawanshi, P.; Panditrao, A. Antibiotic prescribing pattern in a tertiary level neonatal intensive care unit. J. Clin. Diagn. Res. 2015, 9, FC21–FC24. [Google Scholar] [CrossRef]
- Dritsakou, K.; Liosis, G.; Papagaroufalis, K.; Apostolopoulou, E. Antibiotic consumption in DDDs and cost patterns in a neonatal intensive care unit. Early Hum. Dev. 2010, 86, S79. [Google Scholar] [CrossRef]
- Liem, T.B.Y.; Krediet, T.G.; Fleer, A.; Egberts, T.C.G.; Rademaker, C.M.A. Variation in antibiotic use in neonatal intensive care units in the Netherlands. J. Antimicrob. Chemother. 2010, 65, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Nitsch-Osuch, A.; Kurpas, D.; Kuchár, E.; Zycinska, K.; Zielonka, T.; Wardyn, K. Antibiotic Consumption Pattern in the Neonatal Special Care Unit Before and After Implementation of the Hospital’s Antibiotic Policy. Adv. Exp. Med. Biol. 2015, 835, 45–51. [Google Scholar] [CrossRef]
- Mulubwa, M.; Griesel, H.A.; Mugabo, P.; Dippenaar, R.; Van Wyk, L. Assessment of Vancomycin Pharmacokinetics and Dose Regimen Optimisation in Preterm Neonates. Drugs R&D 2020, 20, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Chaparro, N.D.; Cohen-Wolkowiez, M.; Greenberg, R.G. Dosing antibiotics in neonates: Review of the pharmacokinetic data. Futur. Microbiol. 2017, 12, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
Power | DDD Selection | |
---|---|---|
>80% | Phase I | Phase II |
There are no significant differences (p > 0.01) + Clinical difference magnitude (≤10%) +/− Degree of agreement (≥75%) | Statistically significant differences (p < 0.01) + Clinical difference magnitude (>10%) | |
Statistically significant differences (p < 0.01) + Clinical difference magnitude (≤10%) +/− Degree of agreement (≥75%) | ||
There are no significant differences (p > 0.01) + Clinical difference magnitude (>10%) +/− Degree of agreement (≥75%) | ||
≤80% | Degree of agreement (≥75%) | NA |
Overall (N = 904) | |
---|---|
Income Unit | |
N-Miss | 44 |
Neonatal Intermediate care | 68 (7.9%) |
Neonatology | 249 (29.0%) |
Neonatal intensive care Unit (NICU) | 543 (63.1%) |
Gestational age (weeks) | |
N-Miss | 340 |
<29 | 201 (35.6%) |
30–36 | 165 (29.3%) |
37–44 | 198 (35.1%) |
Gender | |
Female | 385 (42.6%) |
Male | 519 (57.4%) |
Postnatal age (days) | |
N-Miss | 232 |
<7 | 269 (40.0%) |
>7 | 403 (60.0%) |
Weight (grams) | |
Median | 2.260 |
Q1, Q3 | 1.098, 3.270 |
Antimicrobials administered | |
Liposomal amphotericin B | 9 (1.0%) |
Amikacin | 82 (9.1%) |
Amoxicillin | 11 (1.2%) |
Amoxicillin-clavulanic | 9 (1.0%) |
Ampicillin | 201 (22.4%) |
Amphotericin | 1 (0.1%) |
Azithromycin | 1 (0.1%) |
Cefazolin | 12 (1.3%) |
Cefepime | 3 (0.3%) |
Cefotaxime | 72 (8.0%) |
Ceftazidime | 3 (0.3%) |
Cefuroxime | 3 (0.3%) |
Ciprofloxacin | 2 (0.2%) |
Clindamycin | 3 (0.3%) |
Cloxacillin | 9 (1.0%) |
Daptomycin | 3 (0.3%) |
Erythromycin | 1 (0.1%) |
Fluconazole | 40 (4.4%) |
Fosfomycin | 1 (0.1%) |
Gentamicin | 191 (21.3%) |
Linezolid | 11 (1.2%) |
Meropenem | 55 (6.1%) |
Metronidazole | 1 (0.1%) |
Micafungin | 1 (0.1%) |
Benzylpenicillin sodium | 1 (0.1%) |
Piperacillin/tazobactam | 25 (2.8%) |
Rifampicin | 1 (0.1%) |
Teicoplanin | 7 (0.8%) |
Trimethoprim/sulfamethoxazole | 1 (0.1%) |
Vancomycin | 138 (15.3%) |
Route of administration | |
Oral | 34 (3.8%) |
Intravenous | 870 (96.2%) |
Neonatology (N = 249) | Neonatal Intermediate Care (N = 68) | NICU (N = 543) | Total (N = 860) | p Value | |
---|---|---|---|---|---|
Gestational age (weeks) | <0.001 | ||||
N-Miss | 144 | 30 | 156 | 330 | |
<29 | 5 (4.8%) | 5 (13.2%) | 179 (46.3%) | 189 (35.7%) | |
30–36 | 43 (41.0%) | 12 (31.6%) | 102 (26.4%) | 157 (29.6%) | |
37–44 | 57 (54.3%) | 21 (55.3%) | 106 (27.4%) | 184 (34.7%) | |
Weight (grams) | <0.001 | ||||
Median | 2.940 | 2.048 | 1.600 | 2.280 | |
Q1, Q3 | 2.020, 3.400 | 1.000, 3.100 | 0.985, 3.000 | 1.100, 3.275 |
Antimicrobials | Phase I DDD | Phase II DDD | Difference with Phase I DDD | DDD Differences between Phases | Power Value>80% | Difference Value (≤10%) | Wilcoxon Test (>0.01) | Degree of Agreement (≥75%) | Selected DDD | Final DDD (g/day) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Value (g/day) | Degree of Agreement | Median (g/day) | CI95% | Median | CI95% | Power (1-B) % | Wilcoxon Test | Median | CI95% | |||||||
Amikacin | 82 | 0.04 | 100 | 0.032 | 0.022; 0.037 | −0.001 | −0.007; 0.008 | 99.9 | <0.001 | −3 | −17.5; 20 | Yes | Yes | No | Yes | Phase I | 0.04 |
Fluconazole | 39 | 0.02 | 100 | 0.002 | 0.002; 0.004 | 0.007 | 0.006; 0.008 | 99.9 | <0.001 | 35 | 30; 40 | Yes | No | No | Yes | Phase II | 0.002 |
Cefotaxime | 72 | 0.27 | 80 | 0.352 | 0.255; 0.435 | −0.122 | −0.205; −0.025 | 94.9 | 0.003 | −45 | −75.9; −9.3 | Yes | No | No | Yes | Phase II | 0.35 |
Vancomycin | 138 | 0.08 | 80 | 0.05 | 0.04; 0.06 | 0.02 | 0.010; 0.030 | 94.4 | <0.001 | 25 | 12.5; 37.5 | Yes | No | No | Yes | Phase II | 0.05 |
Meropenem | 55 | 0.11 | 66.7 | 0.12 | 0.09; 0.180 | −0.03 | −0.09; 0.00 | 91.0 | 0.026 | −27 | −81.8; 0 | Yes | No | Yes | No | Phase I | 0.11 |
Gentamycin | 191 | 0.01 | 90 | 0.009 | 0.007; 0.010 | 0.001 | 0.00; 0.003 | 85.2 | <0.001 | 10 | 0; 30 | Yes | Yes | No | Yes | Phase I | 0.01 |
Ampicillin | 201 | 0.27 | 80 | 0.28 | 0.25; 0.30 | −0.05 | −0.07; −0.02 | 83.0 | 0.304 | −19 | −25.9; −7.4 | Yes | No | Yes | Yes | Phase I | 0.27 |
Cloxacillin | 9 | 0.13 | 80 | 0.28 | 0.09; 0.400 | −0.17 | −0.29; 0.02 | 59.1 | 0.075 | −131 | −223.1; 15.4 | No | No | NA | Yes | Phase I | 0.13 |
Amoxicillin | 10 | 0.08 | 75 | 0.047 | 0.037; 0.090 | 0.023 | −0.020; 0.033 | 57.7 | 0.126 | 29 | −25.0, 41.3 | No | No | NA | Yes | Phase I | 0.08 |
Cefazolin | 12 | 0.13 | 60 | 0.139 | 0.0; 0.264 | −0.029 | −0.15; −0.110 | 11.3 | 0.609 | −22 | −115.4; −84.6 | No | No | NA | No | - | - |
Linezolid | 11 | 0.08 | 89 | 0.06 | 0.018; 0.105 | 0.01 | −0.035; 0.052 | 11.2 | 0.229 | 13 | −43.8; 65 | No | No | NA | Yes | Phase I | 0.08 |
Amoxicillin-Clav | 9 | 0.27 | 80 | 0.3 | 0.10; 0.36 | −0.07 | −0.13; 0.13 | 11.1 | 0.905 | −26 | −48.1; 48.1 | No | No | NA | Yes | Phase I | 0.27 |
Teicoplanin | 7 | 0.02 | 55.6 | 0.02 | 0.007; 0.035 | −0.01 | −0.025; 0.003 | 7.5 | 0.999 | −50 | −125.0; 15 | No | No | NA | No | - | - |
Piperacillin/ Tazobactam | 25 | 0.54 | 66.7 | 0.525 | 0.21; 0.75 | −0.075 | −0.30; 0.24 | 5 | 0.886 | −14 | −55.6; 44.4 | No | No | NA | No | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva-Bueno, C.; Montecatine-Alonso, E.; Jiménez-Parrilla, F.; González-López, M.; Manrique-Rodríguez, S.; Moreno-Ramos, F.; Cañete-Ramírez, C.; Dolz, E.; García-Robles, A.; Caro-Teller, J.M.; et al. Antimicrobial Defined Daily Dose in Neonatal Population: Validation in the Clinical Practice. Antibiotics 2023, 12, 602. https://doi.org/10.3390/antibiotics12030602
Villanueva-Bueno C, Montecatine-Alonso E, Jiménez-Parrilla F, González-López M, Manrique-Rodríguez S, Moreno-Ramos F, Cañete-Ramírez C, Dolz E, García-Robles A, Caro-Teller JM, et al. Antimicrobial Defined Daily Dose in Neonatal Population: Validation in the Clinical Practice. Antibiotics. 2023; 12(3):602. https://doi.org/10.3390/antibiotics12030602
Chicago/Turabian StyleVillanueva-Bueno, Cristina, Elena Montecatine-Alonso, Francisco Jiménez-Parrilla, María González-López, Silvia Manrique-Rodríguez, Francisco Moreno-Ramos, Carme Cañete-Ramírez, Elisenda Dolz, Ana García-Robles, José Manuel Caro-Teller, and et al. 2023. "Antimicrobial Defined Daily Dose in Neonatal Population: Validation in the Clinical Practice" Antibiotics 12, no. 3: 602. https://doi.org/10.3390/antibiotics12030602
APA StyleVillanueva-Bueno, C., Montecatine-Alonso, E., Jiménez-Parrilla, F., González-López, M., Manrique-Rodríguez, S., Moreno-Ramos, F., Cañete-Ramírez, C., Dolz, E., García-Robles, A., Caro-Teller, J. M., Moral-Pumarega, M. T., Bergon-Sendin, E., Gómez-Trevecedo Calvo, M. T., Gallego-Fernández, C., Vayo-Benito, C. Á. d., Mejías-Trueba, M., Gil-Navarro, M. V., & Paediatric Antimicrobial Defined Daily Dose Study Group (KiDDDs). (2023). Antimicrobial Defined Daily Dose in Neonatal Population: Validation in the Clinical Practice. Antibiotics, 12(3), 602. https://doi.org/10.3390/antibiotics12030602