Simple HPLC-UV Method for Piperacillin/Tazobactam Assay in Human Plasma
Abstract
:1. Introduction
2. Results
2.1. Method Development
2.2. Method Validation
2.2.1. Linearity
2.2.2. Selectivity and Sensitivity
2.2.3. Accuracy and Precision
2.2.4. Recovery
2.2.5. Stability
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Instrument
4.3. Chromatographic Conditions
4.4. Pip and Taz Stock and Working Solutions
4.5. Pip and Taz Calibration Concentrations and Quality Control (QC) Samples
4.6. Sample Preparation
4.7. Method Validation
4.7.1. Linearity
4.7.2. Selectivity and Sensitivity
4.7.3. Accuracy and Precision
4.7.4. Recovery
4.7.5. Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luther, M.K.; Timbrook, T.T.; Caffrey, A.R.; Dosa, D.; Lodise, T.P.; LaPlante, K.L. Vancomycin plus piperacillin-tazobactam and acute kidney injury in adults: A systematic review and meta-analysis. Crit. Care Med. 2018, 46, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.S.; Waldrep, T. Pharmacokinetics and pharmacodynamics of piperacillin/tazobactam when administered by continuous infusion and intermittent dosing. Clin. Ther. 2002, 24, 1090–1104. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.C.; Frey, O.; Röhr, A.; Roberts, J.A.; Köberer, A.; Fuchs, T.; Papadimas, N.; Heinzel-Gutenbrunner, M.; Brenner, T.; Lichtenstern, C. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: A retrospective analysis of four years of clinical experience. Infection 2019, 47, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Kirkpatrick, C.M.; Roberts, M.S.; Dalley, A.J.; Lipman, J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int. J. Antimicrob. Agents 2010, 35, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Carrette, S.; Roberts, J.A.; Stove, V.; Verstraete, A.; Hoste, E.; Depuydt, P.; Decruyenaere, J.; Lipman, J.; Wallis, S.C. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: Does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit. Care 2013, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.H.; Shen, C. Augmented renal clearance in critical illness: An important consideration in drug dosing. Pharmaceutics 2017, 9, 36. [Google Scholar] [CrossRef]
- Hefny, F.; Stuart, A.; Kung, J.Y.; Mahmoud, S.H. Prevalence and risk factors of augmented renal clearance: A systematic review and meta-analysis. Pharmaceutics 2022, 14, 445. [Google Scholar] [CrossRef]
- Carlier, M.; De Waele, J.J.; Verstraete, A.G.; Stove, V. Exploration of the pre-analytical stability of β-lactam antibiotics in plasma and blood–implications for therapeutic drug monitoring and pharmacokinetic studies. Clin. Chem. Lab. Med. CCLM 2015, 53, e227–e230. [Google Scholar] [CrossRef]
- Hefny, F.; Sambhi, S.; Morris, C.; Kung, J.Y.; Stuart, A.; Mahmoud, S.H. Drug Dosing in Critically Ill Adult Patients with Augmented Renal Clearance. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 607–620. [Google Scholar] [CrossRef]
- Arzuaga, A.; Isla, A.; Gascón, A.; Maynar, J.; Martin, A.; Solinís, M.; Toral, D.; Pedraz, J. Quantitation and stability of piperacillin and tazobactam in plasma and ultrafiltrate from patients undergoing continuous venovenous hemofiltration by HPLC. Biomed. Chromatogr. 2005, 19, 570–578. [Google Scholar] [CrossRef]
- Pinder, N.; Brenner, T.; Swoboda, S.; Weigand, M.A.; Hoppe-Tichy, T. Therapeutic drug monitoring of beta-lactam antibiotics–Influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime and flucloxacillin by HPLC-UV. J. Pharm. Biomed. Anal. 2017, 143, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Milla, P.; Ferrari, F.; Muntoni, E.; Sartori, M.; Ronco, C.; Arpicco, S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J. Chromatogr. B 2020, 1148, 122151. [Google Scholar] [CrossRef]
- Verhoven, S.M.; Groszek, J.J.; Fissell, W.H.; Seegmiller, A.; Colby, J.; Patel, P.; Verstraete, A.; Shotwell, M. Therapeutic drug monitoring of piperacillin and tazobactam by RP-HPLC of residual blood specimens. Clin. Chim. Acta 2018, 482, 60–64. [Google Scholar] [CrossRef]
- Ohmori, T.; Suzuki, A.; Niwa, T.; Ushikoshi, H.; Shirai, K.; Yoshida, S.; Ogura, S.; Itoh, Y. Simultaneous determination of eight β-lactam antibiotics in human serum by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Colin, P.; De Bock, L.; T’jollyn, H.; Boussery, K.; Van Bocxlaer, J. Development and validation of a fast and uniform approach to quantify β-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography–electrospray-tandem mass spectrometry. Talanta 2013, 103, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Elmekawy, H.; Belal, F.; Abdelaziz, A.; Abdelkawy, K.; Ali, A.; Elbarbry, F. Pharmacokinetic interaction between atorvastatin and fixed-dose combination of sofosbuvir/ledipasvir in healthy male Egyptian volunteers. Eur. J. Clin. Pharmacol. 2021, 77, 1369–1379. [Google Scholar] [CrossRef]
- Sharaf, A.; El-Shazly, K.A.; Abd El Latif, A.; Abdelkawy, K.S.; Elbarbry, F. Comparative Evaluation of the Effects of Atorvastatin and Lovastatin on the Pharmacokinetics of Aliskiren in Rats. Sains Malays. 2021, 50, 829–837. [Google Scholar] [CrossRef]
- Paal, M.; Heilmann, M.; Koch, S.; Bertsch, T.; Steinmann, J.; Hoehl, R.; Liebchen, U.; Schuster, C.; Kleine, F.M.; Vogeser, M. Comparative LC-MS/MS and HPLC-UV Analyses of Meropenem and Piperacillin in Critically Ill Patients. Clin. Lab. 2019, 65, 9. [Google Scholar] [CrossRef]
- Kim, M.K.; Capitano, B.; Mattoes, H.M.; Xuan, D.; Quintiliani, R.; Nightingale, C.H.; Nicolau, D.P. Pharmacokinetic and pharmacodynamic evaluation of two dosing regimens for piperacillin-tazobactam. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2002, 22, 569–577. [Google Scholar] [CrossRef]
- Veillette, J.J.; Winans, S.A.; Forland, S.C.; Maskiewicz, V.K. A simple and rapid RP-HPLC method for the simultaneous determination of piperacillin and tazobactam in human plasma. J. Pharm. Biomed. Anal. 2016, 131, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Snyder, L.R.; Kirkland, J.J.; Glajch, J.L. Practical HPLC Method Development; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Zander, J.; Döbbeler, G.; Nagel, D.; Maier, B.; Scharf, C.; Huseyn-Zada, M.; Jung, J.; Frey, L.; Vogeser, M.; Zoller, M. Piperacillin concentration in relation to therapeutic range in critically ill patients—A prospective observational study. Crit. Care 2016, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L. Production of beta-lactam antibiotics and its regulation. Proc. Natl. Sci. Counc. Repub. China. Part B Life Sci. 1991, 15, 251–265. [Google Scholar]
- Schellinger, A.P.; Carr, P.W. Solubility of buffers in aqueous-organic eluents for reversed-phase liquid chromatography. Lc Gc North Am. 2004, 22, 544–549. [Google Scholar]
- Bielejewska, A.; Glód, B. RP-HPLC separation of acetic and trifluoroacetic acids using mobile phase with ion interaction reagent and without buffer. Chem. Anal. 2005, 50, 387. [Google Scholar]
- Quinton, M.-C.; Bodeau, S.; Kontar, L.; Zerbib, Y.; Maizel, J.; Slama, M.; Masmoudi, K.; Lemaire-Hurtel, A.-S.; Bennis, Y. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob. Agents Chemother. 2017, 61, e00654-17. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.R.; Salem, C.; Connor, M.J., Jr.; Groszek, J.; Taylor, M.E.; Wei, P.; Tolwani, A.J.; Fissell, W.H. Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin. J. Am. Soc. Nephrol. 2012, 7, 452–457. [Google Scholar] [CrossRef]
- Varghese, J.M.; Jarrett, P.; Boots, R.J.; Kirkpatrick, C.M.; Lipman, J.; Roberts, J.A. Pharmacokinetics of piperacillin and tazobactam in plasma and subcutaneous interstitial fluid in critically ill patients receiving continuous venovenous haemodiafiltration. Int. J. Antimicrob. Agents 2014, 43, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Denooz, R.; Charlier, C. Simultaneous determination of five β-lactam antibiotics (cefepim, ceftazidim, cefuroxim, meropenem and piperacillin) in human plasma by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B 2008, 864, 161–167. [Google Scholar] [CrossRef]
- Briscoe, S.E.; McWhinney, B.C.; Lipman, J.; Roberts, J.A.; Ungerer, J.P. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J. Chromatogr. B 2012, 907, 178–184. [Google Scholar] [CrossRef]
- Sime, F.B.; Roberts, M.S.; Roberts, J.A.; Robertson, T.A. Simultaneous determination of seven β-lactam antibiotics in human plasma for therapeutic drug monitoring and pharmacokinetic studies. J. Chromatogr. B 2014, 960, 134–144. [Google Scholar] [CrossRef]
- McWhinney, B.C.; Wallis, S.C.; Hillister, T.; Roberts, J.A.; Lipman, J.; Ungerer, J.P. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J. Chromatogr. B 2010, 878, 2039–2043. [Google Scholar] [CrossRef] [PubMed]
- Verdier, M.-C.; Tribut, O.; Tattevin, P.; Le Tulzo, Y.; Michelet, C.; Bentué-Ferrer, D. Simultaneous determination of 12 β-lactam antibiotics in human plasma by high-performance liquid chromatography with UV detection: Application to therapeutic drug monitoring. Antimicrob. Agents Chemother. 2011, 55, 4873–4879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, F.; Deprez, G.; Seyler, L.; Taccone, F.; Hites, M.; Gulbis, B.; Vincent, J.-L.; Jacobs, F.; Cotton, F. Rapid quantification of six β-lactams to optimize dosage regimens in severely septic patients. Talanta 2013, 103, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Stove, V.; Wallis, S.C.; De Waele, J.J.; Verstraete, A.G.; Lipman, J.; Roberts, J.A. Assays for therapeutic drug monitoring of β-lactam antibiotics: A structured review. Int. J. Antimicrob. Agents 2015, 46, 367–375. [Google Scholar] [CrossRef]
- Kaza, M.; Karaźniewicz-Łada, M.; Kosicka, K.; Siemiątkowska, A.; Rudzki, P.J. Bioanalytical method validation: New FDA guidance vs. EMA guideline. Better or worse? J. Pharm. Biomed. Anal. 2019, 165, 381–385. [Google Scholar] [CrossRef]
Piperacillin | Tazobactam | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nominal Conc. | Intra-Day (n = 5) | Inter-Day (n = 15) | Nominal Conc. | Intra-Day (n = 5) | Inter-Day (n = 15) | ||||||||
(µg/mL) | Conc.* Mean ± SD | CV (%) | % Error | Conc. Mean ± SD | CV (%) | % Error | (µg/mL) | Conc. Mean ± SD | CV (%) | % Error | Conc. Mean ± SD | CV (%) | % Error |
0.5 | 0.51 ± 0.08 | 15.63 | −2.10 | 0.54 ± 0.03 | 4.97 | −7.95 | 1 | 1.18 ± 0.11 | 9.56 | −18.36 | 1.16 ± 0.02 | 1.84 | −16.21 |
8 | 7.68 ± 0.54 | 7.00 | 4.00 | 7.2 ± 0.51 | 7.11 | 10.29 | 20 | 19.30 ± 3.46 | 17.92 | 3.50 | 21.93 ± 3.31 | 15.08 | −9.63 |
160 | 166.73 ± 25.03 | 15.01 | −4.20 | 172.64 ± 15.76 | 9.13 | −7.90 | 40 | 35.45 ± 3.04 | 8.58 | 11.37 | 42.99 ± 6.89 | 16.01 | −7.48 |
320 | 286.00 ± 50.55 | 17.67 | 10.62 | 338.53 ± 45.68 | 13.49 | −5.79 | 75 | 78.53 ± 6.53 | 8.32 | −4.71 | 73.36 ± 4.48 | 6.11 | 2.19 |
Recovery Percent (n = 5) | ||||||||
---|---|---|---|---|---|---|---|---|
Nominal Conc. * | Piperacillin % Recovery | Nominal Conc. | Tazobactam % Recovery | Nominal Conc. | Penicillin G % Recovery | |||
(µg/mL) | Mean ± SD | CV (%) | (µg/mL) | Mean ± SD | CV (%) | (µg/mL) | Mean ± SD | CV (%) |
8 | 90.64 ± 8.96 | 9.88 | 20 | 84.61 ± 14.41 | 17.0 | 150 | 90.57 ± 11.74 | 12.97 |
160 | 87.86 ± 15.16 | 17.25 | 40 | 80.00 ± 4.25 | 5.34 | |||
320 | 86.13 ± 10.00 | 11.61 | 75 | 88.84 ± 6.40 | 7.21 |
% Remaining | Freeze–Thaw Cycles | Short term Stability (Room Temperature) | Long Term Stability | ||||||
---|---|---|---|---|---|---|---|---|---|
Room Temperature | Refrigerator at 4 °C | Freeze at −80 °C | |||||||
Cycle 1 | Cycle 2 | Cycle 3 | 4 h | 12 h | Week 1 | Week 1 | Week 1 | ||
QC1 | Piperacillin | 96 | 92.9 | 90.1 | 97.5 | 95.7 | 68.4 | 94.3 | 95.9 |
Tazobactam | 95.7 | 90.1 | 88.1 | 96.4 | 92.8 | 73.1 | 96.6 | 94.9 | |
Penicillin G | 95.7 | 86.9 | 79 | 97.6 | 92.1 | 54.4 | 93.5 | 96 | |
QC2 | Piperacillin | 97.6 | 90.2 | 88.6 | 98.7 | 96.4 | 71.2 | 93.5 | 97 |
Tazobactam | 98.4 | 98.5 | 91.4 | 94.6 | 93.4 | 70.5 | 97.2 | 96.4 | |
Penicillin G | 87.2 | 82.1 | 76 | 98.7 | 93.8 | 62.8 | 87.6 | 95.5 |
Running Time (min) | Mobile Phase B Percentage | Mobile Phase A Percentage |
---|---|---|
0.00 | 5 | 95 |
3.75 | 15 | 85 |
7.50 | 25 | 75 |
13.25 | 35 | 65 |
15.00 | 45 | 55 |
18.75 | 25 | 75 |
22.50 | 5 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkawy, K.; Le, T.; Mahmoud, S.H. Simple HPLC-UV Method for Piperacillin/Tazobactam Assay in Human Plasma. Antibiotics 2023, 12, 321. https://doi.org/10.3390/antibiotics12020321
Abdelkawy K, Le T, Mahmoud SH. Simple HPLC-UV Method for Piperacillin/Tazobactam Assay in Human Plasma. Antibiotics. 2023; 12(2):321. https://doi.org/10.3390/antibiotics12020321
Chicago/Turabian StyleAbdelkawy, Khaled, Tyson Le, and Sherif Hanafy Mahmoud. 2023. "Simple HPLC-UV Method for Piperacillin/Tazobactam Assay in Human Plasma" Antibiotics 12, no. 2: 321. https://doi.org/10.3390/antibiotics12020321
APA StyleAbdelkawy, K., Le, T., & Mahmoud, S. H. (2023). Simple HPLC-UV Method for Piperacillin/Tazobactam Assay in Human Plasma. Antibiotics, 12(2), 321. https://doi.org/10.3390/antibiotics12020321