Investigation of the Effect of pH on the Adsorption–Desorption of Doxycycline in Feed for Small Ruminants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of Doxycycline
2.2. Desorption of Doxycycline
3. Materials and Methods
3.1. Drugs and Reagents
3.2. Experimental Procedure and Adsorption/Desorption Study
3.3. LC-MS/MS Analysis of Doxycycline in Samples Containing Animal Feed
3.4. Mathematical Modelling
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci. 2018, 4, 237. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Blondeau, J.; Cerniglia, C.E.; Fink-Gremmels, J.; Guenther, S.; Hunter, R.P.; Li, X.Z.; Papich, M.; Silley, P.; Soback, S.; et al. Workshop report: The 2012 antimicrobial agents in veterinary medicine: Exploring the consequences of antimicrobial drug use: A 3-D approach. J. Vet. Pharm. Therap. 2014, 37, e1–e16. [Google Scholar] [CrossRef] [PubMed]
- Marasanapalle, V.P.; Li, X.; Jasti, B.R. Effects of food on drug absorption. In Oral Bioavailability. Basic Principles, Advanced Concepts, and Applications; Hu, M., Li, X., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 221–231. [Google Scholar]
- Del Castillo, J.R.E. Tetracyclines. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2013; pp. 257–268. [Google Scholar]
- Mulder, M.; Radjabzadeh, D.; Kiefte-de Jong, J.C.; Uitterlinden, A.G.; Kraaij, R.; Stricker, B.H.; Verbon, A. Long-term effects of antimicrobial drugs on the composition of the human gut microbiota. Gut Microbes 2020, 12, 1. [Google Scholar] [CrossRef]
- European Medicine Agency. Categorisation of Antibiotics in the European Union. EMA/CVMP/CHMP/682198/2017. 2019. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 11 January 2023).
- Collignon, P.J.; McEwen, S.A. One health-its importance in helping to better control antimicrobial resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Marx, J.O.; Vudathala, D.; Murphy, L.; Rankin, S.; Hankenson, F.C. Antibiotic administration in the drinking water of mice. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 301–306. [Google Scholar] [PubMed]
- Yang, F.; Sun, N.; Zhao, G.Z.S.; Wang, Y.; Wang, M.F. Pharmacokinetics of doxycycline after a single intravenous, oral or intramuscular dose in Muscovy ducks (Cairina moschata). Br. Poult. Sci. 2015, 56, 137–142. [Google Scholar] [CrossRef]
- Smith, V.A.; Cook, S.D. Doxycycline-a role in ocular surface repair. Br. J. Ophthalmol. 2004, 88, 619–625. [Google Scholar] [CrossRef] [Green Version]
- De Baere, S.; De Mil, T.; Antonissen, G.; Devreese, M.; Croubels, S. In vitro model to assess the adsorption of oral veterinary drugs to mycotoxin binders in a feed- and aflatoxin B1-containing buffered matrix. Food Addit. Contam. Part A 2018, 35, 1728–1738. [Google Scholar] [CrossRef]
- De Mil, T.; Devreese, M.; De Saeger, S.; Eeckhout, M.; De Backer, P.; Croubels, S. Influence of mycotoxin binders on the oral bioavailability of doxycycline in pigs. J. Agric. Food Chem. 2016, 64, 2120–2126. [Google Scholar] [CrossRef] [Green Version]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Permanadewi, I.; Kumoro, A.C.; Wardhani, D.H.; Aryanti, N. Modelling of controlled drug release in gastrointestinal tract simulation. J. Phys.Conf. Ser. 2019, 1295, 012063. [Google Scholar] [CrossRef]
- Nerella, N.G.; Block, L.H.; Noonan, P.K. The impact of lag time on the estimation of pharmacokinetic parameters. I. One-compartment open model. Pharm. Res. 1993, 10, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, A.; Tan, W.; Li, J.; Haughey, M.; Masters, J.; Hibma, J.; Lin, S. Pharmacokinetic models to characterize the absorption phase and the influence of a proton pump Inhibitor on the overall exposure of dacomitinib. Pharmaceutics 2020, 12, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legendre, A.O.; Silva, L.R.R.; Silva, D.M.; Rosa, I.M.L.; Azarias, L.C.; de Abreu, P.J.; de Araújo, M.B.; Neves, P.P.; Torres, C.; Martins, F.T.; et al. Solid state chemistry of the antibiotic doxycycline: Structure of the neutral monohydrate and insights into its poor water solubility. Cryst. Eng. Comm. 2012, 14, 2532–2540. [Google Scholar] [CrossRef]
- Kurtbay, H.M.; Becki, Z.; Merdivan, M.; Yurdakoc, K. Reduction of ochratoxin A levels in red wine by bentonite, modified bentonites, and chitosa. J. Agric. Food Chem. 2008, 56, 2541–2545. [Google Scholar] [CrossRef]
- Cavret, S.; Laurent, N.; Videmann, B.; Mazallon, M.; Lecoeur, S. Assessment of deoxynivalenol (DON) adsorbents and characterization of their efficacy using complementary in vitro tests. Food Addit. Contam. 2010, 27, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.R.; Vermeulen, S.; Haritova, A.; Fink-Gremmels, J. Isotherm modeling of organic activated bentonite and humic acid polymer used as mycotoxin adsorbents. Food Addit. Contam. 2011, 28, 1578–1589. [Google Scholar] [CrossRef]
- Telma dos Santos, C.; Hervé, R.; da Silva, P.R. Adsorption capacity of phenolic compounds onto; cellulose and xylan. Food Sci. Technol. 2015, 35, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Mileva, R.; Subev, S.; Gehring, R.; Milanova, A. Oral doxycycline pharmacokinetics: Lambs in comparison with sheep. J. Vet. Pharm. Therap. 2020, 43, 268–275. [Google Scholar] [CrossRef]
- Miltko, R.; Bełżecki, G.; Kowalik, B.; Skomiał, J. Presence of carbohydrate-digesting enzymes throughout the digestive tract of sheep. Turk. J. Vet. Anim. Sci. 2016, 40, 271–277. [Google Scholar] [CrossRef]
- Imamidoost, R.; Cant, J.P. Non-steady-state modeling of effects of timing and level of concentrate supplementation on ruminal pH and forage intake in high-producing, grazing ewes. J. Anim. Sci. 2005, 83, 1102–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mileva, R. Determination of free doxycycline concentrations in the plasma and milk of sheep and in the plasma of rabbits by using the HPLC method. Maced. Vet. Rev. 2019, 42, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Yaneva, Z.; Georgieva, N.V.; Bekirska, L.L.; Lavrova, S. Drug mass transfer mechanism, thermodynamics, and in vitro release kinetics of antioxidant-encapsulated zeolite microparticles as a drug carrier system. Chem. Biochem. Eng. Q. 2018, 32, 281–298. [Google Scholar] [CrossRef]
- Yaneva, Z.; Georgieva, N. Physicochemical and morphological characterization of pharmaceutical nanocarriers and mathematical modeling of drug encapsulation/release mass transfer processes. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology, 1st ed.; Grumezescu, A., Andrew, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 5; pp. 174–218. [Google Scholar]
Mathematical Model | Model Parameters | |||
---|---|---|---|---|
Effect of Initial Concentration (w = 270 mg) | ||||
Co = 35 µg/mL | Co = 75 µg/mL | Co = 150 µg/mL | ||
Pseudo-second-order kinetics model | qe2 = 3.934 µg/mg k2 = 129.87 h = 510.91 µg/(mg∙min) R2 = 0.9972 | qe2 = 5.685 µg/mg k2 = 3.291 h = 18.71 µg/(mg∙min) R2 = 0.9915 | qe2 = 10.515 µg/mg k2 = 3.015 h = 31.70 µg/(mg∙min) R2 = 0.9464 | |
Diffusion–chemisorption model | KDC = 357.14 qeDC = 3.962 µg/mg R2 = 0.9968 | KDC = 277.78 qeDC = 6.11 µg/mg R2 = 0.9781 | KDC = 2000.00 qeDC = 10.846 µg/mg R2 = 0.9403 | |
Effect of animal feed mass (C0 = 150 µg/mL) | ||||
w = 135 mg | w = 270 mg | |||
Pseudo-second-order kinetics model | qe2 = 15.748 µg/mg k2 = 0.4337 h = 6.83 µg/(mg∙min) R2 = 0.8853 | qe2 = 10.515 µg/mg k2 = 3.015 h = 31.70 µg/(mg∙min) R2 = 0.9464 | ||
Diffusion–chemisorption model | KDC = 1666.66 qeDC = 23.095 µg/mg R2 = 0.9916 | KDC = 2000.00 qeDC = 10.846 µg/mg R2 = 0.9403 |
Mathematical Model | Model Parameters | Error Functions | Regression Analyses | ||
---|---|---|---|---|---|
Series 1 | Series 2 | Series 1 | Series 2 | ||
Higuchi | kH = 4.33 | kH = 18.56 | R2 = 0.9139 | R2 = 0.8672 | Linear regression |
Korsmeyer–Peppas | a = 0.083 n = 0.815 | a = 0.079 n = 0.982 | R2 = 0.9139 SSE = 0.003 MSE = 1.6 × 10−4 RMSE = 0.013 | R2 = 0.9139 SSE = 0.004 MSE = 2.3 × 10−4 RMSE = 0.015 | Nonlinear regression |
Weibull | at b = 1 Co = 97.19 aw = 0.022 T = 0.291 | at b = 1 Co = 21.6 aw = 0.26 T = 0.469 | R2 = 0.962 SSE = 3.101 MSE = 0.194 RMSE = 0.440 | R2 = 0.960 SSE = 63.085 MSE = 3.943 RMSE = 1.986 | Nonlinear regression |
Sigmoidal | Region 1 ks1 = 27.063 ns = 0.004 ks2 = 27.446 | Region 1 ks1 = 130.31 ns = 0.001 ks2 = 130.657 | Region 1 R2 = 0.958 SSE = 0.002 MSE = 0.001 RMSE = 0.025 | Region 1 R2 = 0.904 SSE = 0.005 MSE = 0.001 RMSE = 0.033 | Nonlinear regression |
Region 2 ks1 = 11.011 ns = 0.057 ks2 = 11.267 | Region 2 ks1 = 0.190 ns = 2.111 ks2 = 0.009 | Region 2 R2 = 0.964 SSE = 0.020 MSE = 0.002 RMSE = 0.047 | Region 2 R2 = 0.984 SSE = 0.009 MSE = 0.001 RMSE = 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileva, R.; Petkova, T.; Yaneva, Z.; Milanova, A. Investigation of the Effect of pH on the Adsorption–Desorption of Doxycycline in Feed for Small Ruminants. Antibiotics 2023, 12, 268. https://doi.org/10.3390/antibiotics12020268
Mileva R, Petkova T, Yaneva Z, Milanova A. Investigation of the Effect of pH on the Adsorption–Desorption of Doxycycline in Feed for Small Ruminants. Antibiotics. 2023; 12(2):268. https://doi.org/10.3390/antibiotics12020268
Chicago/Turabian StyleMileva, Rositsa, Tsvetelina Petkova, Zvezdelina Yaneva, and Aneliya Milanova. 2023. "Investigation of the Effect of pH on the Adsorption–Desorption of Doxycycline in Feed for Small Ruminants" Antibiotics 12, no. 2: 268. https://doi.org/10.3390/antibiotics12020268
APA StyleMileva, R., Petkova, T., Yaneva, Z., & Milanova, A. (2023). Investigation of the Effect of pH on the Adsorption–Desorption of Doxycycline in Feed for Small Ruminants. Antibiotics, 12(2), 268. https://doi.org/10.3390/antibiotics12020268