Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Antibacterial Activity of Compounds 1–17 against Multidrug-Resistant Pathogens
2.3. Antifungal Activity of Thiazoles 1–17 against Drug-Resistant Candida Species
2.4. Anticancer Activity of Compounds 1–17
3. Materials and Methods
3.1. Synthesis
3.2. Bacterial Strains and Culture Conditions
3.3. Minimal Inhibitory Concentration Determination
3.3.1. Antibacterial Activity Characterization
3.3.2. Antifungal Activity Characterization
3.4. Cell Lines and Culture Conditions
3.5. In Vitro Cytotoxic Activity Determination
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petraitis, V.; Petraitiene, R.; Kavaliauskas, P.; Naing, E.; Garcia, A.; Sutherland, C.; Kau, A.Y.; Goldner, N.; Bulow, C.; Nicolau, D.P.; et al. Pharmacokinetics, Tissue Distribution, and Efficacy of VIO-001 (Meropenem/Piperacillin/Tazobactam) for Treatment of Methicillin-Resistant Staphylococcus Aureus Bacteremia in Immunocompetent Rabbits with Chronic Indwelling Vascular Catheters. Antimicrob. Agents Chemother. 2021, 65, e0116821. [Google Scholar] [CrossRef] [PubMed]
- Holubar, M.; Meng, L.; Deresinski, S. Bacteremia Due to Methicillin-Resistant Staphylococcus Aureus. Infect. Dis. Clin. N. Am. 2016, 30, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Hashem, Y.A.; Amin, H.M.; Essam, T.M.; Yassin, A.S.; Aziz, R.K. Biofilm Formation in Enterococci: Genotype-Phenotype Correlations and Inhibition by Vancomycin. Sci. Rep. 2017, 7, 5733–5745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, S.; Sherman, E.; Colmer-Hamood, J.A.; Nelius, T.; Myntti, M.; Hamood, A.N. Urinary Catheters Coated with a Novel Biofilm Preventative Agent Inhibit Biofilm Development by Diverse Bacterial Uropathogens. Antibiotics 2022, 11, 1514. [Google Scholar] [CrossRef] [PubMed]
- Kean, R.; Rajendran, R.; Haggarty, J.; Townsend, E.M.; Short, B.; Burgess, K.E.; Lang, S.; Millington, O.; Mackay, W.G.; Williams, C.; et al. Candida Albicans Mycofilms Support Staphylococcus Aureus Colonization and Enhances Miconazole Resistance in Dual-Species Interactions. Front. Microbiol. 2017, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, E.F.; Tsui, C.; Kucharíková, S.; Andes, D.; Van Dijck, P.; Jabra-Rizk, M.A. Commensal Protection of Staphylococcus Aureus against Antimicrobials by Candida Albicans Biofilm Matrix. MBio 2016, 7, e01365-16. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.E.; Jacobs, J.L.; Dennis, E.K.; Taimur, S.; Rana, M.; Patel, D.; Gitman, M.; Patel, G.; Schaefer, S.; Iyer, K.; et al. Candida Auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob. Agents Chemother. 2022, 66, e0005322. [Google Scholar] [CrossRef]
- Thatchanamoorthy, N.; Rukumani Devi, V.; Chandramathi, S.; Tay, S.T. Candida Auris: A Mini Review on Epidemiology in Healthcare Facilities in Asia. J. Fungi 2022, 8, 1126. [Google Scholar] [CrossRef]
- Rybak, J.M.; Cuomo, C.A.; David Rogers, P. The Molecular and Genetic Basis of Antifungal Resistance in the Emerging Fungal Pathogen Candida Auris. Curr. Opin. Microbiol. 2022, 70, 102208–102216. [Google Scholar] [CrossRef]
- Short, F.L.; Lee, V.; Mamun, R.; Malmberg, R.; Li, L.; Espinosa, M.I.; Venkatesan, K.; Paulsen, I.T. Benzalkonium Chloride Antagonises Aminoglycoside Antibiotics and Promotes Evolution of Resistance. EBioMedicine 2021, 73, 103653–103659. [Google Scholar] [CrossRef]
- Liu, G.; Stokes, J.M. A Brief Guide to Machine Learning for Antibiotic Discovery. Curr. Opin. Microbiol. 2022, 69, 102190–102197. [Google Scholar] [CrossRef] [PubMed]
- Evren, A.E.; Dawbaa, S.; Nuha, D.; Yavuz, Ş.A.; Gül, Ü.D.; Yurttaş, L. Design and Synthesis of New 4-Methylthiazole Derivatives: In Vitro and in Silico Studies of Antimicrobial Activity. J. Mol. Struct. 2021, 1241, 130692–130706. [Google Scholar] [CrossRef]
- Moreira, J.; Durães, F.; Freitas-Silva, J.; Szemerédi, N.; Resende, D.I.S.P.; Pinto, E.; da Costa, P.M.; Pinto, M.; Spengler, G.; Cidade, H.; et al. New Diarylpentanoids and Chalcones as Potential Antimicrobial Adjuvants. Bioorg. Med. Chem. Lett. 2022, 67, 128743–128752. [Google Scholar] [CrossRef] [PubMed]
- Dinesh Kumar, S.; Park, J.H.; Kim, H.S.; Seo, C.D.; Ajish, C.; Kim, E.Y.; Lim, H.S.; Shin, S.Y. Cationic, Amphipathic Small Molecules Based on a Triazine-Piperazine-Triazine Scaffold as a New Class of Antimicrobial Agents. Eur. J. Med. Chem. 2022, 243, 114747–114763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Y.; Wang, S.; Wu, H. Synthesis and Biological Evaluation of Novel Pyrimidine Amine Derivatives Bearing Bicyclic Monoterpene Moieties. Molecules 2022, 27, 8104. [Google Scholar] [CrossRef] [PubMed]
- Hosny, Y.; Abutaleb, N.S.; Omara, M.; Alhashimi, M.; Elsebaei, M.M.; Elzahabi, H.S.; Seleem, M.N.; Mayhoub, A.S. Modifying the Lipophilic Part of Phenylthiazole Antibiotics to Control Their Drug-Likeness. Eur. J. Med. Chem. 2020, 185, 111830–111847. [Google Scholar] [CrossRef]
- AboulMagd, A.M.; Abdelwahab, N.S.; Abdelrahman, M.M.; Abdel-Rahman, H.M.; Farid, N.F. Lipophilicity Study of Different Cephalosporins: Computational Prediction of Minimum Inhibitory Concentration Using Salting-out Chromatography. J. Pharm. Biomed. Anal. 2021, 206, 114358–114368. [Google Scholar] [CrossRef]
- Sadowski, E.; Bercot, B.; Chauffour, A.; Gomez, C.; Varon, E.; Mainardis, M.; Sougakoff, W.; Mayer, C.; Sachon, E.; Anquetin, G.; et al. Lipophilic Quinolone Derivatives: Synthesis and in Vitro Antibacterial Evaluation. Bioorg. Med. Chem. Lett. 2022, 55, 128450–128456. [Google Scholar] [CrossRef]
- Mohanty, P.; Behera, S.; Behura, R.; Shubhadarshinee, L.; Mohapatra, P.; Barick, A.K.; Jali, B.R. Antibacterial Activity of Thiazole and Its Derivatives: A Review. Biointerface Res. Appl. Chem. 2022, 12, 2171–2195. [Google Scholar] [CrossRef]
- Constantinescu, T.; Lungu, C.N.; Lung, I. Lipophilicity as a Central Component of Drug-like Properties of Chalchones and Flavonoid Derivatives. Molecules 2019, 24, 1505. [Google Scholar] [CrossRef]
- Pivovarova, E.; Climova, A.; Świątkowski, M.; Staszewski, M.; Walczyński, K.; Dzięgielewski, M.; Bauer, M.; Kamysz, W.; Krześlak, A.; Jóźwiak, P.; et al. Synthesis and Biological Evaluation of Thiazole-Based Derivatives with Potential against Breast Cancer and Antimicrobial Agents. Int. J. Mol. Sci. 2022, 23, 9844. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; et al. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022, 27, 3994. [Google Scholar] [CrossRef] [PubMed]
- Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S.P.; Kumar, B.K.; Sankaranarayanan, M.; Faheem; Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine- And Thiazole-Based Hydrazides with Promising Anti-Inflammatory and Antimicrobial Activities along with Their in Silico Studies. ACS Omega 2020, 5, 25228–25239. [Google Scholar] [CrossRef]
- Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Abd El-Karim, S.S.; Nossier, E.S. Synthesis and Biological Evaluation of New Derivatives of Thieno-Thiazole and Dihydrothiazolo-Thiazole Scaffolds Integrated with a Pyrazoline Nucleus as Anticancer and Multi-Targeting Kinase Inhibitors. RSC Adv. 2022, 12, 561–577. [Google Scholar] [CrossRef]
- Yurttaş, L.; Özkay, Y.; Karaca Gençer, H.; Acar, U. Synthesis of Some New Thiazole Derivatives and Their Biological Activity Evaluation. J. Chem. 2015, 2015, 464379. [Google Scholar] [CrossRef] [Green Version]
- Elsebaei, M.M.; Mohammad, H.; Abouf, M.; Abutaleb, N.S.; Hegazy, Y.A.; Ghiaty, A.; Chen, L.; Zhang, J.; Malwal, S.R.; Oldfield, E.; et al. Alkynyl-Containing Phenylthiazoles: Systemically Active Antibacterial Agents Effective against Methicillin-Resistant Staphylococcus Aureus (MRSA). Eur. J. Med. Chem. 2018, 148, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.D.; Liu, P.; Yang, Y.; Gao, F. Sulfonamide-1,3,5-Triazine-Thiazoles: Discovery of a Novel Class of Antidiabetic Agents: Via Inhibition of DPP-4. RSC Adv. 2016, 6, 83438–83447. [Google Scholar] [CrossRef]
- Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K.; Kumar, M. Design, Synthesis, DNA Binding, and Docking Studies of Thiazoles and Thiazole-Containing Triazoles as Antibacterials. ChemistrySelect 2018, 3, 3892–3898. [Google Scholar] [CrossRef]
- Cheng, K.; Xue, J.Y.; Zhu, H.L. Design, Synthesis and Antibacterial Activity Studies of Thiazole Derivatives as Potent EcKAS III Inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 4235–4238. [Google Scholar] [CrossRef]
- Parašotas, I.; Anusevičius, K.; Jonuškiene, I.; Mickevičius, V. Synthesis and Antibacterial Activity of N-Carboxyethyl-N-(4-Hydroxyphenyl)- 2-Aminothiazoles and Dihydrothiazolones. Chemija 2014, 25, 107–114. [Google Scholar]
- Prusiner, S.B. Molecular Biology of Prion Diseases. Science 1991, 252, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Al-Humaidi, J.Y.; Badrey, M.G.; Aly, A.A.; Nayl, A.E.A.A.; Zayed, M.E.M.; Jefri, O.A.; Gomha, S.M. Evaluation of the Binding Relationship of the RdRp Enzyme to Novel Thiazole/Acid Hydrazone Hybrids Obtainable through Green Synthetic Procedure. Polymers 2022, 14, 3160. [Google Scholar] [CrossRef] [PubMed]
- Almalki, S.A.; Bawazeer, T.M.; Asghar, B.; Alharbi, A.; Aljohani, M.M.; Khalifa, M.E.; El-Metwaly, N. Synthesis and Characterization of New Thiazole-Based Co(II) and Cu(II) Complexes; Therapeutic Function of Thiazole towards COVID-19 in Comparing to Current Antivirals in Treatment Protocol. J. Mol. Struct. 2021, 1244, 130961–130973. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, E.; Dincel, E.D.; Naesens, L.; Ulusoy Güzeldemirci, N. Design and Synthesis of Novel Imidazo[2,1-b]Thiazole Derivatives as Potent Antiviral and Antimycobacterial Agents. Bioorg. Chem. 2020, 95, 103496–103505. [Google Scholar] [CrossRef]
- Pacca, C.C.; Marques, R.E.; Espindola, J.W.P.; Filho, G.B.O.O.; Leite, A.C.L.; Teixeira, M.M.; Nogueira, M.L. Thiosemicarbazones and Phthalyl-Thiazoles Compounds Exert Antiviral Activity against Yellow Fever Virus and Saint Louis Encephalitis Virus. Biomed. Pharmacother. 2017, 87, 381–387. [Google Scholar] [CrossRef]
- Abdel-Sattar, N.E.A.; El-Naggar, A.M.; Abdel-Mottaleb, M.S.A. Novel Thiazole Derivatives of Medicinal Potential: Synthesis and Modeling. J. Chem. 2017, 2017, 4102796. [Google Scholar] [CrossRef] [Green Version]
- Raghunatha, P.; Inamdar, M.N.; Asdaq, S.M.B.; Almuqbil, M.; Alzahrani, A.R.; Alaqel, S.I.; Kamal, M.; Alsubaie, F.H.; Alsanie, W.F.; Alamri, A.S.; et al. New Thiazole Acetic Acid Derivatives: A Study to Screen Cardiovascular Activity Using Isolated Rat Hearts and Blood Vessels. Molecules 2022, 27, 6138. [Google Scholar] [CrossRef]
- Bagheri, M.; Shekarchi, M.; Jorjani, M.; Ghahremani, M.H.; Vosooghi, M.; Shafiee, A. Synthesis and Antihypertensive Activity of 1-(2-Thiazolyl)-3,5-Disubstituted -2-Pyrazolines. Arch. Pharm. 2004, 337, 25–34. [Google Scholar] [CrossRef]
- Pember, S.O.; Mejia, G.L.; Price, T.J.; Pasteris, R.J. Piperidinyl Thiazole Isoxazolines: A New Series of Highly Potent, Slowly Reversible FAAH Inhibitors with Analgesic Properties. Bioorg. Med. Chem. Lett. 2016, 26, 2965–2973. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Singh, N.P. Synthesis, Anti-Inflammatory and Analgesic Evaluation of Thiazole/Oxazole Substituted Benzothiazole Derivatives. Bioorg. Chem. 2021, 107, 104608. [Google Scholar] [CrossRef]
- Kalkhambkar, R.G.; Kulkarni, G.M.; Shivkumar, H.; Rao, R.N. Synthesis of Novel Triheterocyclic Thiazoles as Anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2007, 42, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wells, J.A. Identification of Specific Tethered Inhibitors for Caspase-5. Chem. Biol. Drug Des. 2012, 79, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel Class of Benzimidazole-Thiazole Hybrids: The Privileged Scaffolds of Potent Anti-Inflammatory Activity with Dual Inhibition of Cyclooxygenase and 15-Lipoxygenase Enzymes. Bioorganic Med. Chem. 2020, 28, 115403–115422. [Google Scholar] [CrossRef] [PubMed]
- Neelam; Khatkar, A.; Sharma, K.K. Phenylpropanoids and Its Derivatives: Biological Activities and Its Role in Food, Pharmaceutical and Cosmetic Industries. Crit. Rev. Food Sci. Nutr. 2020, 60, 2655–2675. [Google Scholar] [CrossRef]
- Sahu, S.; Sahu, T.; Kalyani, G.; Gidwani, B. Synthesis and Evaluation of Antimicrobial Activity of 1, 3, 4-Thiadiazole Analogues for Potential Scaffold. J. Pharmacopuncture 2021, 24, 32–40. [Google Scholar] [CrossRef]
- Coluccia, A.; Bufano, M.; La Regina, G.; Puxeddu, M.; Toto, A.; Paone, A.; Bouzidi, A.; Musto, G.; Badolati, N.; Orlando, V.; et al. Anticancer Activity of (S)-5-Chloro-3-((3,5-Dimethylphenyl) Sulfonyl)-N-(1-Oxo-1-((Pyridin-4-Ylmethyl)Amino)Propan-2-Yl)-1H-Indole-2-Carboxamide (RS4690), a New Dishevelled 1 Inhibitor. Cancers 2022, 14, 1358. [Google Scholar] [CrossRef]
- Moore, B.P.; Chung, D.H.; Matharu, D.S.; Golden, J.E.; Maddox, C.; Rasmussen, L.; Noah, J.W.; Sosa, M.I.; Ananthan, S.; Tower, N.A.; et al. (S)-N-(2,5-Dimethylphenyl)-1-(Quinoline-8-Ylsulfonyl)Pyrrolidine-2-Carboxamide as a Small Molecule Inhibitor Probe for the Study of Respiratory Syncytial Virus Infection. J. Med. Chem. 2012, 55, 8582–8587. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.A.; Irshad, M.; Aziz-Ur-Rehman; Siddiqui, S.Z.; Nazir, M.; Ali Shah, S.A.; Shahid, M. Synthesis of Promising Antibacterial and Antifungal Agents: 2-[[(4-Chlorophenyl)Sulfonyl](2,3-Dihydro-1,4-Benzodioxin-6-Yl)Amino]-N(Un/Substituted-Phenyl)Acetamides. Pak. J. Pharm. Sci. 2020, 33, 2161–2170. [Google Scholar] [CrossRef]
- Minickaitė, R.; Grybaitė, B.; Vaickelionienė, R.; Kavaliauskas, P.; Petraitis, V.; Petraitienė, R.; Tumosienė, I.; Jonuškienė, I.; Mickevičius, V. Synthesis of Novel Aminothiazole Derivatives as Promising Antiviral, Antioxidant and Antibacterial Candidates. Int. J. Mol. Sci. 2022, 23, 7688. [Google Scholar] [CrossRef]
- Anusevicius, K.; Vaickelioniene, R.; Mickevicius, V. Unexpected Cyclization of N-Aryl-N-Carboxy-Ethyl-β-Alanines to 5,6-Dihydrouracils. Chem. Heterocycl. Compd. 2012, 48, 1105–1107. [Google Scholar] [CrossRef]
- Bouherrou, H.; Saidoun, A.; Abderrahmani, A.; Abdellaziz, L.; Rachedi, Y.; Dumas, F.; Demenceau, A. Synthesis and Biological Evaluation of New Substituted Hantzsch Thiazole Derivatives from Environmentally Benign One-Pot Synthesis Using Silica Supported Tungstosilisic Acid as Reusable Catalyst. Molecules 2017, 22, 757. [Google Scholar] [CrossRef] [PubMed]
- Anusevičius, K.; Jonuškiene, I.; Mickevičius, V. Synthesis and Antimicrobial Activity of N-(4-Chlorophenyl)-β-Alanine Derivatives with an Azole Moiety. Mon. Chem. 2013, 144, 1883–1891. [Google Scholar] [CrossRef]
- Vaickelioniene, R.; Mickeviciene, K.; Anusevicius, K.; Siugzdaite, J.; Kantminiene, K.; Mickevicius, V. Synthesis and Antibacterial Activity of Novel N-Carboxyalkyl-N-Phenyl-2-Aminothia(Oxa)Zole Derivatives. Heterocycles 2015, 91, 747–763. [Google Scholar] [CrossRef]
- Vaickelioniene, R.; Mickevičus, V.; Vaickelionis, G.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis and Antibacterial and Antifungal Activity of N-(4-Fluorophenyl)-N-Carboxyethylaminothiazole Derivatives. Arkivoc 2015, 2015, 303–318. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone Antibiotics. Medchemcomm 2019, 10, 1719–1739. [Google Scholar] [CrossRef] [PubMed]
- Grybaite, B.; Jonuškiene, I.; Vaickelioniene, R.; Mickevičius, V. Synthesis, Transformation and Antibacterial Activity of New N,N-Disubstituted 2-Aminothiazole Derivatives. Chemija 2017, 28, 64–73. [Google Scholar]
- Parašotas, I.; Urbonavičiute, E.; Anusevičius, K.; Tumosiene, I.; Jonuškiene, I.; Kantminiene, K.; Vaickelioniene, R.; Mickevičius, V. Synthesis and Biological Evaluation of Novel DI- and Trisubstituted Thiazole Derivatives. Heterocycles 2017, 94, 1074–1097. [Google Scholar] [CrossRef]
- Parašotas, I.; Anusevičius, K.; Vaickelioniene, R.; Jonuškiene, I.; Stasevych, M.; Zvarych, V.; Olena, K.P.; Novikov, V.; Belyakov, S.; Mickevičius, V. Synthesis and Evaluation of the Antibacterial, Antioxidant Activities of Novel Functionalized Thiazole and Bis(Thiazol-5-Yl)Methane Derivatives. Arkivoc 2018, 2018, 240–256. [Google Scholar] [CrossRef]
- Kappe, T.; Karem, A.S.; Stadlbauer, W. Synthesis of Benzo-Halogenated 4-Hydroxy-2(1 H)-Quinolones. J. Heterocycl. Chem. 1988, 25, 857–862. [Google Scholar] [CrossRef]
- Zaki, Y.H.; Al-Gendey, M.S.; Abdelhamid, A.O. A Facile Synthesis, and Antimicrobial and Anticancer Activities of Some Pyridines, Thioamides, Thiazole, Urea, Quinazoline, β-Naphthyl Carbamate, and Pyrano[2,3-d]Thiazole Derivatives. Chem. Cent. J. 2018, 12, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.M.; Ihmaid, S.; Habib, E.-S.E.; Althagfan, S.S.; Ahmed, S.; Abulkhair, H.S.; Ahmed, H.E.A. The Rational Design, Synthesis, and Antimicrobial Investigation of 2-Amino-4-Methylthiazole Analogues Inhibitors of GlcN-6-P Synthase. Bioorg. Chem. 2020, 99, 103781–103793. [Google Scholar] [CrossRef] [PubMed]
- Muluk, M.B.; Dhumal, S.T.; Rehman, N.N.M.A.; Dixit, P.P.; Kharat, K.R.; Haval, K.P. Synthesis, Anticancer and Antimicrobial Evaluation of New (E)-N′-Benzylidene-2-(2-ethylpyridin-4-yl)-4-methylthiazole-5-carbohydrazides. ChemistrySelect 2019, 4, 8993–8997. [Google Scholar] [CrossRef]
- Mickevičius, V.; Voskiene, A.; Jonuškiene, I.; Kolosej, R.; Šiugždaite, J.; Venskutonis, P.R.; Kazernavičiute, R.; Braziene, Z.; Jakiene, E. Synthesis and Biological Activity of 3-[Phenyl(1,3-Thiazol-2-Yl)-Amino] Propanoic Acids and Their Derivatives. Molecules 2013, 18, 15000–15018. [Google Scholar] [CrossRef] [Green Version]
- Vaickelioniene, R.; Mickevicius, V.; Mikulskiene, G. Molecules Synthesis and Cyclizations of N-(2,3-,3,4- and 3,5-Dimethylphenyl)-β-Alanines. Molecules 2005, 10, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, M.; Iwamoto, A.; Kitao, T. Reaction of 2,3-dichloro-1,4-naphthoquinone with Dithiooxamide. Synthesis of Dibenzo[b,i]Thianthrene-5,7,12,14-tetrone. J. Heterocycl. Chem. 1991, 28, 1445–1447. [Google Scholar] [CrossRef]
- Matsuoka, M.; Iwamoto, A.; Furukawa, N.; Kitao, T. Syntheses of Polycyclic-1,4-dithiines and Related Heterocycles. J. Heterocycl. Chem. 1992, 29, 439–443. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Fan, W.-Q. A Reexamination of the Reactions of 2,3-dichloro-1,4-naphthoquinone with Thioamides. J. Heterocycl. Chem. 1993, 30, 1679–1681. [Google Scholar] [CrossRef]
- Ballatore, C.; Huryn, D.M.; Smith, A.B. Carboxylic Acid (Bio)Isosteres in Drug Design. ChemMedChem 2013, 8, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Grybaitė, B.; Vaickelionienė, R.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Novikov, V.; Mickevičius, V. Synthesis, Transformation of 3-[(4-Arylthiazol-2-Yl)-(p-Tolyl)Amino]Propanoic Acids, Bis(Thiazol-5-Yl)Phenyl-, Bis(Thiazol-5-Yl)Methane Derivatives, and Their Antimicrobial Activity. Heterocycles 2018, 96, 86–105. [Google Scholar] [CrossRef] [Green Version]
- Grybaitė, B.; Vaickelionienė, R.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Kantminienė, K.; Novikov, V.; Mickevičius, V. Synthesis and Antimicrobial Activity of Novel Thiazoles with Reactive Functional Groups. ChemistrySelect 2019, 4, 6965–6970. [Google Scholar] [CrossRef]
- Malūkaitė, D.; Grybaitė, B.; Vaickelionienė, R.; Vaickelionis, G.; Sapijanskaitė-Banevič, B.; Kavaliauskas, P.; Mickevičius, V. Synthesis of Novel Thiazole Derivatives Bearing β-Amino Acid and Aromatic Moieties as Promising Scaffolds for the Development of New Antibacterial and Antifungal Candidates Targeting Multidrug-Resistant Pathogens. Molecules 2022, 27, 74. [Google Scholar] [CrossRef]
- Anusevičius, K.; Mickevičius, V.; Mikulskiene, G. Synthesis and Structure of N-(4-Bromophenyl)-N-Carboxyethyl-β-Alanine Derivatives. Chemija 2010, 21, 127–134. [Google Scholar]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole Antifungals: 35 Years of Invasive Fungal Infection Management. Expert Rev. Anti. Infect. Ther. 2015, 13, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nastasă, C.; Tiperciuc, B.; Duma, M.; Benedec, D.; Oniga, O. New Hydrazones Bearing Thiazole Scaffold: Synthesis, Characterization, Antimicrobial, and Antioxidant Investigation. Molecules 2015, 20, 17325–17338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, G.-F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.-L. Synthesis, SAR and Molecular Docking Studies of Benzo[d]Thiazole-Hydrazones as Potential Antibacterial and Antifungal Agents. Bioorg. Med. Chem. Lett. 2017, 27, 3148–3155. [Google Scholar] [CrossRef]
- Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, Antioxidant, Antifungal, Molecular Docking and ADMET Studies of Some Thiazolyl Hydrazones. Bioorg. Med. Chem. Lett. 2017, 27, 3891–3896. [Google Scholar] [CrossRef]
- Sahil; Kaur, K.; Jaitak, V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr. Med. Chem. 2022, 29, 4958–5009. [Google Scholar] [CrossRef]
- Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents. Anticancer. Agents Med. Chem. 2020, 21, 1379–1402. [Google Scholar] [CrossRef]
- Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-Containing Compounds as Therapeutic Targets for Cancer Therapy. Eur. J. Med. Chem. 2020, 188, 112016–112063. [Google Scholar] [CrossRef] [PubMed]
- Swain, R.J.; Kemp, S.J.; Goldstraw, P.; Tetley, T.D.; Stevens, M.M. Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping. Biophys. J. 2010, 98, 1703–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Chow, E.C.Y.; Liu, S.; Du, Y.; Pang, K.S. The Caco-2 Cell Monolayer: Usefulness and Limitations. Expert Opin. Drug Metab. Toxicol. 2008, 4, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Espinel-Ingroff, A.; Bustamante, B.; Canton, E.; Diekema, D.J.; Fothergill, A.; Fuller, J.; Gonzalez, G.M.; Guarro, J.; Lass-Flörl, C.; et al. Multicenter Study of Anidulafungin and Micafungin MIC Distributions and Epidemiological Cutoff Values for Eight Candida Species and the CLSI M27-A3 Broth Microdilution Method. Antimicrob. Agents Chemother. 2014, 58, 916–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peano, A.; Beccati, M.; Chiavassa, E.; Pasquetti, M. Evaluation of the Antifungal Susceptibility of Malassezia Pachydermatis to Clotrimazole, Miconazole and Thiabendazole Using a Modified CLSI M27-A3 Microdilution Method. Vet. Dermatol. 2012, 23, 131-e29. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Babij, N.R.; McCusker, E.O.; Whiteker, G.T.; Canturk, B.; Choy, N.; Creemer, L.C.; De Amicis, C.V.; Hewlett, N.M.; Johnson, P.L.; Knobelsdorf, J.A.; et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 2016, 20, 661–667. [Google Scholar] [CrossRef]
Compounds | Minimal Inhibitory Concentration (µg/mL) | |||||
---|---|---|---|---|---|---|
S. aureus TCH 1516 1 | E. faecium AR-0783 2 | K. pneumoniae AR-0139 3 | E. coli AR-0149 4 | A. baumannii AR-0037 5 | P. aeruginosa AR-0100 6 | |
1 | >64 | >64 | >64 | >64 | >64 | >64 |
2 | >64 | >64 | >64 | >64 | >64 | >64 |
3a | >64 | >64 | >64 | >64 | >64 | >64 |
3b | >64 | >64 | >64 | >64 | >64 | >64 |
3c | >64 | >64 | >64 | >64 | >64 | >64 |
3d | >64 | >64 | >64 | >64 | >64 | >64 |
3e | >64 | >64 | >64 | >64 | >64 | >64 |
3f | >64 | >64 | >64 | >64 | >64 | >64 |
3g | >64 | >64 | >64 | >64 | >64 | >64 |
3h | 8 | 16 | >64 | >64 | >64 | >64 |
3i | >64 | >64 | >64 | >64 | >64 | >64 |
3j | 2 | 2 | >64 | >64 | >64 | >64 |
3k | >64 | >64 | >64 | >64 | >64 | >64 |
4i | >64 | >64 | >64 | >64 | >64 | >64 |
4j | >64 | >64 | >64 | >64 | >64 | >64 |
4k | >64 | >64 | >64 | >64 | >64 | >64 |
5 | >64 | >64 | >64 | >64 | >64 | >64 |
6 | >64 | >64 | >64 | >64 | >64 | >64 |
7 | 1 | 8 | >64 | >64 | >64 | >64 |
8f | >64 | >64 | >64 | >64 | >64 | >64 |
9f | >64 | >64 | >64 | >64 | >64 | >64 |
10f | >64 | >64 | >64 | >64 | >64 | >64 |
11f | 16 | >64 | >64 | >64 | >64 | >64 |
12f | >64 | >64 | >64 | >64 | >64 | >64 |
13f | >64 | >64 | >64 | >64 | >64 | >64 |
14f | >64 | >64 | >64 | >64 | >64 | >64 |
15f | >64 | >64 | >64 | >64 | >64 | >64 |
16c | >64 | >64 | >64 | >64 | >64 | >64 |
16f | >64 | >64 | >64 | >64 | >64 | >64 |
16h | >64 | >64 | >64 | >64 | >64 | >64 |
17c | >64 | >64 | >64 | >64 | >64 | >64 |
17f | >64 | >64 | >64 | >64 | >64 | >64 |
17h | >64 | >64 | >64 | >64 | >64 | >64 |
Vancomycin | 2 | 64 | N/A | N/A | N/A | N/A |
Ampicillin | >64 | 64 | >64 | 64 | >64 | >64 |
Daptomycin | 1 | 4 | N/A | N/A | N/A | N/A |
Aztreonam | N/A | N/A | 4 | 2 | 2 | 16 |
Meropenem | N/A | N/A | 8 | 16 | 32 | 32 |
Imipenem | N/A | N/A | >64 | >64 | >64 | >64 |
Compounds | S. a AR-0701 | S. a AR-0702 | S. a AR-0703 | S. a AR-0704 | S. a AR-0705 |
---|---|---|---|---|---|
3h | 4 | 8 | 8 | 32 | 8 |
3j | 2 | 2 | 1 | 2 | 2 |
7 | 4 | 16 | 8 | 8 | 8 |
Vancomycin | 1 | 2 | 1 | 1 | 1 |
Daptomycin | 0.5 | 1 | 0.5 | 0.5 | 1 |
Linezolid | 16 | 16 | 32 | 8 | 16 |
Compounds | Minimal Inhibitory Concentration (µg/mL) | ||||
---|---|---|---|---|---|
C. auris AR-0383 | C. albicans | C. glabrata AR-315 | C. parapsilosis AR-0335 | C. haemulonii AR-395 | |
1 | >64 | >64 | >64 | >64 | >64 |
2 | >64 | >64 | >64 | >64 | >64 |
3a | >64 | >64 | >64 | >64 | >64 |
3b | >64 | >64 | >64 | >64 | >64 |
3c | >64 | >64 | >64 | >64 | >64 |
3d | >64 | >64 | >64 | >64 | >64 |
3e | >64 | >64 | >64 | >64 | >64 |
3f | >64 | >64 | >64 | >64 | >64 |
3g | >64 | >64 | >64 | >64 | >64 |
3h | >64 | >64 | >64 | >64 | >64 |
3i | >64 | >64 | >64 | >64 | >64 |
3j | >64 | >64 | >64 | >64 | >64 |
3k | >64 | >64 | >64 | >64 | >64 |
4i | >64 | >64 | >64 | >64 | >64 |
4j | >64 | >64 | >64 | >64 | >64 |
4k | >64 | >64 | >64 | >64 | >64 |
5 | >64 | >64 | >64 | >64 | >64 |
6 | >64 | >64 | >64 | >64 | >64 |
7 | >64 | >64 | >64 | >64 | >64 |
8f | 2 | 1 | 4 | 8 | 2 |
9f | >64 | 8 | 4 | 4 | 2 |
10f | >64 | >64 | >64 | >64 | >64 |
11f | >64 | >64 | >64 | >64 | >64 |
12f | >64 | >64 | >64 | >64 | >64 |
13f | >64 | >64 | >64 | >64 | >64 |
14f | >64 | 8 | 16 | 32 | 32 |
15f | >64 | >64 | >64 | >64 | >64 |
16c | >64 | >64 | >64 | >64 | >64 |
16f | >64 | >64 | >64 | >64 | >64 |
16h | >64 | >64 | >64 | >64 | >64 |
17c | >64 | >64 | >64 | >64 | >64 |
17f | >64 | >64 | >64 | >64 | >64 |
17h | >64 | >64 | >64 | >64 | >64 |
Amphotericin B | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Fluconazole | 32 | 16 | 16 | 8 | 4 |
Posaconazole | 0.5 | 1 | 0.5 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavaliauskas, P.; Grybaitė, B.; Vaickelionienė, R.; Sapijanskaitė-Banevič, B.; Anusevičius, K.; Kriaučiūnaitė, A.; Smailienė, G.; Petraitis, V.; Petraitienė, R.; Naing, E.; et al. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics 2023, 12, 220. https://doi.org/10.3390/antibiotics12020220
Kavaliauskas P, Grybaitė B, Vaickelionienė R, Sapijanskaitė-Banevič B, Anusevičius K, Kriaučiūnaitė A, Smailienė G, Petraitis V, Petraitienė R, Naing E, et al. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics. 2023; 12(2):220. https://doi.org/10.3390/antibiotics12020220
Chicago/Turabian StyleKavaliauskas, Povilas, Birutė Grybaitė, Rita Vaickelionienė, Birutė Sapijanskaitė-Banevič, Kazimieras Anusevičius, Agnė Kriaučiūnaitė, Gabrielė Smailienė, Vidmantas Petraitis, Rūta Petraitienė, Ethan Naing, and et al. 2023. "Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens" Antibiotics 12, no. 2: 220. https://doi.org/10.3390/antibiotics12020220
APA StyleKavaliauskas, P., Grybaitė, B., Vaickelionienė, R., Sapijanskaitė-Banevič, B., Anusevičius, K., Kriaučiūnaitė, A., Smailienė, G., Petraitis, V., Petraitienė, R., Naing, E., Garcia, A., & Mickevičius, V. (2023). Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics, 12(2), 220. https://doi.org/10.3390/antibiotics12020220