Impact of NG-Test CTX-M MULTI Immunochromatographic Assay on Antimicrobial Management of Escherichia coli Bloodstream Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. Rapid Blood Culture Workflow: Direct Detection of CTX-M ESBL-Producing E. coli
5.3. Conventional Blood Cultures Routine
5.4. Definitions
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cointe, A.; Bonacorsi, S.; Truong, J.; Hobson, C.; Doit, C.; Monjault, A.; Bidet, P.; Birgy, A. Detection of Carbapenemase-Producing Enterobacteriaceae in Positive Blood Culture Using an Immunochromatographic RESIST-4 O.K.N.V. Assay. Antimicrob. Agents Chemother. 2018, 62, e01828-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takissian, J.; Bonnin, R.A.; Naas, T.; Dortet, L. NG-Test Carba 5 for Rapid Detection of Carbapenemase-Producing Enterobacterales from Positive Blood Cultures. Antimicrob. Agents Chemother. 2019, 63, e00011-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodendoerfer, E.; Keller, P.M.; Mancini, S. Rapid identification of NDM-, KPC-, IMP-, VIM- and OXA-48-like carbapenemase-producing Enterobacteriales from blood cultures by a multiplex lateral flow immunoassay. J. Antimicrob. Chemother. 2019, 74, 1749–1751. [Google Scholar] [CrossRef] [PubMed]
- Giordano, L.; Fiori, B.; D’Inzeo, T.; Parisi, G.; Liotti, F.M.; Menchinelli, G.; De Angelis, G.; De Maio, F.; Luzzaro, F.; Sanguinetti, M.; et al. Simplified Testing Method for Direct Detection of Carbapenemase-Producing Organisms from Positive Blood Cultures Using the NG-Test Carba 5 Assay. Antimicrob. Agents Chemother 2019, 63, e00550-19. [Google Scholar] [CrossRef] [Green Version]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Fossati, L.; Cavallo, R.; Costa, C. Direct β-Lactam Inactivation Method: A New Low-Cost Assay for Rapid Detection of Carbapenemase- or Extended-Spectrum-β-Lactamase-Producing Enterobacterales Directly from Positive Blood Culture Bottles. J. Clin. Microbiol. 2019, 58, e01178-19. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Zanotto, E.; Cavallo, R.; Costa, C. Direct Ethylenediaminetetraaceticacid-Modified β-Lactam Inactivation Method: An Improved Method to Identify Serine-Carbapenemase-, Metallo-β-Lactamase-, and Extended-Spectrum-β-Lactamase-Producing Enterobacterales Directly from Positive Blood Culture. Microb. Drug Resist. 2021, 27, 740–746. [Google Scholar] [CrossRef]
- Demord, A.; Poirel, L.; D’Emidio, F.; Pomponio, S.; Nordmann, P. Rapid ESBL NP Test for Rapid Detection of Expanded-Spectrum β-Lactamase Producers in Enterobacterales. Microb. Drug Resist. 2021, 27, 1131–1135. [Google Scholar] [CrossRef]
- Bernabeu, S.; Ratnam, K.C.; Boutal, H.; Gonzalez, C.; Vogel, A.; Devilliers, K.; Plaisance, M.; Oueslati, S.; Malhotra-Kumar, S.; Dortet, L.; et al. A Lateral Flow Immunoassay for the Rapid Identification of CTX-M-Producing Enterobacterales from Culture Plates and Positive Blood Cultures. Diagnostics 2020, 10, 764. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; van Asten, S.A.V.; Iannaccone, M.; Zanotto, E.; Zaccaria, T.; Bernards, A.T.; Cavallo, R.; Costa, C. RESIST-5 O.O.K.N.V. and NG-Test Carba 5 assays for the rapid detection of carbapenemase-producing Enterobacterales from positive blood cultures: A comparative study. J. Hosp. Infect. 2020, 105, 162–166. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Cavallo, R.; Costa, C. Evaluation of the NG-Test CTX-M MULTI immunochromatographic assay for the rapid detection of CTX-M extended-spectrum-β-lactamase producers from positive blood cultures. J. Hosp. Infect. 2020, 105, 341–343. [Google Scholar] [CrossRef]
- Boattini, M.; Bianco, G.; Iannaccone, M.; Ghibaudo, D.; Almeida, A.; Cavallo, R.; Costa, C. Fast-track identification of CTX-M-extended-spectrum-β-lactamase- and carbapenemase-producing Enterobacterales in bloodstream infections: Implications on the likelihood of deduction of antibiotic susceptibility in emergency and internal medicine departments. Eur. J. Clin. Microbiol. Infect Dis. 2021, 40, 1495–1501. [Google Scholar] [PubMed]
- Boattini, M.; Bianco, G.; Comini, S.; Iannaccone, M.; Casale, R.; Cavallo, R.; Nordmann, P.; Costa, C. Direct detection of extended-spectrum-β-lactamase-producers in Enterobacterales from blood cultures: A comparative analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 407–413. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Sidoti, F.; Cavallo, R.; Costa, C. Detection of antibiotic resistance genes from blood cultures: Performance assessment and potential impact on antibiotic therapy management. J. Hosp. Infect. 2019, 102, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Valentin, T.; Koenig, E.; Prattes, J.; Wunsch, S.; Loizenbaur, T.; Krause, R.; Zollner-Schwetz, I. Implementation of rapid antimicrobial susceptibility testing combined with routine infectious disease bedside consultation in clinical practice (RAST-ID): A prospective single-centre study. J. Antimicrob. Chemother. 2021, 76, 233–238. [Google Scholar] [CrossRef]
- Schneider, S.M.; Schaeg, M.; Gärtner, B.C.; Berger, F.K.; Becker, S.L. Do written diagnosis-treatment recommendations on microbiological test reports improve the management of Staphylococcus aureus bacteremia? A single-center, retrospective, observational study. Diagn. Microbiol. Infect. Dis. 2020, 98, 115170. [Google Scholar] [CrossRef]
- Doi, Y.; Park, Y.S.; Rivera, J.I.; Adams-Haduch, J.M.; Hingwe, A.; Sordillo, E.M.; Lewis, J.S., 2nd; Howard, W.J.; Johnson, L.E.; Polsky, B.; et al. Community-associated extended-spectrum β-lactamase-producing Escherichia coli infection in the United States. Clin. Infect. Dis. 2013, 56, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Kang, C.I.; Joo, E.J.; Ha, Y.E.; Kang, S.J.; Park, S.Y.; Chung, D.R.; Peck, K.R.; Ko, K.S.; Lee, N.Y.; et al. Epidemiology and clinical features of community-onset bacteremia caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Microb. Drug Resist. 2011, 17, 267–273. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Pascual, A. Clinical significance of extended-spectrum beta-lactamases. Expert. Rev. Anti. Infect. Ther. 2008, 6, 671–683. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. Longitudinal analysis of ESBL and carbapenemase carriage among Enterobacterales and Pseudomonas aeruginosa isolates collected in Europe as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme, 2013–2017. J. Antimicrob. Chemother. 2020, 75, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Boutal, H.; Moguet, C.; Pommiès, L.; Simon, S.; Naas, T.; Volland, H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics 2022, 12, 1744. [Google Scholar] [CrossRef] [PubMed]
- Amoutzias, G.D.; Nikolaidis, M.; Hesketh, A. The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- Parcell, B.J.; Gillespie, S.H.; Pettigrew, K.A.; Holden, M.T.G. Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and public health outbreaks—hype or help? J. Hosp. Infect. 2020, 109, 1–9. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Bianco, G.; Lombardo, D.; Ricciardelli, G.; Boattini, M.; Comini, S.; Cavallo, R.; Costa, C.; Ambretti, S. Multicentre Evaluation of the EUCAST Rapid Antimicrobial Susceptibility Testing (RAST) Extending Analysis to 16–20 Hours Reading Time. Antibiotics 2022, 11, 1404. [Google Scholar] [CrossRef]
- De Waele, J.J.; Schouten, J.; Beovic, B.; Tabah, A.; Leone, M. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: No simple answers to simple questions-a viewpoint of experts. Intensive Care Med. 2020, 46, 236–244. [Google Scholar] [CrossRef] [Green Version]
CTX-M Positive n = 67 % (n) | CTX-M Negative n = 132 % (n) | p-Value | |
---|---|---|---|
ESBL-producers | 100 (67) | 3.8 (5) | <0.01 |
AmpC-producers | 0 | 1.5 (2) | 0.55 |
Ceftazidime | 76.1 (51) | 3 (4) | <0.01 |
Cefotaxime | 98.5 (66) | 4.6 (6) | <0.01 |
Cefepime | 86.6 (58) | 2.3 (3) | <0.01 |
Ceftolozane/tazobactam | 4.5 (3) | 0 | 0.04 |
Ceftazidime/avibactam | 0 | 0 | 1 |
Piperacillin/tazobactam | 14.9 (10) | 7.6 (10) | 0.1 |
Gentamicin | 29.9 (20) | 7.6 (10) | <0.01 |
Amikacin | 16.4 (11) | 0.8 (1) | <0.01 |
Ciprofloxacin | 77.6 (52) | 18.9 (25) | <0.01 |
Levofloxacin | 73.1 (49) | 17.4 (23) | <0.01 |
Ertapenem | 3 (2) | 0 | 0.11 |
Meropenem | 0 | 0 | 1 |
Imipenem | 0 | 0 | 1 |
Colistin | 4.5 (3) | 0 | 0.04 |
Sulfamethoxazole/trimethoprim | 61.2 (41) | 33.3 (44) | <0.01 |
CTX-M Positive n = 67 % (n) | CTX-M Negative n = 132 % (n) | p-Value | |
---|---|---|---|
Empirical antibiotic therapy | 85.1 (57/67) | 91.7 (121/132) | 0.15 |
Combination therapy | 15.8 (9/57) | 9.9 (12/121) | 0.32 |
3rd-4th-5th generation cephalosporin-containing | 15.8 (9/57) | 24.8 (30/121) | 0.18 |
Ceftazidime/avibactam-containing | 1.8 (1/57) | 0 | 0.30 |
Amoxicillin/clavulanate-containing | 1.8 (1/57) | 5 (6/121) | 0.67 |
Piperacillin/tazobactam-containing | 45.6 (26/57) | 44.6 (54/121) | 0.90 |
Aminoglycoside-containing | 15.8 (9/57) | 9.9 (12/121) | 0.32 |
Fluoroquinolone-containing | 7 (4/57) | 5 (6/121) | 0.73 |
Fosfomycin-containing | 1.8 (1/57) | 1.7 (2/121) | 1 |
Carbapenem-containing | 26.3 (15/57) | 15.7 (19/121) | 0.09 |
Empirical active antibiotic therapy | 73.7 (42/57) | 91.7 (111/121) | <0.01 |
Antibiotic therapy modification after direct detection of CTX-M ESBL production result | 37.3 (25/67) | 13.6 (18/132) | <0.01 |
Antibiotic therapy introduction | 24 (6/25) | 44.4 (8/18) | 0.20 |
Antibiotic escalation | 76 (19/25) | 44.4 (8/18) | 0.06 |
Antibiotic de-escalation | 0 | 11.1 (2/18) | 0.17 |
Combination therapy | 16 (4/25) | 0 | 0.13 |
3rd generation cephalosporin-containing | 0 | 33.3 (6/18) | <0.01 |
Ceftazidime/avibactam-containing | 8 (2/25) | 0 | 0.50 |
Piperacillin/tazobactam-containing | 4 (1/25) | 44.4 (8/18) | <0.01 |
Aminoglycoside-containing | 12 (3/25) | 11.1 (2/18) | 1 |
Fosfomycin-containing | 8 (2/25) | 0 | 0.50 |
Carbapenem-containing | 76 (19/25) | 11.1 (2/18) | <0.01 |
Antibiotic therapy modification after antimicrobial susceptibility testing results | 28.8 (19/66 *) | 20.5 (27/132) | 0.19 |
Antibiotic therapy introduction | 15.8 (3/19) | 11.1 (3/27) | 0.68 |
Antibiotic escalation | 73.7 (14/19) | 29.6 (8/27) | <0.01 |
Antibiotic de-escalation | 10.5 (2/19) | 59.3 (16/27) | <0.01 |
Combination therapy | 31.6 (6/19) | 7.4 (2/27) | 0.05 |
Amoxicillin/clavulanate-containing | 0 | 14.8 (4/27) | 0.13 |
3rd-4th generation cephalosporin-containing | 0 | 55.6 (15/27) | <0.01 |
Piperacillin/tazobactam-containing | 15.8 (3/19) | 7.4 (2/27) | 0.64 |
Aminoglycoside-containing | 31.6 (6/19) | 7.4 (2/27) | 0.05 |
Fluoroquinolone-containing | 0 | 7.4 (2/27) | 0.50 |
Fosfomycin-containing | 5.3 (1/19) | 0 | 0.41 |
Carbapenem-containing | 79 (15/19) | 7.4 (2/27) | <0.01 |
Sulfamethoxazole/trimethoprim-containing | 0 | 7.4 (2/27) | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boattini, M.; Bianco, G.; Ghibaudo, D.; Comini, S.; Corcione, S.; Cavallo, R.; De Rosa, F.G.; Costa, C. Impact of NG-Test CTX-M MULTI Immunochromatographic Assay on Antimicrobial Management of Escherichia coli Bloodstream Infections. Antibiotics 2023, 12, 473. https://doi.org/10.3390/antibiotics12030473
Boattini M, Bianco G, Ghibaudo D, Comini S, Corcione S, Cavallo R, De Rosa FG, Costa C. Impact of NG-Test CTX-M MULTI Immunochromatographic Assay on Antimicrobial Management of Escherichia coli Bloodstream Infections. Antibiotics. 2023; 12(3):473. https://doi.org/10.3390/antibiotics12030473
Chicago/Turabian StyleBoattini, Matteo, Gabriele Bianco, Davide Ghibaudo, Sara Comini, Silvia Corcione, Rossana Cavallo, Francesco Giuseppe De Rosa, and Cristina Costa. 2023. "Impact of NG-Test CTX-M MULTI Immunochromatographic Assay on Antimicrobial Management of Escherichia coli Bloodstream Infections" Antibiotics 12, no. 3: 473. https://doi.org/10.3390/antibiotics12030473
APA StyleBoattini, M., Bianco, G., Ghibaudo, D., Comini, S., Corcione, S., Cavallo, R., De Rosa, F. G., & Costa, C. (2023). Impact of NG-Test CTX-M MULTI Immunochromatographic Assay on Antimicrobial Management of Escherichia coli Bloodstream Infections. Antibiotics, 12(3), 473. https://doi.org/10.3390/antibiotics12030473