Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations
Abstract
:1. Introduction
2. Results and Discussions
2.1. The Synthesis of Irosustat NP and STX140 NP Resulted in the Formation of Small Unimodal NP Size with High Drug Encapsulation Efficiency
2.2. The Synthesis of Irosustat NP and STX140 NP Resulted in Uniform Smooth and Spherical Particles
2.3. Both Irosustat and STX140 Resulted in a Rapid Drug Release from PLGA NP Followed by a Slower and More Controlled Release
2.4. Both Drugs Alone, as Well as Their Nanoformulations Displayed Significant Amoebicidal Activity against the Infective A. Castellanii Trophozoites Belonging to the T4 Genotype
2.5. Irosustat and STX140 Exhibited Significant Effects against A. castellanii Excystment
2.6. Irosustat NP and STX140 NP Exhibited Reduced Host Cell Cytotoxicity Compared with Their Free Drugs
2.7. Irosustat and STX140 Reduced A. castellanii Cytopathogenicity
3. Materials and Methods
3.1. Synthesis of Irosustat and STX140
3.2. Preparation of Irosustat and STX140 Nanoparticles (NP)
3.3. Determination of PSD, Pdi, and ZP
3.4. Scanning Electron Microscopy
3.5. Determination of Drug Encapsulation Efficiency
3.6. In Vitro Release Studies
3.7. Culturing Acanthamoeba castellanii of the T4 Genotype
3.8. Amoebicidal Assays against the A. castellanii Trophozoites of the T4 Genotype
3.9. Excystment Assays
3.10. Cytotoxicity Assays
3.11. In Vitro Cytopathogenicity Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Putaporntip, C.; Kuamsab, N.; Nuprasert, W.; Rojrung, R.; Pattanawong, U.; Tia, T.; Yanmanee, S.; Jongwutiwes, S. Analysis of Acanthamoeba genotypes from public freshwater sources in Thailand reveals a new genotype, T23 Acanthamoeba bangkokensis sp. nov. Sci. Rep. 2021, 11, 17290. [Google Scholar] [CrossRef]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damhorst, G.L.; Watts, A.; Hernandez-Romieu, A.; Mel, N.; Palmore, M.; Ali, I.K.M.; Neill, S.G.; Kalapila, A.; Cope, J.R. Acanthamoeba castellanii encephalitis in a patient with AIDS: A case report and literature review. Lancet Infect. Dis. 2022, 22, e59–e65. [Google Scholar] [CrossRef]
- Rayamajhee, B.; Sharma, S.; Willcox, M.; Henriquez, F.L.; Rajagopal, R.N.; Shrestha, G.S.; Subedi, D.; Bagga, B.; Carnt, N. Assessment of genotypes, endosymbionts and clinical characteristics of Acanthamoeba recovered from ocular infection. BMC Infect Dis. 2022, 22, 757. [Google Scholar] [CrossRef]
- Aksozek, A.; McClellan, K.; Howard, K.; Niederkorn, J.; Alizadeh, H. Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. J. Parasitol. 2002, 88, 621–623. [Google Scholar] [CrossRef]
- Lloyd, D.; Turner, N.; Khunkitti, W.; Hann, A.; Furr, J.; Russell, A. Encystation in Acanthamoeba castellanii: Development of Biocide Resistance 1. J. Eukaryot. Microbiol. 2001, 48, 11–16. [Google Scholar] [CrossRef]
- Turner, N.; Russell, A.; Furr, J.; Lloyd, D. Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii. J. Antimicrob. Chemother. 2000, 46, 27–34. [Google Scholar] [CrossRef]
- Siddiqui, R.; Aqeel, Y.; Khan, N.A. The Development of Drugs against Acanthamoeba Infections. Antimicrob Agents Chemother 2016, 60, 6441–6450. [Google Scholar] [CrossRef] [Green Version]
- Schuster Frederick, L.; Guglielmo, B. Joseph; S., V.G. In-Vitro Activity of Miltefosine and Voriconazole on Clinical Isolates of Free-Living Amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. J. Eukaryot. Microbiol. 2006, 53, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Aichelburg, A.C.; Walochnik, J.; Assadian, O.; Prosch, H.; Steuer, A.; Perneczky, G.; Visvesvara, G.S.; Aspöck, H.; Vetter, N. Successful treatment of disseminated Acanthamoeba sp. infection with miltefosine. Emerg. Infect. Dis. 2008, 14, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Martinez, A.K.; Rodriguez-Durán, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of Action of Miltefosine on Leishmania donovani Involves the Impairment of Acidocalcisome Function and the Activation of the Sphingosine-Dependent Plasma Membrane Ca2+ Channel. Antimicrob. Agents Chemother. 2018, 62, e01614–e01617. [Google Scholar] [CrossRef] [Green Version]
- Potter, B.V.L. SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: Clinical progress, mechanism and future prospects. J. Mol. Endocrinol. 2018, 61, T233–T252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anbar, H.S.; Isa, Z.; Elounais, J.J.; Jameel, M.A.; Zib, J.H.; Samer, A.M.; Jawad, A.F.; El-Gamal, M.I. Steroid sulfatase inhibitors: The current landscape. Expert Opin. Ther. Pat. 2021, 31, 453–472. [Google Scholar] [CrossRef]
- Thomas, M.P.; Potter, B.V.L. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women’s Health. J. Med. Chem. 2015, 58, 7634–7658. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.P.; Potter, B.V.L. Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. J. Steroid Biochem. Mol. Biol. 2015, 153, 160–169. [Google Scholar] [CrossRef]
- Patron, N.J.; Durnford, D.G.; Kopriva, S. Sulfate assimilation in eukaryotes: Fusions, relocations and lateral transfers. BMC Evol. Biol. 2008, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mi-Ichi, F.; Yoshida, H. Unique features of Entamoeba sulfur metabolism; compartmentalization, physiological roles of terminal products, evolution and pharmaceutical exploitation. Int. J. Mol. Sci. 2019, 20, 4679. [Google Scholar] [CrossRef] [Green Version]
- Saeed, B.Q.; Qalaji, M.R.; Akbar, N.; Siddiqui, R.; Roberta, C.; Manzoor, S.; Muhammad, J.S.; Adrees, A.O.; Al-Shahrabi, R.; Khan, N.A. Evaluation of Nanoparticles with 5-Fluorouracil and Chloroquine on Acanthamoeba castellanii activity. Mol. Biochem. Parasitol. 2022, 250, 111492. [Google Scholar] [CrossRef]
- Akbar, N.; Cagliani, R.; Muhammad, J.S.; Rawas-Qalaji, M.; Saeed, B.Q.; Khan, N.A.; Siddiqui, R. Antiparasitic properties of miltefosine-based nanoformulations against protozoan pathogen, Acanthamoeba castellanii. Adv. Biomed. Health Sci. 2022, 1, 219. [Google Scholar]
- Wang, Y.; Qin, B.; Xia, G.; Choi, S.H. FDA’s poly (lactic-co-glycolic acid) research program and regulatory outcomes. AAPS J. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Adel, M.; Zahmatkeshan, M.; Akbarzadeh, A.; Rabiee, N.; Ahmadi, S.; Keyhanvar, P.; Rezayat, S.M.; Seifalian, A.M. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnol. Rep. 2022, 34, e00730. [Google Scholar] [CrossRef]
- Madawi, E.A.; Al Jayoush, A.R.; Rawas-Qalaji, M.; Thu, H.E.; Khan, S.; Sohail, M.; Mahmood, A.; Hussain, Z. Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023, 15, 657. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Holm, R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin. Drug Deliv. 2018, 15, 771–785. [Google Scholar] [CrossRef]
- Pourtalebi Jahromi, L.; Ghazali, M.; Ashrafi, H.; Azadi, A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020, 6, e03451. [Google Scholar] [CrossRef] [Green Version]
- Rayamajhee, B.; Willcox, M.D.; Henriquez, F.L.; Petsoglou, C.; Subedi, D.; Carnt, N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol. 2022, 38, 975–990. [Google Scholar] [CrossRef]
- Iovieno, A.; Ledee, D.R.; Miller, D.; Alfonso, E.C. Detection of bacterial endosymbionts in clinical Acanthamoeba isolates. Ophthalmology 2010, 117, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, L.W.L.; Ganeshapillai, D.; Thomas, M.P.; Sutcliffe, O.B.; Malini, B.; Mahon, M.F.; Purohit, A.; Potter, B.V.L. Structure–Activity Relationship for the First-in-Class Clinical Steroid Sulfatase Inhibitor Irosustat (STX64, BN83495). ChemMedChem 2011, 6, 2019–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leese, M.P.; Leblond, B.; Smith, A.; Newman, S.P.; Di Fiore, A.; De Simone, G.; Supuran, C.T.; Purohit, A.; Reed, M.J.; Potter, B.V.L. 2-Substituted Estradiol Bis-sulfamates, Multitargeted Antitumor Agents: Synthesis, In Vitro SAR, Protein Crystallography, and In Vivo Activity. J. Med. Chem. 2006, 49, 7683–7696. [Google Scholar] [CrossRef]
- Hamdy, R.; Fayed, B.; Hamoda, A.M.; Rawas-Qalaji, M.; Haider, M.; Soliman, S.S.M. Essential Oil-Based Design and Development of Novel Anti-Candida Azoles Formulation. Molecules 2020, 25, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, R.; Alsam, S.; Khan, N.A. The role of proteases in the differentiation of Acanthamoeba castellanii. FEMS Microbiol. Lett. 2008, 286, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, A.; Ting, E.L.S.; Anwar, A.; Faizi, S.; Shah, M.R.; Khan, N.A.; Siddiqui, R. Antiamoebic activity of plant-based natural products and their conjugated silver nanoparticles against Acanthamoeba castellanii (ATCC 50492). AMB Express 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N.A.; Shah, M.R.; Siddiqui, R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Siddiqui, R.; Iqbal, M.; Khan, N.A. Antibacterial activities of selected pure compounds isolated from gut bacteria of animals living in polluted environments. Antibiotics 2020, 9, 190. [Google Scholar] [CrossRef]
- Ventura, V.; Solà, J.; Celma, C.; Peraire, C.; Obach, R. In Vitro Metabolism of Irosustat, a Novel Steroid Sulfatase Inhibitor: Interspecies Comparison, Metabolite Identification, and Metabolic Enzyme Identification. Drug Metab. Dispos. 2011, 39, 1235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem. 2019, 181, 111587. [Google Scholar] [CrossRef]
- Woo, L.W.L.; Purohit, A.; Potter, B.V.L. Development of steroid sulfatase inhibitors. Mol. Cell. Endocrinol. 2011, 340, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Leese, M.P.; Hejaz, H.A.M.; Mahon, M.F.; Newman, S.P.; Purohit, A.; Reed, M.J.; Potter, B.V.L. A-Ring-Substituted Estrogen-3-O-sulfamates: Potent Multitargeted Anticancer Agents. J. Med. Chem. 2005, 48, 5243–5256. [Google Scholar] [CrossRef]
- Bubert, C.; Leese, M.P.; Mahon, M.F.; Ferrandis, E.; Regis-Lydi, S.; Kasprzyk, P.G.; Newman, S.P.; Ho, Y.T.; Purohit, A.; Reed, M.J.; et al. 3,17-Disubstituted 2-Alkylestra-1,3,5(10)-trien-3-ol Derivatives: Synthesis, In Vitro and In Vivo Anticancer Activity. J. Med. Chem. 2007, 50, 4431–4443. [Google Scholar] [CrossRef]
- Jourdan, F.; Bubert, C.; Leese, M.P.; Smith, A.; Ferrandis, E.; Regis-Lydi, S.; Newman, S.P.; Purohit, A.; Reed, M.J.; Potter, B.V.L. Effects of C-17 heterocyclic substituents on the anticancer activity of 2-ethylestra-1,3,5(10)-triene-3-O-sulfamates: Synthesis, in vitro evaluation and computational modelling. Org. Biomol. Chem. 2008, 6, 4108–4119. [Google Scholar] [CrossRef] [PubMed]
- Leese, M.P.; Newman, S.P.; Purohit, A.; Reed, M.J.; Potter, B.V.L. 2-Alkylsulfanyl estrogen derivatives: Synthesis of a novel class of multi-targeted anti-tumour agents. Bioorganic Med. Chem. Lett. 2004, 14, 3135–3138. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, F.; Leese, M.P.; Dohle, W.; Ferrandis, E.; Newman, S.P.; Chander, S.; Purohit, A.; Potter, B.V.L. Structure–Activity Relationships of C-17-Substituted Estratriene-3-O-sulfamates as Anticancer Agents. J. Med. Chem. 2011, 54, 4863–4879. [Google Scholar] [CrossRef] [PubMed]
Formulation | Size (nm) | Pdi | Charge (mV) | EE (%) |
---|---|---|---|---|
IRO NP | 145.2 ± 3.5 | 0.106 ± 0.02 | −13.6 ± 0.709 | 94.2 ± 0.04 |
STX NP | 243.6 ± 2.3 | 0.088 ± 0.01 | −15.3 ± 0.808 | 82.34 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, R.; Rawas-Qalaji, M.; El-Gamal, M.I.; Sajeev, S.; Jagal, J.; Zaraei, S.-O.; Sbenati, R.M.; Anbar, H.S.; Dohle, W.; Potter, B.V.L.; et al. Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations. Antibiotics 2023, 12, 561. https://doi.org/10.3390/antibiotics12030561
Siddiqui R, Rawas-Qalaji M, El-Gamal MI, Sajeev S, Jagal J, Zaraei S-O, Sbenati RM, Anbar HS, Dohle W, Potter BVL, et al. Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations. Antibiotics. 2023; 12(3):561. https://doi.org/10.3390/antibiotics12030561
Chicago/Turabian StyleSiddiqui, Ruqaiyyah, Mutasem Rawas-Qalaji, Mohammed I. El-Gamal, Sreedevi Sajeev, Jayalakshmi Jagal, Seyed-Omar Zaraei, Rawan M. Sbenati, Hanan S. Anbar, Wolfgang Dohle, Barry V. L. Potter, and et al. 2023. "Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations" Antibiotics 12, no. 3: 561. https://doi.org/10.3390/antibiotics12030561
APA StyleSiddiqui, R., Rawas-Qalaji, M., El-Gamal, M. I., Sajeev, S., Jagal, J., Zaraei, S. -O., Sbenati, R. M., Anbar, H. S., Dohle, W., Potter, B. V. L., & Khan, N. A. (2023). Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations. Antibiotics, 12(3), 561. https://doi.org/10.3390/antibiotics12030561