The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review
Abstract
:1. Introduction
2. Antimicrobial Resistance (AMR) in Humans and in Animals
2.1. Food-Producing Animals
2.2. Companion Animals
3. Antibiotics in Veterinary Medicine: Responsible and Prudent Use
3.1. Food-Producing Animals
3.2. Companion Animals
4. The PK/PD Approach for Antibiotics in Veterinary Medicine
4.1. Mutational Resistance during Antibiotic Treatment
- (1)
- The exposures needed to suppress the emergence of resistance for Gram-negative bacteria varied depending on: the antibiotic assayed; the extent of the experiment; the bacterial species and the specific bacterial isolate tested (genomic differences between laboratory reference strains and the corresponding clinical isolates have to be taken into account [126,127]); the bacterial load (the possibility of a pre-existing resistant subpopulation increases in the case of larger bacterial burden [128]); and the PD indices (MIC or MPC) [125,129].
- (2)
- As is described in more detail below, patient illness severity should be responsible for the high interpatient variability in antibiotic pharmacokinetics. Commonly, patients in Intensive Care Units (ICU) undergo important pathophysiological changes that have an impact on both the PD and mostly PK characteristics of antibiotics.
- (3)
4.2. Patients in Intensive Care Units (ICUs)
- (1)
- Infections are responsible for inflammation processes, which can increase capillary permeability, resulting in an increase of fluids in the interstitial space and a dilution of the systemic concentration of antibiotics. Antibiotics with a low volume of distribution (<20 L/kg bw, β-lactams, aminoglycosides) may especially result in under-dosing [134].
- (2)
- Hypoalbuminemia (humans: serum albumin concentrations < 2 g/dL) is frequently observed (humans: 35–40%) and should be taken into account when the antibiotic is highly bound (>80%), as this can lead to a decrease in the total plasma concentration [135,136]. However, this does not necessarily require an obligatory dosage regimen adaptation [104].
- (3)
5. AMR in Animals: A Really Complex Phenomenon
5.1. Aquatic Environments and Aquaculture
5.2. Intestinal Microbiome and Antibiotics MRLs in Food of Animal Origin
5.2.1. Intestinal Microbiome
5.2.2. Residues of Antibiotics in Food of Animal Origin
5.3. Extra-Label Use
5.3.1. Dose Extrapolation
5.3.2. Pharmaceutical Dosage Form
5.4. Exotic Pets and Wildlife
5.4.1. Exotic Pets
5.4.2. Wildlife
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaw-Taylor, L. An Introduction to the History of Infectious Diseases, Epidemics and the Early Phases of the Long-Run Decline in Mortality. Econ. Hist. Rev. 2020, 73, E1–E19. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Gousia, P. Agriculture and Food Animals as a Source of Antimicrobial-Resistant Bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, A.M. Animals and Antibiotics. Int. J. Antimicrob. Agents 2001, 18, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, R.H.; Bowen, R.E. Antibiotic Use in Animal Agriculture. J. Appl. Microbiol. 1997, 83, 531–541. [Google Scholar] [CrossRef]
- Steinfeld, H. The Livestock Revolution--a Global Veterinary Mission. Vet. Parasitol. 2004, 125, 19–41. [Google Scholar] [CrossRef]
- The Nobel Prize in Physiology or Medicine 1945. Available online: https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/ (accessed on 12 January 2023).
- Von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial Resistance to Antimicrobial Agents. Antibiotics 2021, 10, 593. [Google Scholar] [CrossRef]
- EFSA. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2018/2019. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/6490 (accessed on 12 January 2023).
- European Commission. EU Action on Antimicrobial Resistance. Available online: https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_en (accessed on 12 January 2023).
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 12 January 2023).
- Brogan, D.M.; Mossialos, E. A Critical Analysis of the Review on Antimicrobial Resistance Report and the Infectious Disease Financing Facility. Glob. Health 2016, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text with EEA Relevance). Available online: https://www.legislation.gov.uk/eur/2019/6/contents (accessed on 29 December 2022).
- Broens, E.M.; van Geijlswijk, I.M. Prudent Use of Antimicrobials in Exotic Animal Medicine. Vet. Clin. N. Am. Exot. Anim. Pract. 2018, 21, 341–353. [Google Scholar] [CrossRef]
- Magnusson, U. Prudent and Effective Antimicrobial Use in a Diverse Livestock and Consumer’s World. J. Anim. Sci. 2020, 98, S4–S8. [Google Scholar] [CrossRef]
- Tóth, A.G.; Tóth, I.; Rózsa, B.; Dubecz, A.; Patai, Á.V.; Németh, T.; Kaplan, S.; Kovács, E.G.; Makrai, L.; Solymosi, N. Canine Saliva as a Possible Source of Antimicrobial Resistance Genes. Antibiotics 2022, 11, 1490. [Google Scholar] [CrossRef] [PubMed]
- Prouillac, C. Use of Antimicrobials in a French Veterinary Teaching Hospital: A Retrospective Study. Antibiotics 2021, 10, 1369. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Silva, V.; Igrejas, G.; Poeta, P. Impact of European Pet Antibiotic Use on Enterococci and Staphylococci Antimicrobial Resistance and Human Health. Future Microbiol. 2021, 16, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Antibiotic Resistance and Its Cost: Is It Possible to Reverse Resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the Use of Antibiotics in Food-Producing Animals and Its Associations with Antibiotic Resistance in Food-Producing Animals and Human Beings: A Systematic Review and Meta-Analysis. Lancet Planet Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- D’Costa, V.M.; Griffiths, E.; Wright, G.D. Expanding the Soil Antibiotic Resistome: Exploring Environmental Diversity. Curr. Opin. Microbiol. 2007, 10, 481–489. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M.; Chai, B.; Cole, J.R.; et al. In-Feed Antibiotic Effects on the Swine Intestinal Microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Van den Meersche, T.; Rasschaert, G.; Vanden Nest, T.; Haesebrouck, F.; Herman, L.; Van Coillie, E.; Van Weyenberg, S.; Daeseleire, E.; Heyndrickx, M. Longitudinal Screening of Antibiotic Residues, Antibiotic Resistance Genes and Zoonotic Bacteria in Soils Fertilized with Pig Manure. Environ. Sci. Pollut. Res. Int. 2020, 27, 28016–28029. [Google Scholar] [CrossRef]
- Johnsen, P.J.; Townsend, J.P.; Bøhn, T.; Simonsen, G.S.; Sundsfjord, A.; Nielsen, K.M. Factors Affecting the Reversal of Antimicrobial-Drug Resistance. Lancet Infect. Dis. 2009, 9, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Simoons-Smit, A.M.; Savelkoul, P.H.; Stoof, J.; Starink, T.M.; Vandenbroucke-Grauls, C.M. Transmission of Staphylococcus aureus between Humans and Domestic Animals in a Household. Eur. J. Clin. Microbiol 2000, 19, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Van Duijkeren, E.; Wolfhagen, M.J.H.M.; Box, A.T.A.; Heck, M.E.O.C.; Wannet, W.J.B.; Fluit, A.C. Human-to-Dog Transmission of Methicillin-Resistant Staphylococcus aureus. Emerg. Infect. Dis. 2004, 10, 2235–2237. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.-L.; Ferran, A.A.; Bousquet-Melou, A.; Pelligand, L.; Lees, P. Veterinary Medicine Needs New Green Antimicrobial Drugs. Front. Microbiol. 2016, 7, 1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pijpers, A.; Schoevers, E.J.; van Gogh, H.; van Leengoed, L.A.; Visser, I.J.; van Miert, A.S.; Verheijden, J.H. The Influence of Disease on Feed and Water Consumption and on Pharmacokinetics of Orally Administered Oxytetracycline in Pigs. J. Anim. Sci. 1991, 69, 2947–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, P.; Gyrd-Hansen, N. Bioavailability of Oxytetracycline, Tetracycline and Chlortetracycline after Oral Administration to Fed and Fasted Pigs. J. Vet. Pharmacol. Ther. 1996, 19, 305–311. [Google Scholar] [CrossRef]
- Pollet, R.A.; Glatz, C.E.; Dyer, D.C.; Barnes, H.J. Pharmacokinetics of Chlortetracycline Potentiation with Citric Acid in the Chicken. Am. J. Vet. Res. 1983, 44, 1718–1721. [Google Scholar]
- Bibbal, D.; Dupouy, V.; Ferré, J.P.; Toutain, P.L.; Fayet, O.; Prère, M.F.; Bousquet-Mélou, A. Impact of Three Ampicillin Dosage Regimens on Selection of Ampicillin Resistance in Enterobacteriaceae and Excretion of BlaTEM Genes in Swine Feces. Appl. Environ. Microbiol. 2007, 73, 4785–4790. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.H.; Aarestrup, F.; Sørensen, S.J. Quantification of Bioavailable Chlortetracycline in Pig Feces Using a Bacterial Whole-Cell Biosensor. Vet. Microbiol. 2002, 87, 51–57. [Google Scholar] [CrossRef]
- Herrick, J.B.; Haynes, R.; Heringa, S.; Brooks, J.M.; Sobota, L.T. Coselection for Resistance to Multiple Late-Generation Human Therapeutic Antibiotics Encoded on Tetracycline Resistance Plasmids Captured from Uncultivated Stream and Soil Bacteria. J. Appl. Microbiol. 2014, 117, 380–389. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Walsh, T.R.; Liu, D.; Shen, Z.; Zhang, R.; Yin, W.; Yao, H.; Li, J.; Shen, J. Plasmid-Mediated Novel BlaNDM-17 Gene Encoding a Carbapenemase with Enhanced Activity in a Sequence Type 48 Escherichia coli Strain. Antimicrob. Agents Chemother. 2017, 61, e02233-16. [Google Scholar] [CrossRef] [Green Version]
- Pulss, S.; Semmler, T.; Prenger-Berninghoff, E.; Bauerfeind, R.; Ewers, C. First Report of an Escherichia coli Strain from Swine Carrying an OXA-181 Carbapenemase and the Colistin Resistance Determinant MCR-1. Int. J. Antimicrob. Agents 2017, 50, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Huygens, J.; Rasschaert, G.; Heyndrickx, M.; Dewulf, J.; Van Coillie, E.; Quataert, P.; Daeseleire, E.; Becue, I. Impact of Fertilization with Pig or Calf Slurry on Antibiotic Residues and Resistance Genes in the Soil. Sci. Total Environ. 2022, 822, 153518. [Google Scholar] [CrossRef] [PubMed]
- Rasschaert, G.; Elst, D.V.; Colson, L.; Herman, L.; de Carvalho Ferreira, H.C.; Dewulf, J.; Decrop, J.; Meirlaen, J.; Heyndrickx, M.; Daeseleire, A.E. Antibiotic Residues and Antibiotic-Resistant Bacteria in Pig Slurry Used to Fertilize Agricultural Fields. Antibiotics 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libisch, B.; Keresztény, T.; Kerényi, Z.; Kocsis, R.; Sipos, R.; Papp, P.P.; Olasz, F. Metagenomic Analysis of Acquired Antibiotic Resistance Determinants in the Gut Microbiota of Wild Boars (Sus Scrofa)—Preliminary Results. J. Vet. Res. 2020, 64, 111–118. [Google Scholar] [CrossRef]
- Yang, D.; Heederik, D.J.J.; Scherpenisse, P.; Van Gompel, L.; Luiken, R.E.C.; Wadepohl, K.; Skarżyńska, M.; Van Heijnsbergen, E.; Wouters, I.M.; Greve, G.D.; et al. Antimicrobial Resistance Genes Aph(3′)-III, Erm(B), Sul2 and Tet(W) Abundance in Animal Faeces, Meat, Production Environments and Human Faeces in Europe. J. Antimicrob. Chemother. 2022, 77, 1883–1893. [Google Scholar] [CrossRef]
- Campos Calero, G.; Caballero Gómez, N.; Benomar, N.; Pérez Montoro, B.; Knapp, C.W.; Gálvez, A.; Abriouel, H. Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain. Front. Microbiol. 2018, 9, 2099. [Google Scholar] [CrossRef] [Green Version]
- Preena, P.G.; Swaminathan, T.R.; Kumar, V.J.R.; Singh, I.S.B. Antimicrobial Resistance in Aquaculture: A Crisis for Concern. Biologia 2020, 75, 1497–1517. [Google Scholar] [CrossRef]
- Sandor, Z.J.; Papp, Z.G.; Kosáros, T.J.; Hegedűs, R.; Csengeri, I. Potential Effects of Pharmaceuticals and Their Residues in Aquatic Environment. Studia Univ. VG SSV 2012, 22, 247–255. [Google Scholar]
- Burridge, L.; Weis, J.S.; Cabello, F.; Pizarro, J.; Bostick, K. Chemical Use in Salmon Aquaculture: A Review of Current Practices and Possible Environmental Effects. Aquaculture 2010, 306, 7–23. [Google Scholar] [CrossRef]
- Ma, G.C.; Worthing, K.A.; Gottlieb, T.; Ward, M.P.; Norris, J.M. Molecular Characterization of Community-Associated Methicillin-Resistant Staphylococcus aureus from Pet Dogs. Zoonoses Public Health 2020, 67, 222–230. [Google Scholar] [CrossRef]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for Approaches to Meticillin-Resistant Staphylococcal Infections of Small Animals: Diagnosis, Therapeutic Considerations and Preventative Measures. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef] [Green Version]
- Iseppi, R.; Di Cerbo, A.; Messi, P.; Sabia, C. Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-Producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics 2020, 9, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Irekeola, A.A.; Engku Abd Rahman, E.N.S.; Yusof, W.; Lih Huey, L.; Ladan Muhammad, S.; Harun, A.; Yean, C.Y.; Zaidah, A.R. Prevalence of Vancomycin-Resistant Enterococcus (VRE) in Companion Animals: The First Meta-Analysis and Systematic Review. Antibiotics 2021, 10, 138. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase Producing-Escherichia coli in Dogs and Cats—A Scoping Review and Meta-Analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Pomba, C.; Endimiani, A.; Rossano, A.; Saial, D.; Couto, N.; Perreten, V. First Report of OXA-23-Mediated Carbapenem Resistance in Sequence Type 2 Multidrug-Resistant Acinetobacter Baumannii Associated with Urinary Tract Infection in a Cat. Antimicrob. Agents Chemother. 2014, 58, 1267–1268. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.E.; Phan, H.T.T.; George, S.; Hubbard, A.T.M.; Stoesser, N.; Maciuca, I.E.; Crook, D.W.; Timofte, D. Occurrence and Characterization of Escherichia coli ST410 Co-Harbouring BlaNDM-5, BlaCMY-42 and BlaTEM-190 in a Dog from the UK. J. Antimicrob. Chemother. 2019, 74, 1207–1211. [Google Scholar] [CrossRef]
- Papich, M.G. Antibiotic Treatment of Resistant Infections in Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Vincze, S.; Stamm, I.; Kopp, P.A.; Hermes, J.; Adlhoch, C.; Semmler, T.; Wieler, L.H.; Lübke-Becker, A.; Walther, B. Alarming Proportions of Methicillin-Resistant Staphylococcus aureus (MRSA) in Wound Samples from Companion Animals, Germany 2010–2012. PLoS ONE 2014, 9, e85656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allerton, F.; Prior, C.; Bagcigil, A.F.; Broens, E.; Callens, B.; Damborg, P.; Dewulf, J.; Filippitzi, M.-E.; Carmo, L.P.; Gómez-Raja, J.; et al. Overview and Evaluation of Existing Guidelines for Rational Antimicrobial Use in Small-Animal Veterinary Practice in Europe. Antibiotics 2021, 10, 409. [Google Scholar] [CrossRef]
- Bhat, A.H. Bacterial Zoonoses Transmitted by Household Pets and as Reservoirs of Antimicrobial Resistant Bacteria. Microb. Pathog. 2021, 155, 104891. [Google Scholar] [CrossRef]
- Zhou, Y.; Ji, X.; Liang, B.; Jiang, B.; Li, Y.; Yuan, T.; Zhu, L.; Liu, J.; Guo, X.; Sun, Y. Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. Antibiotics 2022, 11, 1506. [Google Scholar] [CrossRef] [PubMed]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of Antimicrobial Resistant Escherichia coli in Dogs: Prevalence, Associated Risk Factors and Molecular Characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Thungrat, K.; Boothe, D.M. Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States. PLoS ONE 2015, 10, e0143335. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, E.; Mainar-Jaime, R.C.; Moreno, B.; Martín-Burriel, I.; Morales, M.; Andrés-Lasheras, S.; Chirino-Trejo, M.; Badiola, J.J.; Bolea, R. Antimicrobial Resistance among Canine Enteric Escherichia coli Isolates and Prevalence of Attaching-Effacing and Extraintestinal Pathogenic Virulence Factors in Spain. Acta Vet. Hung. 2020, 68, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Leonard, E.K.; Pearl, D.L.; Finley, R.L.; Janecko, N.; Reid-Smith, R.J.; Peregrine, A.S.; Weese, J.S. Comparison of Antimicrobial Resistance Patterns of Salmonella Spp. and Escherichia coli Recovered from Pet Dogs from Volunteer Households in Ontario (2005–06). J. Antimicrob. Chemother. 2012, 67, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Saputra, S.; Jordan, D.; Mitchell, T.; Wong, H.S.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial Resistance in Clinical Escherichia coli Isolated from Companion Animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Hata, A.; Fujitani, N.; Ono, F.; Yoshikawa, Y. Surveillance of Antimicrobial-Resistant Escherichia coli in Sheltered Dogs in the Kanto Region of Japan. Sci. Rep. 2022, 12, 773. [Google Scholar] [CrossRef]
- Thongratsakul, S.; Poolkhet, C.; Amavisit, P.; Sato, T.; Fukuda, A.; Usui, M.; Tamura, Y. Antimicrobial Resistance and STEC Virulence Genes of Escherichia coli Isolated from Non-Diarrheic and Diarrheic Dogs at a Veterinary Teaching Hospital in Thailand. Southeast Asian J. Trop. Med. Public Health 2019, 50, 708–714. [Google Scholar]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High Prevalence of Fecal Carriage of Extended Spectrum β-Lactamase/AmpC-Producing Enterobacteriaceae in Cats and Dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef] [Green Version]
- Hardefeldt, L.Y.; Holloway, S.; Trott, D.J.; Shipstone, M.; Barrs, V.R.; Malik, R.; Burrows, M.; Armstrong, S.; Browning, G.F.; Stevenson, M. Antimicrobial Prescribing in Dogs and Cats in Australia: Results of the Australasian Infectious Disease Advisory Panel Survey. J. Vet. Intern. Med. 2017, 31, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Derakhshandeh, A.; Eraghi, V.; Boroojeni, A.M.; Niaki, M.A.; Zare, S.; Naziri, Z. Virulence Factors, Antibiotic Resistance Genes and Genetic Relatedness of Commensal Escherichia Coli Isolates from Dogs and Their Owners. Microb. Pathog. 2018, 116, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Marliani, G.; Cenni, O.; Zaghini, A. Contribution of wildlife to antimicrobial resistance (AMR) with a One Health approach: Preliminary assessment of the use of antibiotics in the European hedhehog (Erinaceus europaeus). In Proceedings of the V Congress Soc. Ital. Ecopatologia della Fauna (SIEF), Udine, Italy, 14–17 September 2022; p. 32. [Google Scholar]
- WOAH—World Organization of Animal Health. Terrestrial Code Online Access; WOAH: Paris, France, 2022. [Google Scholar]
- Hoelzer, K.; Bielke, L.; Blake, D.P.; Cox, E.; Cutting, S.M.; Devriendt, B.; Erlacher-Vindel, E.; Goossens, E.; Karaca, K.; Lemiere, S.; et al. Vaccines as Alternatives to Antibiotics for Food Producing Animals. Part 2: New Approaches and Potential Solutions. Vet. Res. 2018, 49, 70. [Google Scholar] [CrossRef] [Green Version]
- Weese, J.S. Investigation of Antimicrobial Use and the Impact of Antimicrobial Use Guidelines in a Small Animal Veterinary Teaching Hospital: 1995-2004. J. Am. Vet. Med. Assoc. 2006, 228, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Ihedioha, T.E. Trends in the Clinical Use of Antibiotics in a Veterinary Hospital in Nigeria, 2013–2017. Thai J. Vet. Med. 2020, 50, 487–494. [Google Scholar]
- Chirollo, C.; Nocera, F.P.; Piantedosi, D.; Fatone, G.; Della Valle, G.; De Martino, L.; Cortese, L. Data on before and after the Traceability System of Veterinary Antimicrobial Prescriptions in Small Animals at the University Veterinary Teaching Hospital of Naples. Animals 2021, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Escher, M.; Vanni, M.; Intorre, L.; Caprioli, A.; Tognetti, R.; Scavia, G. Use of Antimicrobials in Companion Animal Practice: A Retrospective Study in a Veterinary Teaching Hospital in Italy. J. Antimicrob. Chemother. 2011, 66, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Peter, R.; Müntener, C.; Demuth, D.; Heim, D.; Mevissen, M.; Schüpbach-Regula, G.; Schuller, S.; Stucki, F.; Willi, B.; Naegeli, H. AntibioticScout: Online tool for antimicrobial stewardship in veterinary medicine. Schweiz. Arch. Tierheilkd. 2016, 158, 805–810. [Google Scholar] [CrossRef]
- Barbarossa, A.; Rambaldi, J.; Miraglia, V.; Giunti, M.; Diegoli, G.; Zaghini, A. Survey on Antimicrobial Prescribing Patterns in Small Animal Veterinary Practice in Emilia Romagna, Italy. Vet. Rec. 2017, 181, 69. [Google Scholar] [CrossRef]
- Guardabassi, L.; Prescott, J.F. Antimicrobial Stewardship in Small Animal Veterinary Practice: From Theory to Practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 361–376. [Google Scholar] [CrossRef]
- Canton, L.; Lanusse, C.; Moreno, L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals 2021, 11, 2878. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Quynh Le, T.P.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in Surface Water of East and Southeast Asian Countries: A Focused Review on Contamination Status, Pollution Sources, Potential Risks, and Future Perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef] [PubMed]
- Vishnuraj, M.R.; Kandeepan, G.; Rao, K.H.; Chand, S.; Kumbhar, V. Occurrence, Public Health Hazards and Detection Methods of Antibiotic Residues in Foods of Animal Origin: A Comprehensive Review. Cogent Food Agric. 2016, 2, 1235458. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 29 December 2022).
- Mole, B. MRSA: Farming up Trouble. Nature 2013, 499, 398–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, S. Resistance to Last-Ditch Antibiotic Has Spread Farther than Anticipated. Nature 2017, 10. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Abdi, R.D.; Mengstie, F.; Beyi, A.F.; Beyene, T.; Waktole, H.; Mammo, B.; Ayana, D.; Abunna, F. Determination of the Sources and Antimicrobial Resistance Patterns of Salmonella Isolated from the Poultry Industry in Southern Ethiopia. BMC Infect. Dis. 2017, 17, 352. [Google Scholar] [CrossRef]
- Papich, M.G. Antimicrobial Agent Use in Small Animals What Are the Prescribing Practices, Use of PK-PD Principles, and Extralabel Use in the United States? J. Vet. Pharmacol. Ther. 2021, 44, 238–249. [Google Scholar] [CrossRef]
- Rowan, A.N. Companion Animal Statistics in the USA. Demogr. Stat. Companion Anim. Popul. Collect. 2018, 7. [Google Scholar]
- Ho, J.; Hussain, S.; Sparagano, O. Did the COVID-19 Pandemic Spark a Public Interest in Pet Adoption? Front. Vet. Sci. 2021, 8, 647308. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.L.; Thibault, M.; Hong, J. Characterizing Pet Acquisition and Retention During the COVID-19 Pandemic. Front. Vet. Sci. 2021, 8, 781403. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H. AVMA Pet Ownership and Demographics Sourcebook: 2017–2018 Edition; American Veterinary Medical Association: Schaumburg, IL, USA, 2017; ISBN 978-1-882691-52-4. [Google Scholar]
- Dhillon, J.; Hoopes, J.; Epp, T. Scoping Decades of Dog Evidence: A Scoping Review of Dog Bite-Related Sequelae. Can. J. Public Health 2019, 110, 364–375. [Google Scholar] [CrossRef]
- Sarenbo, S.; Svensson, P.A. Bitten or Struck by Dog: A Rising Number of Fatalities in Europe, 1995–2016. Forensic Sci. Int. 2021, 318, 110592. [Google Scholar] [CrossRef]
- Tulloch, J.S.P.; Owczarczak-Garstecka, S.C.; Fleming, K.M.; Vivancos, R.; Westgarth, C. English Hospital Episode Data Analysis (1998–2018) Reveal That the Rise in Dog Bite Hospital Admissions Is Driven by Adult Cases. Sci. Rep. 2021, 11, 1767. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet Animals as Reservoirs of Antimicrobial-Resistant Bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Lloyd, D.H. Reservoirs of Antimicrobial Resistance in Pet Animals. Clin. Infect. Dis. 2007, 45 (Suppl. 2), S148–S152. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, K.; Pedersen, K.; Jensen, H.; Finster, K.; Jensen, V.F.; Heuer, O.E. Occurrence of Antimicrobial Resistance in Bacteria from Diagnostic Samples from Dogs. J. Antimicrob. Chemother. 2007, 60, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated from Cats and Dogs From the Iberian Peninsula. Front. Microbiol. 2021, 11, 621597. [Google Scholar] [CrossRef] [PubMed]
- EMA. European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac (accessed on 4 January 2023).
- Toutain, P.-L.; Pelligand, L.; Lees, P.; Bousquet-Mélou, A.; Ferran, A.A.; Turnidge, J.D. The Pharmacokinetic/Pharmacodynamic Paradigm for Antimicrobial Drugs in Veterinary Medicine: Recent Advances and Critical Appraisal. J. Vet. Pharmacol. Ther. 2021, 44, 172–200. [Google Scholar] [CrossRef] [PubMed]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Toutain, P.-L. Pharmacokinetic/Pharmacodynamic Integration in Drug Development and Dosage-Regimen Optimization for Veterinary Medicine. AAPS PharmSci 2002, 4, E38. [Google Scholar] [CrossRef]
- Schmidt, S.; Schuck, E.; Kumar, V.; Burkhardt, O.; Derendorf, H. Integration of Pharmacokinetic/Pharmacodynamic Modeling and Simulation in the Development of New Anti-Infective Agents—Minimum Inhibitory Concentration versus Time-Kill Curves. Expert Opin. Drug Discov. 2007, 2, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.W.; Vinks, A.A. Pharmacokinetic/Pharmacodynamic Modelling of Antibacterials In Vitro and In Vivo Using Bacterial Growth and Kill Kinetics. Clin. Pharmacokinet. 2005, 44, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Lallemand, E.A.; Lacroix, M.Z.; Toutain, P.-L.; Boullier, S.; Ferran, A.A.; Bousquet-Melou, A. In Vitro Degradation of Antimicrobials during Use of Broth Microdilution Method Can Increase the Measured Minimal Inhibitory and Minimal Bactericidal Concentrations. Front. Microbiol. 2016, 7, 2051. [Google Scholar] [CrossRef] [Green Version]
- Papich, M.G. Pharmacokinetic-Pharmacodynamic (PK-PD) Modeling and the Rational Selection of Dosage Regimes for the Prudent Use of Antimicrobial Drugs. Vet. Microbiol. 2014, 171, 480–486. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Bousquet-Mélou, A.; Damborg, P.; Ferran, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef] [Green Version]
- Välitalo, P.; Kruglova, A.; Mikola, A.; Vahala, R. Toxicological Impacts of Antibiotics on Aquatic Micro-Organisms: A Mini-Review. Int. J. Hyg. Environ. Health 2017, 220, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Messenger, K.M.; Papich, M.G.; Blikslager, A.T. Distribution of Enrofloxacin and Its Active Metabolite, Using an in Vivo Ultrafiltration Sampling Technique after the Injection of Enrofloxacin to Pigs. J. Vet. Pharmacol. Ther. 2012, 35, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Foster, D.M.; Papich, M.G. Pharmacokinetics and Tissue Distribution of Enrofloxacin and Its Active Metabolite Ciprofloxacin in Calves. J. Vet. Pharmacol. Ther. 2007, 30, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Bidgood, T.L.; Papich, M.G. Plasma and Interstitial Fluid Pharmacokinetics of Enrofloxacin, Its Metabolite Ciprofloxacin, and Marbofloxacin after Oral Administration and a Constant Rate Intravenous Infusion in Dogs. J. Vet. Pharmacol. Ther. 2005, 28, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, G.; Rohn, K.; Engelhardt, E.; Sager, M.; Hardes, J.; Gosheger, G. Pharmacokinetic Study on Pradofloxacin in the Dog—Comparison of Serum Analysis, Ultrafiltration and Tissue Sampling after Oral Administration. BMC Vet. Res. 2013, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Mzyk, D.A.; Bublitz, C.M.; Hobgood, G.D.; Martinez, M.N.; Smith, G.W.; Baynes, R.E. Effect of Age on the Pharmacokinetics and Distribution of Tulathromycin in Interstitial and Pulmonary Epithelial Lining Fluid in Healthy Calves. Am. J. Vet. Res. 2018, 79, 1193–1203. [Google Scholar] [CrossRef]
- Bulik, C.C.; Christensen, H.; Li, P.; Sutherland, C.A.; Nicolau, D.P.; Kuti, J.L. Comparison of the Activity of a Human Simulated, High-Dose, Prolonged Infusion of Meropenem against Klebsiella Pneumoniae Producing the KPC Carbapenemase versus That against Pseudomonas Aeruginosa in an In Vitro Pharmacodynamic Model. Antimicrob. Agents Chemother. 2010, 54, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Ungphakorn, W.; Tängdén, T.; Sandegren, L.; Nielsen, E.I. A Pharmacokinetic-Pharmacodynamic Model Characterizing the Emergence of Resistant Escherichia coli Subpopulations during Ertapenem Exposure. J. Antimicrob. Chemother. 2016, 71, 2521–2533. [Google Scholar] [CrossRef] [Green Version]
- Gugel, J.; Dos Santos Pereira, A.; Pignatari, A.C.C.; Gales, A.C. Beta-Lactam MICs Correlate Poorly with Mutant Prevention Concentrations for Clinical Isolates of Acinetobacter Spp. and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 2276–2277. [Google Scholar] [CrossRef] [Green Version]
- Hansen, G.T.; Zhao, X.; Drlica, K.; Blondeau, J.M. Mutant Prevention Concentration for Ciprofloxacin and Levofloxacin with Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2006, 27, 120–124. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, Z.; Yao, L.; Gu, X.; Huang, Z.; Cai, Q.; Shen, X.; Ding, H. Pharmacokinetic/Pharmacodynamic Integration to Evaluate the Changes in Susceptibility of Actinobacillus pleuropneumoniae After Repeated Administration of Danofloxacin. Front. Microbiol. 2018, 9, 2445. [Google Scholar] [CrossRef]
- Wetzstein, H.-G. Comparative Mutant Prevention Concentrations of Pradofloxacin and Other Veterinary Fluoroquinolones Indicate Differing Potentials in Preventing Selection of Resistance. Antimicrob. Agents Chemother. 2005, 49, 4166–4173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awji, E.G.; Tassew, D.D.; Lee, J.-S.; Lee, S.-J.; Choi, M.-J.; Reza, M.A.; Rhee, M.-H.; Kim, T.-H.; Park, S.-C. Comparative Mutant Prevention Concentration and Mechanism of Resistance to Veterinary Fluoroquinolones in Staphylococcus pseudintermedius. Vet. Dermatol. 2012, 23, 376-e69. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.J.; Nichol, K.A.; Hoban, D.J.; Zhanel, G.G. Stretching the Mutant Prevention Concentration (MPC) beyond Its Limits. J. Antimicrob. Chemother. 2003, 51, 1323–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondeau, J.M.; Borsos, S.; Blondeau, L.D.; Blondeau, B.J.J.; Hesje, C.E. Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations of Enrofloxacin, Ceftiofur, Florfenicol, Tilmicosin and Tulathromycin against Bovine Clinical Isolates of Mannheimia Haemolytica. Vet. Microbiol. 2012, 160, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.H.; Louie, A.; Fritsche, T.R.; Deziel, M.; Liu, W.; Brown, D.L.; Deshpande, L.; Leary, R.; Jones, R.N.; Drusano, G.L. Impact of Drug-Exposure Intensity and Duration of Therapy on the Emergence of Staphylococcus aureus Resistance to a Quinolone Antimicrobial. J. Infect. Dis. 2007, 195, 1818–1827. [Google Scholar] [CrossRef] [Green Version]
- Sauer, K.; Camper, A.K.; Ehrlich, G.D.; Costerton, J.W.; Davies, D.G. Pseudomonas Aeruginosa Displays Multiple Phenotypes during Development as a Biofilm. J. Bacteriol. 2002, 184, 1140–1154. [Google Scholar] [CrossRef] [Green Version]
- Schembri, M.A.; Kjærgaard, K.; Klemm, P. Global Gene Expression in Escherichia coli Biofilms. Mol. Microbiol. 2003, 48, 253–267. [Google Scholar] [CrossRef]
- Drusano, G.L.; Fregeau, C.; Liu, W.; Brown, D.L.; Louie, A. Impact of Burden on Granulocyte Clearance of Bacteria in a Mouse Thigh Infection Model. Antimicrob. Agents Chemother. 2010, 54, 4368–4372. [Google Scholar] [CrossRef] [Green Version]
- Firsov, A.A.; Vostrov, S.N.; Lubenko, I.Y.; Drlica, K.; Portnoy, Y.A.; Zinner, S.H. In Vitro Pharmacodynamic Evaluation of the Mutant Selection Window Hypothesis Using Four Fluoroquinolones against Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 1604–1613. [Google Scholar] [CrossRef] [Green Version]
- Denis, B.; Lafaurie, M.; Donay, J.-L.; Fontaine, J.-P.; Oksenhendler, E.; Raffoux, E.; Hennequin, C.; Allez, M.; Socie, G.; Maziers, N.; et al. Prevalence, Risk Factors, and Impact on Clinical Outcome of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Bacteraemia: A Five-Year Study. Int. J. Infect. Dis. 2015, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vehreschild, M.J.G.T.; Hamprecht, A.; Peterson, L.; Schubert, S.; Häntschel, M.; Peter, S.; Schafhausen, P.; Rohde, H.; Lilienfeld-Toal, M.V.; Bekeredjian-Ding, I.; et al. A Multicentre Cohort Study on Colonization and Infection with ESBL-Producing Enterobacteriaceae in High-Risk Patients with Haematological Malignancies. J. Antimicrob. Chemother. 2014, 69, 3387–3392. [Google Scholar] [CrossRef]
- Cattaneo, D.; Gervasoni, C.; Corona, A. The Issue of Pharmacokinetic-Driven Drug-Drug Interactions of Antibiotics: A Narrative Review. Antibiotics 2022, 11, 1410. [Google Scholar] [CrossRef]
- Kollef, M.H.; Bassetti, M.; Francois, B.; Burnham, J.; Dimopoulos, G.; Garnacho-Montero, J.; Lipman, J.; Luyt, C.-E.; Nicolau, D.P.; Postma, M.J.; et al. The Intensive Care Medicine Research Agenda on Multidrug-Resistant Bacteria, Antibiotics, and Stewardship. Intensive Care Med. 2017, 43, 1187–1197. [Google Scholar] [CrossRef]
- Pea, F. Intracellular Pharmacokinetics of Antibacterials and Their Clinical Implications. Clin. Pharmacokinet. 2018, 57, 177–189. [Google Scholar] [CrossRef]
- Roberts, J.A.; Pea, F.; Lipman, J. The Clinical Relevance of Plasma Protein Binding Changes. Clin. Pharmacokinet. 2013, 52, 1–8. [Google Scholar] [CrossRef]
- Boucher, B.A.; Wood, G.C.; Swanson, J.M. Pharmacokinetic Changes in Critical Illness. Crit. Care Clin. 2006, 22, 255–271. [Google Scholar] [CrossRef]
- Silva, C.M.; Baptista, J.P.; Santos, I.; Martins, P. Recommended Antibiotic Dosage Regimens in Critically Ill Patients with Augmented Renal Clearance: A Systematic Review. Int. J. Antimicrob. Agents 2022, 59, 106569. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Roberts, J.A.; Boots, R.J.; Paterson, D.L.; Lipman, J. Augmented Renal Clearance. Clin. Pharmacokinet. 2010, 49, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bakker, T.; Dongelmans, D.A.; Nabovati, E.; Eslami, S.; de Keizer, N.F.; Abu-Hanna, A.; Klopotowska, J.E. Heterogeneity in the Identification of Potential Drug-Drug Interactions in the Intensive Care Unit: A Systematic Review, Critical Appraisal, and Reporting Recommendations. J. Clin. Pharmacol. 2022, 62, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Łój, P.; Olender, A.; Ślęzak, W.; Krzych, Ł.J. Pharmacokinetic Drug-Drug Interactions in the Intensive Care Unit—Single-Centre Experience and Literature Review. Anaesthesiol. Intensive Ther. 2017, 49, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, C.; Formenti, T.; Cattaneo, D. Management of Polypharmacy and Drug-Drug Interactions in HIV Patients: A 2-Year Experience of a Multidisciplinary Outpatient Clini. AIDS Rev. 2019, 21, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Helal, A.; Almandeel, T.; Algarni, R.; Alshehri, S. Multivalent Cations Interactions with Fluoroquinolones or Tetracyclines: A Cross-Sectional Study. Saudi J. Biol. Sci. 2021, 28, 6929–6932. [Google Scholar] [CrossRef] [PubMed]
- Gessner, A.; König, J.; Fromm, M.F. Clinical Aspects of Transporter-Mediated Drug-Drug Interactions. Clin. Pharmacol. Ther. 2019, 105, 1386–1394. [Google Scholar] [CrossRef]
- Giedraitienė, A.; Vitkauskienė, A.; Naginienė, R.; Pavilonis, A. Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina 2011, 47, 19. [Google Scholar] [CrossRef]
- Ohore, O.; Addo, F.; Han, N.; Li, X.; Zhang, S. Profiles of ARGs and Their Relationships with Antibiotics, Metals and Environmental Parameters in Vertical Sediment Layers of Three Lakes in China. J. Environ. Manage. 2019, 255, 109583. [Google Scholar] [CrossRef]
- Elmahdi, S.; DaSilva, L.V.; Parveen, S. Antibiotic Resistance of Vibrio Parahaemolyticus and Vibrio Vulnificus in Various Countries: A Review. Food Microbiol. 2016, 57, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the Aquatic Environments: A Review of Lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; Sillanpää, M.; Feng, S.; Nhat, T.; Ramavandi, B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics 2022, 11, 1461. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J. Antibiotics in the Environment. Ups. J. Med. Sci. 2014, 119, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Kemper, N. Veterinary Antibiotics in the Aquatic and Terrestrial Environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Wang, L.; Gong, W.; Liu, G.; Fu, W.; Cheng, M. Seasonal Variation and Sediment–Water Exchange of Antibiotics in a Shallower Large Lake in North China. Sci. Total Environ. 2014, 476–477, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Ferri, G.; Lauteri, C.; Vergara, A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics 2022, 11, 1574. [Google Scholar] [CrossRef] [PubMed]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic Use in Aquaculture, Policies and Regulation, Health and Environmental Risks: A Review of the Top 15 Major Producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Thiang, E.L.; Lee, C.W.; Takada, H.; Seki, K.; Takei, A.; Suzuki, S.; Wang, A.; Bong, C.W. Antibiotic Residues from Aquaculture Farms and Their Ecological Risks in Southeast Asia: A Case Study from Malaysia. Ecosyst. Health Sustain. 2021, 7, 1926337. [Google Scholar] [CrossRef]
- Chang, B.-V.; Ren, Y.-L. Biodegradation of Three Tetracyclines in River Sediment. Ecol. Eng. 2015, 75, 272–277. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang, W.; Xiong, W.; Li, X.; Li, B.; et al. Molecular Engineering of Polymeric Carbon Nitride for Highly Efficient Photocatalytic Oxytetracycline Degradation and H2O2 Production. Appl. Catal. B Environ. 2020, 272, 118970. [Google Scholar] [CrossRef]
- de la Casa-Resino, I.; Empl, M.T.; Villa, S.; Kolar, B.; Fabrega, J.; Lillicrap, A.D.; Karamanlis, X.N.; Carapeto-García, R. Environmental Risk Assessment of Veterinary Medicinal Products Intended for Use in Aquaculture in Europe: The Need for Developing a Harmonised Approach. Environ. Sci. Eur. 2021, 33, 84. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet Another Environmental Gateway to the Development and Globalisation of Antimicrobial Resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef]
- O’Flaherty, E.; Borrego, C.M.; Balcázar, J.L.; Cummins, E. Human Exposure Assessment to Antibiotic-Resistant Escherichia Coli through Drinking Water. Sci. Total Environ. 2018, 616–617, 1356–1364. [Google Scholar] [CrossRef]
- Tortorella, E.; Tedesco, P.; Palma Esposito, F.; January, G.G.; Fani, R.; Jaspars, M.; de Pascale, D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar. Drugs 2018, 16, 355. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, Combined Pollution and Risk Assessment of Antibiotics in Typical Marine Aquaculture Farms Surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, S.A.; Cerniglia, C.E. Antimicrobial Drug Residues in Animal-Derived Foods: Potential Impact on the Human Intestinal Microbiome. J. Vet. Pharmacol. Ther. 2021, 44, 215–222. [Google Scholar] [CrossRef]
- Subirats, J.; Domingues, A.; Topp, E. Does Dietary Consumption of Antibiotics by Humans Promote Antibiotic Resistance in the Gut Microbiome? J. Food Prot. 2019, 82, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- UNEP Law and Environment Assistance Platform. Regulation (EC) No. 470/2009 of the European Parliament and of the Council Laying down Community Procedures for the Establishment of Residue Limits of Pharmacologically Active Substances in Foodstuffs of Animal Origin, Repealing Council Regulation (EEC) No. 2377/90 and Amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No. 726/2004 of the European Parliament and of the Council. Available online: https://leap.unep.org/countries/eu/national-legislation/regulation-ec-no-4702009-european-parliament-and-council-laying (accessed on 29 December 2022).
- Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. mBio 2014, 5, e01918-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraupner, N.; Ebmeyer, S.; Hutinel, M.; Fick, J.; Flach, C.-F.; Larsson, D.G.J. Selective Concentrations for Trimethoprim Resistance in Aquatic Environments. Environ. Int. 2020, 144, 106083. [Google Scholar] [CrossRef]
- Johnson, T.J.; Singer, R.S.; Isaacson, R.E.; Danzeisen, J.L.; Lang, K.; Kobluk, K.; Rivet, B.; Borewicz, K.; Frye, J.G.; Englen, M.; et al. In Vivo Transmission of an IncA/C Plasmid in Escherichia coli Depends on Tetracycline Concentration, and Acquisition of the Plasmid Results in a Variable Cost of Fitness. Appl. Environ. Microbiol. 2015, 81, 3561–3570. [Google Scholar] [CrossRef] [Green Version]
- González, N.; Abdellati, S.; De Baetselier, I.; Laumen, J.G.E.; Van Dijck, C.; de Block, T.; Manoharan-Basil, S.S.; Kenyon, C. Ciprofloxacin Concentrations 1/1000th the MIC Can Select for Antimicrobial Resistance in N. Gonorrhoeae-Important Implications for Maximum Residue Limits in Food. Antibiotics 2022, 11, 1430. [Google Scholar] [CrossRef]
- Jammoul, A.; El Darra, N. Evaluation of Antibiotics Residues in Chicken Meat Samples in Lebanon. Antibiotics 2019, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla, P.; DOMÉNECH, E.; ESCRICHE, I.; Beltrán Martínez, M.; Molina, M.P. Food Safety Margin Assessment of Antibiotics: Pasteurized Goat’s Milk and Fresh Cheese. J. Food Prot. 2019, 82, 1553–1559. [Google Scholar] [CrossRef]
- Tian, L.; Khalil, S.; Bayen, S. Effect of Thermal Treatments on the Degradation of Antibiotic Residues in Food. Crit. Rev. Food Sci. Nutr. 2017, 57, 3760–3770. [Google Scholar] [CrossRef] [PubMed]
- Carman, R.J.; Van Tassell, R.L.; Wilkins, T.D. The Normal Intestinal Microflora: Ecology, Variability and Stability. Vet. Hum. Toxicol. 1993, 35 (Suppl. 1), 11–14. [Google Scholar] [PubMed]
- Papich, M. Drug Therapy in Cats: Precautions and Guidelines. In Consultations in Feline Internal Medicine, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 50, pp. 279–290. [Google Scholar] [CrossRef]
- European Commission. Commission Notice—Guidelines for the Prudent Use of Antimicrobials in Veterinary Medicine; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Daeseleire, E.; Pamel, E.; Van Poucke, C.; Croubels, S. Veterinary Drug Residues in Foods. In Chemical Contaminants and Residues in Food, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 117–153. ISBN 978-0-08-100674-0. [Google Scholar]
- Sharma, V.; McNeill, J.H. To Scale or Not to Scale: The Principles of Dose Extrapolation. Br. J. Pharmacol. 2009, 157, 907–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Briscoe, J.A.; Morris, D.O.; Rankin, S.C.; Hendrick, M.J.; Rosenthal, K.L. Methicillin-Resistant Staphylococcus aureus-Associated Dermatitis in a Congo African Grey Parrot (Psittacus erithacus erithacus). J. Avian Med. Surg. 2008, 22, 336–343. [Google Scholar] [CrossRef]
- Loncaric, I.; Künzel, F. Sequence Type 398 Meticillin-Resistant Staphylococcus Aureus Infection in a Pet Rabbit. Vet. Dermatol. 2013, 24, 370–372.e84. [Google Scholar] [CrossRef]
- Yılmaz, E.Ş.; Dolar, A. Detection of Extended-Spectrum β-Lactamases in Escherichia coli from Cage Birds. J. Exot. Pet Med. 2017, 26, 13–18. [Google Scholar] [CrossRef]
- Cortés-Cortés, G.; Lozano-Zarain, P.; Torres, C.; Castañeda, M.; Sánchez, G.M.; Alonso, C.A.; López-Pliego, L.; Mayen, M.G.G.; Martínez-Laguna, Y.; Rocha-Gracia, R.D.C. Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Vector-Borne Zoonotic Dis. 2016, 16, 595–603. [Google Scholar] [CrossRef]
- Padovan, J.; Ralić, J.; Letfus, V.; Milić, A.; Bencetić Mihaljević, V. Investigating the Barriers to Bioavailability of Macrolide Antibiotics in the Rat. Eur. J. Drug Metab. Pharmacokinet. 2012, 37, 163–171. [Google Scholar] [CrossRef]
- Rougier, S.; Galland, D.; Boucher, S.; Boussarie, D.; Vallé, M. Epidemiology and Susceptibility of Pathogenic Bacteria Responsible for Upper Respiratory Tract Infections in Pet Rabbits. Vet. Microbiol. 2006, 115, 192–198. [Google Scholar] [CrossRef]
- Minarikova, A.; Hauptman, K.; Knotek, Z.; Jekl, V. Microbial Flora of Odontogenic Abscesses in Pet Guinea Pigs. Vet. Rec. 2016, 179, 331. [Google Scholar] [CrossRef]
- Gómez-Ramírez, P.; Jiménez-Montalbán, P.J.; Delgado, D.; Martínez-López, E.; María-Mojica, P.; Godino, A.; García-Fernández, A.J. Development of a QuEChERS Method for Simultaneous Analysis of Antibiotics in Carcasses for Supplementary Feeding of Endangered Vultures. Sci. Total Environ. 2018, 626, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barron, D. Wildlife Contamination with Fluoroquinolones from Livestock: Widespread Occurrence of Enrofloxacin and Marbofloxacin in Vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Barron, D. Occurrence of Veterinary Pharmaceuticals in Golden Eagle Nestlings: Unnoticed Scavenging on Livestock Carcasses and Other Potential Exposure Routes. Sci. Total Environ. 2017, 586, 355–361. [Google Scholar] [CrossRef]
- Sousa, M.; Silva, N.; Igrejas, G.; Sargo, R.; Benito, D.; Gómez, P.; Lozano, C.; Manageiro, V.; Torres, C.; Caniça, M.; et al. Genetic Diversity and Antibiotic Resistance Among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal. Microb. Drug Resist. 2016, 22, 727–730. [Google Scholar] [CrossRef]
- Mäesaar, M.; Tedersoo, T.; Meremäe, K.; Roasto, M. The Source Attribution Analysis Revealed the Prevalent Role of Poultry over Cattle and Wild Birds in Human Campylobacteriosis Cases in the Baltic States. PLoS ONE 2020, 15, e0235841. [Google Scholar] [CrossRef] [PubMed]
- Aun, E.; Kisand, V.; Laht, M.; Telling, K.; Kalmus, P.; Väli, Ü.; Brauer, A.; Remm, M.; Tenson, T. Molecular Characterization of Enterococcus Isolates from Different Sources in Estonia Reveals Potential Transmission of Resistance Genes Among Different Reservoirs. Front. Microbiol. 2021, 12, 601490. [Google Scholar] [CrossRef] [PubMed]
- Cagnoli, G.; Bertelloni, F.; Interrante, P.; Ceccherelli, R.; Marzoni, M.; Ebani, V.V. Antimicrobial-Resistant Enterococcus Spp. in Wild Avifauna from Central Italy. Antibiotics 2022, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Silva, V.; de Lurdes Enes Dapkevicius, M.; Igrejas, G.; Poeta, P. Enterococci, from Harmless Bacteria to a Pathogen. Microorganisms 2020, 8, 1118. [Google Scholar] [CrossRef]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile Genetic Elements and Their Contribution to the Emergence of Antimicrobial Resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef]
- Marrow, J.; Whittington, J.K.; Mitchell, M.; Hoyer, L.L.; Maddox, C. Prevalence and Antibiotic-Resistance Characteristics of Enterococcus Spp. Isolated from Free-Living and Captive Raptors in Central Illinois. J. Wildl. Dis. 2009, 45, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.; Silva, N.; Igrejas, G.; Rodrigues, P.; Micael, J.; Rodrigues, T.; Resendes, R.; Gonçalves, A.; Marinho, C.; Gonçalves, D.; et al. Dissemination of Antibiotic Resistant Enterococcus Spp. and Escherichia coli from Wild Birds of Azores Archipelago. Anaerobe 2013, 24, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Radhouani, H.; Poeta, P.; Gonçalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild Birds as Biological Indicators of Environmental Pollution: Antimicrobial Resistance Patterns of Escherichia Coli and Enterococci Isolated from Common Buzzards (Buteo Buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stępień-Pyśniak, D.; Hauschild, T.; Nowaczek, A.; Marek, A.; Dec, M. Wild Birds as a potential source of known and novel multilocus sequence types of antibiotic-resistant Enterococcus faecalis. J. Wildl. Dis. 2018, 54, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Stępień-Pyśniak, D.; Hauschild, T.; Dec, M.; Marek, A.; Urban-Chmiel, R. Clonal Structure and Antibiotic Resistance of Enterococcus Spp. from Wild Birds in Poland. Microb. Drug Resist. 2019, 25, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- León-Sampedro, R.; del Campo, R.; Rodriguez-Baños, M.; Lanza, V.F.; Pozuelo, M.J.; Francés-Cuesta, C.; Tedim, A.P.; Freitas, A.R.; Novais, C.; Peixe, L.; et al. Phylogenomics of Enterococcus Faecalis from Wild Birds: New Insights into Host-Associated Differences in Core and Accessory Genomes of the Species. Environ. Microbiol. 2019, 21, 3046–3062. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.; Liu, Y.; Guo, R.; Chen, J. Antibiotics: An Overview on the Environmental Occurrence, Toxicity, Degradation, and Removal Methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef]
MDR Bacteria | References |
---|---|
Methicillin-resistant Staphylococcus aureus (MRSA) | [45,46] |
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) | [45,46] |
Vancomycin-resistant Enterococci (VRE) | [47,48] |
Escherichia coli-extended-spectrum beta-lactamase (ESBL) | [47,49,50,51] |
AmpC and carbapenemase-producing Gram-negative bacteria: | |
Escherichia coli, Klebsiella pneumoniae | [47,49,50,51] |
Pseudomonas aeruginosa | [52] |
Acinetobacter baumannii | [53] |
|
Process | Correlation |
---|---|
Pharmacokinetics | |
Absorption | Mainly influenced by drug physicochemical properties; Membrane permeability is independent of size, with exceptions related to first-pass metabolism and transporters such as P-glycoprotein. |
Distribution | Blood flow and rate of diffusion to target cells are related to size. |
Protein binding | Independent of size (species-specific differences). |
Transporters (P-glycoproteins) | Independent of size (species-specific differences). |
Hepatic metabolism | Blood flow and rate of diffusion to target cells are related to size + independent of size (species-specific differences in enzymatic families). |
Elimination | Blood flow and rate of diffusion to target cells are related to size + independent of size (species-specific differences). |
Pharmacodynamics | Independent of size (species-specific differences). |
Exotic Pets | Instances |
---|---|
Birds | Liquid oral forms of aminopenicillins for human use are suitable (concentration of active principle; acceptable taste) [14]. |
Small birds and rodents | Azythromycin liquid formula for human use are suitable [183]. |
Rabbits, guinea pigs, other herbivorous | Limited treatment options because oral administration of antibiotics may result in dysbiosis and enterotoxaemia [184,185]. |
Reptiles | Ceftazidime (third-generation cephalosporin authorized for human use only, and classified as HPCIA) is specific for Pseudomonas spp. infections [14]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. https://doi.org/10.3390/antibiotics12030487
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics. 2023; 12(3):487. https://doi.org/10.3390/antibiotics12030487
Chicago/Turabian StyleCaneschi, Alice, Anisa Bardhi, Andrea Barbarossa, and Anna Zaghini. 2023. "The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review" Antibiotics 12, no. 3: 487. https://doi.org/10.3390/antibiotics12030487
APA StyleCaneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics, 12(3), 487. https://doi.org/10.3390/antibiotics12030487