The Role of Procalcitonin as an Antimicrobial Stewardship Tool in Patients Hospitalized with Seasonal Influenza
Abstract
:1. Introduction
2. Results
2.1. Patients
2.2. Primary Outcome
Antibiotic Use
2.3. Secondary Outcomes
Mortality and Intensive Care Stay
2.4. In-Between Group Differences
2.5. Bacterial Coinfection and Microbiology
3. Discussion
4. Materials and Methods
4.1. Setting
4.2. Data Collection
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taymaz, T.; Ergönül, Ö.; Kebapcı, A.; Okyay, R. Significance of the detection of influenza and other respiratory viruses for antibiotic stewardship: Lessons from the post-pandemic period. Int. J. Infect. Dis. 2018, 77, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Thelen, J.M.; Buenen, A.G.N.; van Apeldoorn, M.; Wertheim, H.F.; Hermans, M.H.A.; Wever, P.C. Community-acquired bacteraemia in COVID-19 in comparison to influenza A and influenza B: A retrospective cohort study. BMC Infect. Dis. 2021, 21, 199. [Google Scholar] [CrossRef]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.H.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influenza Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Bhavnani, D.; Phatinawin, L.; Chantra, S.; Olsen, S.J.; Simmerman, J.M. The influence of rapid influenza diagnostic testing on antibiotic prescribing patterns in rural Thailand. Int. J. Infect. Dis. 2007, 11, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.P.; Baddley, J.W.; Wang, H.E. Antibiotic utilization for acute respiratory tract infections in U.S. emergency departments. Antimicrob. Agents Chemother. 2014, 58, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, D.N. Procalcitonin as a biomarker in respiratory tract infection. Clin. Infect. Dis. 2011, 52 (Suppl. 4), S346–S350. [Google Scholar] [CrossRef] [Green Version]
- Iankova, I.; Thompson-Leduc, P.; Kirson, N.Y.; Rice, B.; Hey, J.; Krause, A.; Schonfeld, S.A.; DeBrase, C.R.; Bozzette, S.; Schuetz, P. Efficacy and Safety of Procalcitonin Guidance in Patients With Suspected or Confirmed Sepsis: A Systematic Review and Meta-Analysis. Crit. Care Med. 2018, 46, 691–698. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Van Oers, J.A.; Beishuizen, A.; Girbes, A.R.J.; Nijsten, M.W.N.; De Lange, D.W. Procalcitonin guided antibiotic therapy in severe community-acquired pneumonia. Randomized controlled trial. Intensive Care Medicine Experimental. In Proceedings of the 29th Annual Congress of the European Society of Intensive Care Medicine, ESICM 2016, Milan, Italy, 3 October 2016. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; González Del Castillo, J.; Jensen, J.U.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Daubin, C.; Valette, X.; Thiolliere, F.; Mira, J.P.; Hazera, P.; Annane, D.; Labbe, V.; Floccard, B.; Fournel, F.; Terzi, N.; et al. Procalcitonin algorithm to guide initial antibiotic therapy in acute exacerbations of COPD admitted to the ICU: A randomized multicenter study. Intensive Care Med. 2018, 44, 428–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.T.; Yealy, D.M.; Filbin, M.R.; Brown, A.M.; Chang, C.H.; Doi, Y.; Donnino, M.W.; Fine, J.; Fine, M.J.; Fischer, M.A.; et al. Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. N. Engl. J. Med. 2018, 379, 236–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, F.; Chang, W.; Xie, J.F.; Sun, Q.; Qiu, H.B.; Yang, Y. Ineffectiveness of procalcitonin-guided antibiotic therapy in severely critically ill patients: A meta-analysis. Int. J. Infect. Dis. 2019, 85, 158–166. [Google Scholar] [CrossRef]
- Haug, J.B.C. Ingrid. Procalcitonin as a Decision Aid in Antibiotic Stewardship in Norwegian Hospitals. In Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway; NORM-VET; Veterinærinstituttet og Folkehelseinstituttet: Oslo, Norway, 2022; pp. 42–43. [Google Scholar]
- Pfister, R.; Kochanek, M.; Leygeber, T.; Brun-Buisson, C.; Cuquemelle, E.; Machado, M.B.; Piacentini, E.; Hammond, N.E.; Ingram, P.R.; Michels, G. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: A prospective cohort study, systematic review and individual patient data meta-analysis. Crit. Care 2014, 18, R44. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.H.; Lin, C.C.; Huang, S.L.; Shih, H.M.; Wang, C.C.; Lee, C.C.; Wu, J.Y. Can procalcitonin tests aid in identifying bacterial infections associated with influenza pneumonia? A systematic review and meta-analysis. Influenza Other Respir. Viruses 2013, 7, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Wong, C.K.; Chan, P.K.; Chan, M.C.; Wong, R.Y.; Lun, S.W.; Ngai, K.L.; Lui, G.C.; Wong, B.C.; Lee, S.K.; et al. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults. PLoS ONE 2011, 6, e26050. [Google Scholar] [CrossRef]
- Bauer, T.T.; Ewig, S.; Marre, R.; Suttorp, N.; Welte, T.; Group, C.S. CRB-65 predicts death from community-acquired pneumonia. J. Intern. Med. 2006, 260, 93–101. [Google Scholar] [CrossRef]
- Christensen, I.; Haug, J.B.; Berild, D.; Bjørnholt, J.V.; Jelsness-Jørgensen, L.P. Hospital physicians’ experiences with procalcitonin—Implications for antimicrobial stewardship; a qualitative study. BMC Infect. Dis. 2020, 20, 515. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Mansour, M.K.; Ramirez, J.A.; Bond, S. Procalcitonin Use in Lower Respiratory Tract Infections; UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
- Rodriguez, A.H.; Aviles-Jurado, F.X.; Diaz, E.; Schuetz, P.; Trefler, S.I.; Sole-Violan, J.; Cordero, L.; Vidaur, L.; Estella, A.; Pozo Laderas, J.C.; et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis. J. Infect. 2016, 72, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Vilar, J.; Domingo, M.L.; Soto, C.; Cogollos, J. Radiology of bacterial pneumonia. Eur. J. Radiol. 2004, 51, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Cuquemelle, E.; Soulis, F.; Villers, D.; Roche-Campo, F.; Ara Somohano, C.; Fartoukh, M.; Kouatchet, A.; Mourvillier, B.; Dellamonica, J.; Picard, W.; et al. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. Intensive Care Med. 2011, 37, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018, 18, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, C. Using Procalcitonin to Guide Antibiotic Therapy. Open Forum Infect. Dis. 2017, 4, ofw249. [Google Scholar] [CrossRef] [PubMed]
- ECDC. European Antimicrobial Resistance Surveillance Network (EARS-Net). European Antimicrobial Resistance Surveillance Network (EARS-Net) (europa.eu); ECDC: Solna, Sweden, 2020. [Google Scholar]
- Pepper, D.J.; Sun, J.; Rhee, C.; Welsh, J.; Powers, J.H.; Danner, R.L.; Kadri, S.S. Procalcitonin-Guided Antibiotic Discontinuation and Mortality in Critically Ill Adults: A Systematic Review and Meta-analysis. Chest 2019, 155, 1109–1118. [Google Scholar] [CrossRef]
- Simonsen, G.S.; Blix, H.S.; Grave, K.; Urdahl, A.M.; Akselsen, P.E.; Andersen, C.T.; Caugant, D.A.; Dansie, L.; Elstrøm, P. NORM/NORM-VET, 2021 Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway; Veterinærinstituttet og Folkehelseinstituttet: Oslo, Norway, 2021. [Google Scholar]
- Holmberg, M.J.; Andersen, L.W. Collider Bias. JAMA 2022, 327, 1282–1283. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, D.T.; Helgeland, J.; Clench-Aas, J.; Laake, P.; Veierød, M.B. Observed to expected or logistic regression to identify hospitals with high or low 30-day mortality? PLoS ONE 2018, 13, e0195248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Proportion (Number of Patients) | |
---|---|
Median age 71 years (range 22–96) | 100% (116) |
Female/male | 41%/59% (47/69) |
CRB-65 score 0–1 | 62.9% (73) |
CRB-65 score 2 | 22.4% (26) |
CRB-65 score 3–4 | 13.8% (16) |
Prehospital antibiotics | 8.6% (10) |
Influenza type A/B | 96.5%/3.5% (112/4) |
Respiratory syncytial virus/human metapneumovirus | N = 1/1 |
Wards (longest stay) | |
Infection | 33% (38) |
Pulmonary | 22.4% (26) |
Geriatric | 11.2% (13) |
Oncology | 7.7% (9) |
Other (cardiology, surgery, nephrology, observation, neurology, hematology) | 19.8% (23) |
Intensive care unit | 6% (7) |
Intensive care unit during hospital stay | 16.4% (19) |
Inflammatory laboratory tests | Median value (min–max; IQR) |
CRP day 1 (mg/L) | 65 (1–323; 29–112) |
PCT day 1 (µg/L) | 0.16 (0.02–28.5; 0.07–0.71) |
Leucocytes day 1 (109/L) | 5.5 (0.6–16.8; 4.6–7.5) |
Days in hospital | 4 (1, 34; 2–6.5) |
Outcome Variable: Days of Antibiotic Therapy 1 | β-Coefficient (95%CI) | p-Value |
---|---|---|
Procalcitonin | 0.12 (0.01–0.23) | 0.026 |
Outcome variable: Antibiotic therapy in DDD/100 patient days 1 | β-coefficient (95%CI) | |
Procalcitonin | 0.17 (0.04–0.3) | 0.007 |
Outcome variable: 30 days mortality 2 | OR (95% CI) | |
Procalcitonin | 1.2 (1–1.4) | 0.023 |
Outcome variable: Intensive care unit stay 2 | OR (95% CI) | |
Procalcitonin | 1.1 (1–1.2) | 0.14 |
Procalcitonin Level Day 1 | |||
---|---|---|---|
<0.25 µg/L (N = 64) (Low) | 0.25 µg/L (N = 52) (High) | ||
Patients’ characteristics | p-value * | ||
Age (range; IQR) | 68.2 (22–95; 53.7–78.8) | 74.3 (26–96; 64.3–81) | 0.08 |
Median (IQR) | |||
Days in hospital | 3 (2–5) | 5 (3–9) | <0.001 |
Days with symptoms before the result of virus PCR was obtained | 3 (2–7) | 4 (2–7) | 0.39 |
Leucocytes on admission | 5.2 (4–7.2) | 6.1 (4.3–7.7) | 0.43 |
CRP on admission | 40 (15.5–75) | 116 (64, 173) | <0.001 |
N (% of total patients) | p-value | ||
Bacterial coinfection ** | 7 (6%) | 10 (8%) | 0.43 |
CRB-65 score < 2 on admission | 45 (39%) | 28 (24%) | 0.06 |
30 days mortality | 1 (0.9%) | 8 (6.9%) | 0.01 |
Intensive care stay | 4 (3.4%) | 15 (13%) | <0.01 |
Positive chest X-ray | 14 (12%) | 29 (25%) | <0.01 |
Antibiotic use | Median (interquartile range) | p-value | |
Days of antibiotic therapy (DOT) | 2 (0–4.5) | 4 (2–7.5) | <0.01 |
Antibiotic therapy in DDD/100 PD | 5 (2.7–8.2) | 8.4 (4–17.7) | <0.01 |
N (% of the 86 patients receiving antibiotics at admission) | p-value | ||
Narrow-spectrum antibiotics (only) | 26 (30%) | 18 (20%) | 0.03 |
Broad-spectrum antibiotics used | 15 (17%) | 27 (31%) | 0.03 |
Sensitivity | Specificity | PPV * | NPV * | AUROC ᵜ | |
---|---|---|---|---|---|
Bacterial coinfection ** | 59% | 54% | 20% | 88% | 0.51 |
Intensive care stay | 79% | 62% | 29% | 94% | 0.73 |
30 days mortality | 88.9% | 58.9% | 15.4% | 98% | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, I.; Berild, D.; Bjørnholt, J.V.; Jelsness-Jørgensen, L.-P.; Debes, S.M.; Haug, J.B. The Role of Procalcitonin as an Antimicrobial Stewardship Tool in Patients Hospitalized with Seasonal Influenza. Antibiotics 2023, 12, 573. https://doi.org/10.3390/antibiotics12030573
Christensen I, Berild D, Bjørnholt JV, Jelsness-Jørgensen L-P, Debes SM, Haug JB. The Role of Procalcitonin as an Antimicrobial Stewardship Tool in Patients Hospitalized with Seasonal Influenza. Antibiotics. 2023; 12(3):573. https://doi.org/10.3390/antibiotics12030573
Chicago/Turabian StyleChristensen, Ingrid, Dag Berild, Jørgen Vildershøj Bjørnholt, Lars-Petter Jelsness-Jørgensen, Sara Molvig Debes, and Jon Birger Haug. 2023. "The Role of Procalcitonin as an Antimicrobial Stewardship Tool in Patients Hospitalized with Seasonal Influenza" Antibiotics 12, no. 3: 573. https://doi.org/10.3390/antibiotics12030573
APA StyleChristensen, I., Berild, D., Bjørnholt, J. V., Jelsness-Jørgensen, L. -P., Debes, S. M., & Haug, J. B. (2023). The Role of Procalcitonin as an Antimicrobial Stewardship Tool in Patients Hospitalized with Seasonal Influenza. Antibiotics, 12(3), 573. https://doi.org/10.3390/antibiotics12030573