The BALB/c Mouse Model for the Evaluation of Therapies to Treat Infections with Aerosolized Burkholderia pseudomallei
Abstract
:1. Melioidosis
2. The Participants
3. Themes of Discussions
4. Current Therapies for the Treatment of Melioidosis
5. Mouse Models
6. Preparation and Aerosolization of B. pseudomallei for Bacterial Challenge
6.1. Preparation of Challenge Material
6.2. Aerosolization of Challenge Material
6.3. Route of Infection and Challenge Dose
6.4. Pathogenesis of Disease
6.5. Time of Treatment Initiation and Antibiotic Comparators
7. Points to Consider
7.1. Minimum Inhibitory Concentration (MIC) or Minimum Bactericidal Concentration (MBC)?
7.2. Pharmacokinetics in Infected Animals
7.3. Determination of the Host Response to Infection
8. Conclusions
- Comprehensive natural history studies are the only mechanism by which an appropriate and consistent intervention time may be defined.
- Bacterial strains K96243 and 1026b are both considered type strains of B. pseudomallei and are routinely utilized; however, the inclusion of additional strains may be warranted during the development of novel therapeutics and following the natural evolution of strains with different antibiotic susceptibility profiles.
- Both ceftazidime and co-trimoxazole are appropriate antibiotics to include in studies evaluating novel therapies for melioidosis.
- The bacterial load in a panel of tissues should be taken from a cohort of mice at the time of treatment initiation to determine the extent of pathogen dissemination (and to understand the stage of the disease). This could also be applied to other experimental time points (e.g., at the end of the treatment period).
- Initiating treatment at 24–36 h post-challenge appears to be appropriate for therapeutic intervention following inhalational infection with the K96243 strain of B. pseudomallei. For 1026b, this may be extended to 48 h post-challenge.
- Although there are variations and limitations in using this animal model, we are recapitulating key aspects of human disease, predominantly the acute nature of the disease, following exposure by the aerosol route of infection. This article has identified differences between laboratories and concludes that some differences are warranted (different laboratory setups, equipment, scientific questions, practices), and some differences can be aligned, e.g., limitations of the dosing length.
9. Considerations
- Is the bacteriological medium used to grow the bacterial challenge important to standardize?
- What is the target challenge dose for the aerosol challenge? Should this be more stringent to down-select candidates earlier? Currently, the targeted dose is one that reproducibly results in lethality in control animals, and there is an acceptance that variation is inherent due to inhalation exposure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dance, D. Treatment and prophylaxis of melioidosis. Int. J. Antimicrob. Agents 2014, 43, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitman, M.C.; Luck, T.; Marshall, C.S.; Anstey, N.M.; Ward, L.; Currie, B.J. Intravenous therapy duration and outcomes in melioidosis: A new treatment paradigm. PLoS Negl. Trop. Dis. 2015, 9, e0003586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, R.P.; Marshall, C.S.; Anstey, N.M.; Ward, L.; Currie, B.J. 2020 Review and revision of the 2015 Darwin melioidosis treatment guideline; paradigm drift not shift. PLoS Negl. Trop. Dis. 2020, 14, e0008659. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.; Zhiqiang, H.; Jiangao, C.; Tang, M.; Chen, H.; Lu, X.; Cao, L.; Deng, L.; Mao, X.; Li, Q. Molecular epidemiology and antibiotic resistance of Burkholderia pseudomallei isolates from Hainan, China. Medicine 2019, 98, e14461. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.E.; Webb, J.R.; Steinig, E.J.; Currie, B.J.; Price, E.P.; Sarovich, D.S. Taking the next gen step: Comprehensive antimicrobial resistance detection from Burkholderia pseudomallei. Ebio Med. 2021, 63, 103152. [Google Scholar] [CrossRef]
- Khosravi, Y.; Vellasamy, K.M.; Mariappan, V.; Ng, S.L.; Vadivelu, J. Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients. Sci. World J. 2014, 2014, 132971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnetterle, M.; Gorgé, O.; Nolent, F.; Boughammoura, A.; Sarilar, V.; Vigier, C.; Guillier, S.; Koch, L.; Degand, N.; Ramisse, V.; et al. Genomic and RT-qPCR analysis of trimethoprim-sulfamethoxazole and meropenem resistance in Burkholderia pseudomallei clinical isolates. PLoS Negl. Trop. Dis. 2021, 15, e0008913. [Google Scholar] [CrossRef]
- Gee, J.E.; Bower, W.A.; Kunkel, A.; Petras, J.; Gettings, J.; Bye, M.; Firestone, M.; Elrod, M.G.; Liu, L.; Blaney, D.D.; et al. Multistate Outbreak of Melioidosis Associated with Imported Aromatherapy Spray. N. Engl. J. Med. 2022, 386, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.; Duwell, M.M.; Elrod, M.G.; Thompson, R.J.; Crum, D.A.; Jacobs, R.M.; Gee, J.E.; Kolton, C.B.; Liu, L.; Blaney, D.D.; et al. Human Melioidosis Caused by Novel Transmission of Burkholderia pseudomallei from Freshwater Home Aquarium, United States. Emerg. Infect. Dis. 2021, 27, 3030–3035. [Google Scholar] [CrossRef]
- CDC Health Alert. Melioidosis Locally Endemic in Areas of the Mississippi Gulf Coast after Burkholderia pseudomallei Isolated in Soil and Water and Linked to Two Cases—Mississippi, 2020 and 2022. July 2022. Available online: https://www.emergency.cdc.gov/han/2022/pdf/CDC_HAN_470.pdf (accessed on 27 February 2023).
- Limmathurotsakul, D.; Golding, N.; Dance, D.A.B.; Messina, J.P.; Pigott, D.M.; Moyes, C.L.; Rolim, D.B.; Bertherat, E.; Day, N.P.J.; Peacock, S.J.; et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 2016, 1, 15008. [Google Scholar] [CrossRef] [Green Version]
- Savelkoel, J.; Dance, D.A.B.; Currie, B.J.; Limmathurotsakul, D.; Wiersinga, W.J. A call to action: Time to recognise melioidosis as a neglected tropical disease. Lancet Infect. Dis. 2022, 22, e176–e182. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Virk, H.S.; Torres, A.G.; Currie, B.J.; Peacock, S.J.; Dance, D.A.B.; Limmathurotsakul, D. Melioidosis. Nat. Rev. Dis. Primers 2018, 4, 17107. [Google Scholar] [CrossRef] [PubMed]
- Limmathurotsakul, D.; Chaowagul, W.; Chierakul, W.; Stepniewska, K.; Maharjan, B.; Wuthiekanun, V.; White, N.J.; Day, N.P.J.; Peacock, S.J. Risk factors for recurrent melioidosis in northeast Thailand. Clin. Infect. Dis. 2006, 43, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Limmathurotsakul, D.; Funnell, S.G.; Torres, A.G.; Morici, L.A.; Brett, P.J.; Dunachie, S.; Atkins, T.; Altmann, D.M.; Bancroft, G.; Peacock, S.J. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg. Infect. Dis. 2015, 21, e141480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Koo, G.C.; Yap, E.H.; Chua, K.L.; Gan, Y.H. Model of differential susceptibility to mucosal Burkholderia pseudomallei infection. Infect. Immun. 2002, 70, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Leakey, A.K.; Ulett, G.C.; Hirst, R.G. BALB/c and C57Bl/6 mice infected with virulent Burkholderia pseudomallei provide contrasting animal models for the acute and chronic forms of human melioidosis. Microb. Pathog. 1998, 24, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Conejero, L.; Patel, N.; de Reynal, M.; Oberdorf, S.; Prior, J.; Felgner, P.L.; Titball, R.W.; Salguero, F.J.; Bancroft, G.J. Low-dose exposure of C57BL/6 mice to Burkholderia pseudomallei mimics chronic human melioidosis. Am. J. Pathol. 2011, 179, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Bearss, J.J.; Hunter, M.; Dankmeyer, J.L.; Fritts, K.A.; Klimko, C.P.; Weaver, C.H.; Shoe, J.L.; Quirk, A.V.; Toothman, R.G.; Webster, W.M.; et al. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS ONE 2017, 12, e0172627. [Google Scholar] [CrossRef] [Green Version]
- Massey, S.; Yeager, L.A.; Blumentritt, C.A.; Vijayakumar, S.; Sbrana, E.; Peterson, J.W.; Brasel, T.; LeDuc, J.W.; Endsley, J.J.; Torres, A.G. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection. Sci. Rep. 2014, 4, 4305. [Google Scholar] [CrossRef]
- Lever, M.S.; Nelson, M.; Stagg, A.J.; Beedham, R.J.; Simpson, A.J. Experimental acute respiratory Burkholderia pseudomallei infection in Balb/c mice. Int. J. Exp. Pathol. 2009, 90, 16–25. [Google Scholar] [CrossRef]
- West, T.E.; Myers, N.D.; Liggitt, H.D.; Skerrett, S.J. Murine pulmonary infection and inflammation induced by inhalation of Burkholderia pseudomallei. Int. J. Exp. Pathol. 2012, 93, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Jeddeloh, J.A.; Fritz, D.L.; Waag, D.M.; Hartings, J.M.; Andrews, G.P. Biodefense-driven murine model of pneumonic melioidosis. Infect. Immun. 2003, 71, 584–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funnell, S.G.P.; Tree, J.A.; Hatch, G.J.; Bate, S.R.; Hall, G.; Pearson, G.; Rayner, E.L.; Roberts, A.D.G.; Vipond, J. Dose-dependant acute or subacute disease caused by Burkholderia pseudomallei strain NCTC 13392 in a BALB/c aerosol model of infection. J. Appl. Microbiol. 2019, 127, 1224–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.R.; Pitt, L.M. Chapter 5: Infectious Disease Aerobiology: Aerosol Challenge Methods. In Biodefense Research Methodology and Animal Models; Swearengen, J.R., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 65–79. [Google Scholar]
- Klimko, C.P.; Treviño, S.R.; Moreau, A.M.; Cuadrado, M.J.A.; Meyer, J.R.; Fetterer, D.P.; Welkos, S.L.; Worsham, P.L.; Kreiselmeier, N.; Soffler, C.; et al. The Impact of Age and Sex on Mouse Models of Melioidosis. Pathogens 2020, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Wolff, N.S.; Jacobs, M.C.; Haak, B.W.; Roelofs, J.J.T.H.; de Vos, A.F.; Hugenholtz, F.; Wiersinga, W.J. Vendor effects on murine gut microbiota and its influence on lipopolysaccharide-induced lung inflammation and Gram-negative pneumonia. Intensive Care Med. Exp. 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.S.; de Vries, L.; Kot, W.; Hansen, L.H.; Castro-Mejía, J.L.; Vogensen, F.K.; Hansen, A.K.; Nielsen, D.S. Mouse Vendor Influence on the Bacterial and Viral Gut Composition Exceeds the Effect of Diet. Viruses 2019, 11, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericsson, A.C.; Davis, J.W.; Spollen, W.; Bivens, N.; Givan, S.; Hagan, C.E.; McIntosh, M.; Franklin, C.L. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE 2015, 10, e0116704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amemiya, K.; Dankmeyer, J.L.; Fetterer, D.P.; Worsham, P.L.; Welkos, S.L.; Cote, C.K. Comparison of the early host immune response to two widely diverse virulent strains of Burkholderia pseudomallei that cause acute and chronic infections in Balb/c mice. Microb. Pathog. 2015, 86, 53–63. [Google Scholar] [CrossRef]
- Trevino, S.R.; Klimko, C.P.; Reed, M.C.; Aponte-Cuadrado, M.J.; Hunter, M.; Shoe, J.L.; Meyer, J.R.; Dankmeyer, J.L.; Biryukov, S.S.; Quirk, A.V.; et al. Disease progression in mice exposed to low-doses of aerosolized clinical isolates of Burkholderia pseudomallei. PLoS ONE 2018, 13, e0208277. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Davies, C.; Nunez, A.; Hibbs, S.; Eastaugh, L.; Harding, S.; Jordan, J.; Barnes, K.; Oyston, P.; Eley, S. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis. Front. Cell. Infect. Microbiol. 2012, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Van Zandt, K.E.; Tuanyok, A.; Keim, P.S.; Warren, R.L.; Gelhaus, H.C. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing. Front. Cell. Infect. Microbiol. 2012, 2, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagley, S.; Scott, A.E.; Ireland, P.M.; Prior, J.L.; Atkins, T.P.; Bancroft, G.J.; Studholme, D.J.; Titball, R.W. Genome Resequencing of Laboratory Stocks of Burkholderia pseudomallei K96243. Microbiol. Resour. Announc. 2019, 8, e01529-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartings, J.M.; Roy, C.J. The automated bioaerosol exposure system: Preclinical platform development and a respiratory dosimetry application with nonhuman primates. J. Pharmacol. Toxicol. Methods 2004, 49, 39–55. [Google Scholar] [CrossRef]
- Gelhaus, H.C.; Anderson, M.S.; Fisher, D.A.; Flavin, M.T.; Xu, Z.Q.; Sanford, D.C. Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis. Sci. Rep. 2013, 3, 1146. [Google Scholar] [CrossRef] [Green Version]
- Guyton, A.C. Measurement of the respiratory volumes of laboratory animals. Am. J. Physiol. 1947, 150, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Harper, G.J.; Morton, J.D. The respiratory retention of bacterial aerosols: Experiments with radioactive spores. J. Hyg. 1953, 51, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Barnes, K.B.; Hamblin, K.H.; Richards, M.I.; Laws, T.R.; Vente, A.; Atkins, H.S.; Harding, S.V. Demonstrating the Protective Efficacy of the Novel Fluoroquinolone Finafloxacin against an Inhalational Exposure to Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2017, 61, e00082-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shearer, J.D.; Saylor, M.L.; Butler, C.M.; Treston, A.M.; Heine, H.S.; Chiraku, S.; Schweizer, H.P.; Louie, A.; Drusano, D.L.; Zumbrun, S.D.; et al. GC-072, a Novel Therapeutic Candidate for Oral Treatment of Melioidosis and Infections Caused by Select Biothreat Pathogens. Antimicrob. Agents Chemother. 2019, 63, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, T.E.; Myers, N.D.; Limmathurotsakul, D.; Liggitt, H.D.; Chantratita, N.; Peacock, S.J.; Skerrett, S.J. Pathogenicity of high-dose enteral inoculation of Burkholderia pseudomallei to mice. Am. J. Trop. Med. Hyg. 2010, 83, 1066–1069. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.Y.; Liu, Y.S.; Sivalingam, P.; Sim, S.H.; Wang, D.; Paucod, J.C.; Gauthier, Y.; Ooi, E.E. Burkholderia pseudomallei aerosol infection results in differential inflammatory responses in Balb/c and C57bl/6 mice. J. Med. Microbiol. 2008, 57, 508–515. [Google Scholar] [CrossRef]
- Barnes, K.B.; Richards, M.; Burgess, G.; Armstrong, S.J.; Bentley, C.; Maishman, T.; Laws, T.R.; Nelson, M.; Harding, S.V. Investigation of a combination therapy approach for the treatment of melioidosis. Front. Microbiol. 2022, 13, 934312. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Jimenez, W.L.; Salguero, F.J.; D’Elia, R.V. Histopathological and immunohistochemical characterization of Burkholderia pseudomallei lesions in an acute model of infection with Balb/c mice. Int. J. Exp. Pathol. 2017, 98, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantratita, N.; Wuthiekanun, V.; Boonbumrung, K.; Tiyawisutsri, R.; Vesaratchavest, M.; Limmathurotsakul, D.; Chierakul, W.; Wongratanacheewin, S.; Pukritiyakamee, S.; White, N.J.; et al. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J. Bacteriol. 2007, 189, 807–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laws, T.R.; Barnes, K.B.; Jenner, D.C.; Núñez, A.; Richards, M.I.; Thwaite, J.E.; Vente, A.; Rushton, D.; Nelson, M.; Harding, S.V. An Investigation into the Re-Emergence of Disease Following Cessation of Antibiotic Treatment in Balb/c Mice Infected with Inhalational Burkholderia pseudomallei. Antibiotics 2022, 11, 1442. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, S.; Duffy, E.; Hickman, M.; Halasohoris, S.; Zumbrun, S.D. Efficacy of Delafloxacin against the Biothreat Pathogen Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2021, 65, e0073621. [Google Scholar] [CrossRef]
- Otvos, L., Jr.; Ostorhazi, E.; Szabo, D.; Zumbrun, S.D.; Miller, L.L.; Halasohoris, S.A.; Desai, P.D.; Int Veldt, S.M.; Kraus, C.N. Synergy Between Proline-Rich Antimicrobial Peptides and Small Molecule Antibiotics Against Selected Gram-Negative Pathogens In Vitro and In Vivo. Front. Chem. 2018, 6, 309. [Google Scholar] [CrossRef] [PubMed]
- Pfefferle, D.A.; Hackett, M.; Anderson, M.S.; Gibbs, S.; Henning, L.N.; Joice, A.C.; Meister, G.T. Efficacy of Ceftazidime in a Murine Model Following a Lethal Aerosol Exposure to Burkholderia pseudomallei. Res. Square 2022. preprint. [Google Scholar] [CrossRef]
- Nierman, W.C.; Yu, Y.; Losada, L. The In Vitro antibiotic tolerant persister population in Burkholderia pseudomallei is altered by environmental factors. Front. Microbiol. 2015, 6, 1338. [Google Scholar] [CrossRef] [Green Version]
- Auty, J.M.; Jenkins, C.H.; Hincks, J.; Straatman-Iwanowska, A.A.; Allcock, N.; Turapov, O.; Galyov, E.E.; Harding, S.V.; Mukamolova, G.V. Generation of Distinct Differentially Culturable Forms of Burkholderia following Starvation at Low Temperature. Microbiol. Spectr. 2022, 10, e0211021. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Document M45-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016; pp. 19087–19098. [Google Scholar]
- Sim, S.H.; Liu, Y.; Wang, D.; Novem, V.; Sivalingam, S.P.; Thong, T.W.; Ooi, E.E.; Tan, G. Innate immune responses of pulmonary epithelial cells to Burkholderia pseudomallei infection. PLoS ONE 2009, 4, e7308. [Google Scholar] [CrossRef] [Green Version]
- Laws, T.R.; Clark, G.C.; D’Elia, R.V. Immune profiling of the progression of a BALB/c mouse aerosol infection by Burkholderia pseudomallei and the therapeutic implications of targeting HMGB1. Int. J. Infect Dis. 2015, 40, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laws, T.R.; Smither, S.J.; Lukaszewski, R.A.; Atkins, H.S. Neutrophils are the predominant cell-type to associate with Burkholderia pseudomallei in a BALB/c mouse model of respiratory melioidosis. Microb. Pathog. 2011, 51, 471–475. [Google Scholar] [CrossRef] [PubMed]
Dstl | USAMRIID | Battelle | ITI | ||
---|---|---|---|---|---|
Mouse | Strain | BALB/c | BALB/c | BALB/c | BALB/c |
Gender | Female | Female | Female | Female | |
Age (weeks) | 6–8 | 6–8 | 6–8 | 6–8 | |
Challenge | Target dose (CFU) | 50–100 (K96243) | 100–1000 (1026b) | 8100 (K96243) | 1900 (1026b) |
Retained or inhaled | Retained | Inhaled | Inhaled | Inhaled | |
MLD/LD50 | 5 (MLD) 1 | 10 (LD50) 2 | 162 (LD50) 3 | 76 (LD50) 4 |
Dstl | USAMRIID | Battelle | ITI | ||
---|---|---|---|---|---|
Bacterial strain | K96243 | 1026b | K96243 | 1026b K96243 | |
Culture | Solid Agar | LA 37° for 26 h | N/A | N/A | TSA 35° for 18 h |
Liquid Media | LBB 16 ± 4 h at 200 rpm at 37 °C | GTB 24 ± 4 h at 100–110 ± 10 rpm at 37 °C | LBG 18–24 h at 37 °C at 250 rpm, followed by a second round of culturing in LBG as described | BHI 12–14 h at 37 °C at 200 rpm |
Dstl | USAMRIID | Battelle | ITI | |
---|---|---|---|---|
Apparatus | AeroMP | Aero3G | Customized system | AeroMP |
Exposure type | Nose only | Whole body | Nose only | Whole body |
Aerosol generator | Collison 3-Jet nebulizer | Collison 3-Jet nebulizer | Collison 6-jet nebulizer | Collison 3-Jet nebulizer |
Spray Fluid | PBS | GTB | BSG | BHI |
Pressure (psi) | 18–24 | 21–25 | 18–24 | 18–24 |
Aerosol sampler | ||||
Type | All-glass impinger | All-glass impinger | All-glass impinger | All-glass impinger |
Sampling flow rate (L/min) | 12 | 6 | 6 | 12 |
Sampling time (min) | 1 | 10 | 10 | 10 |
Sampling fluid | PBS | GTB and antifoam A | BSG | BHI and antifoam A |
Enumeration | ||||
Plating media | LBG | SBA | LBGA or CBA | TSA |
Dilution fluid | PBS | GTB | BSG | PBS |
Aerosol characterization | ||||
Relative humidity (%) | 69–71 | 60–72 | 55–75% | 54–74 |
Size distribution (µm) | ~1–2 | ~1–3 | ~1–2 | ~1–3 |
Temperature (°C) | 20.4 ± 0.64 | 22.6–25.1 | 18.3–22.9 | 21.7 ± 1.3 |
Typical spray factor | 2.5 × 10−7 | 3.5 × 10−7 | 1.0 × 10−6 | 1.1 × 10−6 |
Dstl | USAMRIID | Battelle | ITI | |
---|---|---|---|---|
Standard-of-care antibiotic | Co-trimoxazole | Ceftazidime | Ceftazidime | Ceftazidime |
Route of administration | Oral | IP | IP | IP |
Dose (mg/kg) | 78 | 150 | 150 or 300 | 150 |
Frequency of dosing per day | Q12 | Q6 | Q6 | Q6 |
Duration (days) | 14 | 14–21 | 14 | 14 |
PEP intervention (hours post-challenge) | 6 | 24 | <24 | 24 |
Treatment intervention (hours post-challenge) | 24–48 | 48 | 24 | 48 |
Biosamples | ||||
Tissues for bacteriology | Spleen, liver, lungs, blood, brain (occasionally kidneys, bone marrow, urine) | Spleen, lungs | Lung, liver, spleen, kidney, brain, blood | Lung, liver, spleen, blood |
Immunology | Cytokines | No | No | No |
Clinical chemistry | Yes | No | No | No |
Histology | Yes | No | No | No |
Other measures | Body and tissue weights, clinical scores | Clinical scores | Body weight | Body weight, clinical scores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© Crown copyright (2023), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected]
Share and Cite
Nelson, M.; Barnes, K.B.; Davies, C.H.; Cote, C.K.; Meinig, J.M.; Biryukov, S.S.; Dyer, D.N.; Frick, O.; Heine, H.; Pfefferle, D.A.; et al. The BALB/c Mouse Model for the Evaluation of Therapies to Treat Infections with Aerosolized Burkholderia pseudomallei. Antibiotics 2023, 12, 506. https://doi.org/10.3390/antibiotics12030506
Nelson M, Barnes KB, Davies CH, Cote CK, Meinig JM, Biryukov SS, Dyer DN, Frick O, Heine H, Pfefferle DA, et al. The BALB/c Mouse Model for the Evaluation of Therapies to Treat Infections with Aerosolized Burkholderia pseudomallei. Antibiotics. 2023; 12(3):506. https://doi.org/10.3390/antibiotics12030506
Chicago/Turabian StyleNelson, Michelle, Kay B. Barnes, Carwyn H. Davies, Christopher K. Cote, J. Matthew Meinig, Sergei S. Biryukov, David N. Dyer, Ondraya Frick, Henry Heine, Denise A. Pfefferle, and et al. 2023. "The BALB/c Mouse Model for the Evaluation of Therapies to Treat Infections with Aerosolized Burkholderia pseudomallei" Antibiotics 12, no. 3: 506. https://doi.org/10.3390/antibiotics12030506
APA StyleNelson, M., Barnes, K. B., Davies, C. H., Cote, C. K., Meinig, J. M., Biryukov, S. S., Dyer, D. N., Frick, O., Heine, H., Pfefferle, D. A., Horstman-Smith, A., Barbaras, J., & Harding, S. V. (2023). The BALB/c Mouse Model for the Evaluation of Therapies to Treat Infections with Aerosolized Burkholderia pseudomallei. Antibiotics, 12(3), 506. https://doi.org/10.3390/antibiotics12030506