Optimized Treatment of Nosocomial Peritonitis
Abstract
:1. Introduction
2. Epidemiology
3. Diagnosis and Clinical Approach
4. Microbiology
5. Fungal Infections
6. Current Strategies in the Antibiotic Treatment of Nosocomial Peritonitis
7. Source Control
8. Open Abdomen
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tochie, J.N.; Agbor, N.V.; Frank Leonel, T.T.; Mbonda, A.; Aji Abang, D.; Danwang, C. Global epidemiology of acute generalised peritonitis: A protocol for a systematic review and meta-analysis. BMJ Open 2020, 10, e034326. [Google Scholar] [CrossRef]
- Blot, S.; De Waele, J.J.; Vogelaers, D. Essentials for selecting antimicrobial therapy for intra-abdominal infections. Drugs 2012, 72, e17–e32. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Antonelli, M.; Arvaniti, K.; Blot, K.; Creagh-Brown, B.; de Lange, D.; De Waele, J.; Deschepper, M.; Dikmen, Y.; Dimopoulos, G.; et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med. 2019, 45, 1703–1717. [Google Scholar] [CrossRef] [PubMed]
- Gauzit, R.; Pean, Y.; Barth, X.; Mistretta, F.; Lalaude, O. Epidemiology, management, and prognosis of secondary non-postoperative peritonitis: A French prospective observational multicenter study. Surg. Infect. 2009, 10, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Riche, F.C.; Dray, X.; Laisne, M.J.; Mateo, J.; Raskine, L.; Sanson-Le Pors, M.J.; Payen, D.; Valleur, P.; Cholley, B.P. Factors associated with septic shock and mortality in generalized peritonitis: Comparison between community-acquired and postoperative peritonitis. Crit. Care 2009, 13, R99. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Eckmann, C.; Giacobbe, D.R.; Sartelli, M.; Montravers, P. Post-operative abdominal infections: Epidemiology, operational definitions, and outcomes. Intensive Care Med. 2020, 46, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Clements, T.W.; Tolonen, M.; Ball, C.G.; Kirkpatrick, A.W. Secondary Peritonitis and Intra-Abdominal Sepsis: An Increasingly Global Disease in Search of Better Systemic Therapies. Scand. J. Surg. 2021, 110, 139–149. [Google Scholar] [CrossRef]
- Ross, J.T.; Matthay, M.A.; Harris, H.W. Secondary peritonitis: Principles of diagnosis and intervention. BMJ 2018, 361, k1407. [Google Scholar] [CrossRef]
- Yeung, D.E.; Peterknecht, E.; Hajibandeh, S.; Hajibandeh, S.; Torrance, A.W. C-reactive protein can predict anastomotic leak in colorectal surgery: A systematic review and meta-analysis. Int. J. Colorectal Dis. 2021, 36, 1147–1162. [Google Scholar] [CrossRef]
- Bona, D.; Danelli, P.; Sozzi, A.; Sanzi, M.; Cayre, L.; Lombardo, F.; Bonitta, G.; Cavalli, M.; Campanelli, G.; Aiolfi, A. C-reactive Protein and Procalcitonin Levels to Predict Anastomotic Leak After Colorectal Surgery: Systematic Review and Meta-analysis. J. Gastrointest. Surg. 2023, 27, 166–179. [Google Scholar] [CrossRef]
- Samji, K.B.; Kielar, A.Z.; Connolly, M.; Fasih, N.; Doherty, G.; Chung, A.; Hache, E. Anastomotic Leaks After Small- and Large-Bowel Surgery: Diagnostic Performance of CT and the Importance of Intraluminal Contrast Administration. AJR Am. J. Roentgenol. 2018, 210, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Reitz, K.M.; Kennedy, J.; Li, S.R.; Handzel, R.; Tonetti, D.A.; Neal, M.D.; Zuckerbraun, B.S.; Hall, D.E.; Sperry, J.L.; Angus, D.C.; et al. Association Between Time to Source Control in Sepsis and 90-Day Mortality. JAMA Surg. 2022, 157, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; De Waele, J.J. Critical issues in the clinical management of complicated intra-abdominal infections. Drugs 2005, 65, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, J.; Weel, J.; Manusama, E.; Kingma, W.P.; van der Voort, P.H. The epidemiology of intra-abdominal flora in critically ill patients with secondary and tertiary abdominal sepsis. Infection 2009, 37, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Dupont, H.; Montravers, P.; Mohler, J.; Carbon, C. Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect. Immun. 1998, 66, 2570–2575. [Google Scholar] [CrossRef]
- Fierobe, L.; Decre, D.; Muller, C.; Lucet, J.C.; Marmuse, J.P.; Mantz, J.; Desmonts, J.M. Methicillin-resistant Staphylococcus aureus as a causative agent of postoperative intra-abdominal infection: Relation to nasal colonization. Clin. Infect. Dis. 1999, 29, 1231–1238. [Google Scholar] [CrossRef]
- Roehrborn, A.; Thomas, L.; Potreck, O.; Ebener, C.; Ohmann, C.; Goretzki, P.E.; Roher, H.D. The microbiology of postoperative peritonitis. Clin. Infect. Dis. 2001, 33, 1513–1519. [Google Scholar] [CrossRef]
- Montravers, P.; Dupont, H.; Gauzit, R.; Veber, B.; Auboyer, C.; Blin, P.; Hennequin, C.; Martin, C. Candida as a risk factor for mortality in peritonitis. Crit. Care Med. 2006, 34, 646–652. [Google Scholar] [CrossRef]
- Montravers, P.; Lepape, A.; Dubreuil, L.; Gauzit, R.; Pean, Y.; Benchimol, D.; Dupont, H. Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: Results of the French prospective, observational EBIIA study. J. Antimicrob. Chemother. 2009, 63, 785–794. [Google Scholar] [CrossRef]
- De Waele, J.J. What every intensivist should know about the management of peritonitis in the intensive care unit. Rev. Bras. Ter. Intensiva 2018, 30, 9–14. [Google Scholar] [CrossRef]
- De Waele, J.; Lipman, J.; Sakr, Y.; Marshall, J.C.; Vanhems, P.; Barrera Groba, C.; Leone, M.; Vincent, J.L.; EPIC, I.I.I. Abdominal infections in the intensive care unit: Characteristics, treatment and determinants of outcome. BMC Infect. Dis. 2014, 14, 420. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009, 155, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Dupont, H.; Friggeri, A.; Touzeau, J.; Airapetian, N.; Tinturier, F.; Lobjoie, E.; Lorne, E.; Hijazi, M.; Regimbeau, J.M.; Mahjoub, Y. Enterococci increase the morbidity and mortality associated with severe intra-abdominal infections in elderly patients hospitalized in the intensive care unit. J. Antimicrob. Chemother. 2011, 66, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, C.L.; Töpper, C.; Adam, T.; Kees, M.G. Spectrum adequacy of antibiotic regimens for secondary peritonitis: A retrospective analysis in intermediate and intensive care unit patients. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Augustin, P.; Kermarrec, N.; Muller-Serieys, C.; Lasocki, S.; Chosidow, D.; Marmuse, J.-P.; Valin, N.; Desmonts, J.-M.; Montravers, P. Risk factors for multidrug resistant bacteria and optimization of empirical antibiotic therapy in postoperative peritonitis. Crit. Care 2010, 14, R20. [Google Scholar] [CrossRef]
- Montravers, P.; Gauzit, R.; Muller, C.; Marmuse, J.P.; Fichelle, A.; Desmonts, J.M. Emergence of antibiotic-resistant bacteria in cases of peritonitis after intraabdominal surgery affects the efficacy of empirical antimicrobial therapy. Clin. Infect. Dis. 1996, 23, 486–494. [Google Scholar] [CrossRef]
- Seguin, P.; Laviolle, B.; Chanavaz, C.; Donnio, P.Y.; Gautier-Lerestif, A.L.; Campion, J.P.; Malledant, Y. Factors associated with multidrug-resistant bacteria in secondary peritonitis: Impact on antibiotic therapy. Clin. Microbiol. Infect. 2006, 12, 980–985. [Google Scholar] [CrossRef]
- Montravers, P.; Blot, S.; Dimopoulos, G.; Eckmann, C.; Eggimann, P.; Guirao, X.; Paiva, J.A.; Sganga, G.; De Waele, J. Therapeutic management of peritonitis: A comprehensive guide for intensivists. Intensive Care Med. 2016, 42, 1234–1247. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hoban, D.J.; Hackel, M.A.; Lob, S.H.; Sahm, D.F. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015. Braz. J. Infect. Dis. 2017, 21, 343–348. [Google Scholar] [CrossRef]
- Chang, Y.T.; Coombs, G.; Ling, T.; Balaji, V.; Rodrigues, C.; Mikamo, H.; Kim, M.J.; Rajasekaram, D.G.; Mendoza, M.; Tan, T.Y.; et al. Epidemiology and trends in the antibiotic susceptibilities of Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region, 2010-2013. Int. J. Antimicrob. Agents 2017, 49, 734–739. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E.; Ansaldi, F.; Merelli, M.; Scarparo, C.; Antonelli, M.; Garnacho-Montero, J.; Diaz-Martin, A.; Palacios-Garcia, I.; Luzzati, R.; et al. A multicenter multinational study of abdominal candidiasis: Epidemiology, outcomes and predictors of mortality. Intensive Care Med. 2015, 41, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Nadeau-Fredette, A.C.; Bargman, J.M. Characteristics and outcomes of fungal peritonitis in a modern North American cohort. Perit. Dial. Int. 2015, 35, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Trucchi, C.; Ansaldi, F.; Antonelli, M.; Adamkova, V.; Alicino, C.; Almyroudi, M.P.; Atchade, E.; et al. Risk Factors for Intra-Abdominal Candidiasis in Intensive Care Units: Results from EUCANDICU Study. Infect. Dis. Ther. 2022, 11, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Antonelli, M.; Cuenca-Estrella, M.; Dimopoulos, G.; Einav, S.; De Waele, J.J.; Garnacho-Montero, J.; Kanj, S.S.; Machado, F.R.; Montravers, P.; et al. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients. Intensive Care Med. 2019, 45, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Lagunes, L.; Rey-Pérez, A. What´s new in intraabdominal candidiasis in critically ill patients, a review. Hosp. Pract. 2019, 47, 171–176. [Google Scholar] [CrossRef]
- Azoulay, E.; Dupont, H.; Tabah, A.; Lortholary, O.; Stahl, J.P.; Francais, A.; Martin, C.; Guidet, B.; Timsit, J.F. Systemic antifungal therapy in critically ill patients without invasive fungal infection. Crit. Care Med. 2012, 40, 813–822. [Google Scholar] [CrossRef]
- Timsit, J.F.; Azoulay, E.; Schwebel, C.; Charles, P.E.; Cornet, M.; Souweine, B.; Klouche, K.; Jaber, S.; Trouillet, J.L.; Bruneel, F.; et al. Empirical Micafungin Treatment and Survival Without Invasive Fungal Infection in Adults With ICU-Acquired Sepsis, Candida Colonization, and Multiple Organ Failure: The EMPIRICUS Randomized Clinical Trial. JAMA 2016, 316, 1555–1564. [Google Scholar] [CrossRef]
- Bailly, S.; Bouadma, L.; Azoulay, E.; Orgeas, M.G.; Adrie, C.; Souweine, B.; Schwebel, C.; Maubon, D.; Hamidfar-Roy, R.; Darmon, M.; et al. Failure of empirical systemic antifungal therapy in mechanically ventilated critically ill patients. Am. J. Respir. Crit. Care Med. 2015, 191, 1139–1146. [Google Scholar] [CrossRef]
- Ostrosky-Zeichner, L.; Shoham, S.; Vazquez, J.; Reboli, A.; Betts, R.; Barron, M.A.; Schuster, M.; Judson, M.A.; Revankar, S.G.; Caeiro, J.P.; et al. MSG-01: A randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin. Infect. Dis. 2014, 58, 1219–1226. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Cornely, O.A.; Donnelly, J.P.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Calandra, T.; Castagnola, E.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Developing European guidelines in clinical microbiology and infectious diseases. Clin. Microbiol. Infect. 2012, 18 (Suppl. S7), 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Leroy, O.; Montravers, P.; Constantin, J.M.; Dupont, H.; Guillemot, D.; Lortholary, O.; Mira, J.P.; Perrigault, P.F.; Gangneux, J.P.; et al. Antifungal de-escalation was not associated with adverse outcome in critically ill patients treated for invasive candidiasis: Post hoc analyses of the AmarCAND2 study data. Intensive Care Med. 2015, 41, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Lagunes, L.; Rey-Pérez, A.; Martín-Gómez, M.T.; Vena, A.; de Egea, V.; Muñoz, P.; Bouza, E.; Díaz-Martín, A.; Palacios-García, I.; Garnacho-Montero, J.; et al. Association between source control and mortality in 258 patients with intra-abdominal candidiasis: A retrospective multi-centric analysis comparing intensive care versus surgical wards in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg. Infect. 2010, 11, 79–109. [Google Scholar] [CrossRef]
- Montravers, P.; Dupont, H.; Leone, M.; Constantin, J.M.; Mertes, P.M.; Société française d’anesthésie et de réanimation (Sfar); Société de réanimation de langue française (SRLF); Laterre, P.F.; Misset, B.; Société de pathologie infectieuse de langue française (SPILF); et al. Guidelines for management of intra-abdominal infections. Anaesth. Crit. Care Pain. Med. 2015, 34, 117–130. [Google Scholar] [CrossRef]
- Sartelli, M.; Viale, P.; Catena, F.; Ansaloni, L.; Moore, E.; Malangoni, M.; Moore, F.A.; Velmahos, G.; Coimbra, R.; Ivatury, R.; et al. 2013 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2013, 8, 3. [Google Scholar] [CrossRef]
- Guirao, X.; Arias, J.; Badía, J.M.; García-Rodríguez, J.A.; Mensa, J.; Alvarez-Lerma, F.; Borges, M.; Barberán, J.; Maseda, E.; Salavert, M.; et al. Recommendations in the empiric anti-infective agents of intra-abdominal infection. Rev. Esp. Quimioter 2009, 22, 151–172. [Google Scholar] [CrossRef]
- Kurup, A.; Liau, K.H.; Ren, J.; Lu, M.C.; Navarro, N.S.; Farooka, M.W.; Usman, N.; Destura, R.V.; Sirichindakul, B.; Tantawichien, T.; et al. Antibiotic management of complicated intra-abdominal infections in adults: The Asian perspective. Ann. Med. Surg. 2014, 3, 85–91. [Google Scholar] [CrossRef]
- Syue, L.S.; Chen, Y.H.; Ko, W.C.; Hsueh, P.R. New drugs for the treatment of complicated intra-abdominal infections in the era of increasing antimicrobial resistance. Int. J. Antimicrob. Agents 2016, 47, 250–258. [Google Scholar] [CrossRef]
- Sartelli, M. A focus on intra-abdominal infections. World J. Emerg. Surg. 2010, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.P.; Bae, I.G.; Lee, S.R.; Chung, J.W.; Jun, J.B.; Choo, E.J.; Moon, S.Y.; Lee, M.S.; Jeon, M.H.; Song, E.H.; et al. Clinical and Economic Consequences of Failure of Initial Antibiotic Therapy for Patients with Community-Onset Complicated Intra-Abdominal Infections. PLoS ONE 2015, 10, e0119956. [Google Scholar] [CrossRef] [PubMed]
- Missing Information on Sample Size. JAMA 2019, 321, 2370. [CrossRef] [PubMed]
- Stewart, A.G.; Paterson, D.L.; Young, B.; Lye, D.C.; Davis, J.S.; Schneider, K.; Yilmaz, M.; Dinleyici, R.; Runnegar, N.; Henderson, A.; et al. Meropenem Versus Piperacillin-Tazobactam for Definitive Treatment of Bloodstream Infections Caused by AmpC β-Lactamase-Producing Enterobacter spp., Citrobacter freundii, Morganella morganii, Providencia spp., or Serratia marcescens: A Pilot Multicenter Randomized Controlled Trial (MERINO-2). Open Forum Infect. Dis. 2021, 8, ofab387. [Google Scholar] [CrossRef] [PubMed]
- Hombach, M.; Mouttet, B.; Bloemberg, G.V. Consequences of revised CLSI and EUCAST guidelines for antibiotic susceptibility patterns of ESBL- and AmpC β-lactamase-producing clinical Enterobacteriaceae isolates. J. Antimicrob. Chemother. 2013, 68, 2092–2098. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D. Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef] [PubMed]
- Endimiani, A.; Paterson, D.L. Optimizing therapy for infections caused by enterobacteriaceae producing extended-spectrum beta-lactamases. Semin. Respir. Crit. Care Med. 2007, 28, 646–655. [Google Scholar] [CrossRef]
- Cantón, R.; Loza, E.; Aznar, J.; Calvo, J.; Cercenado, E.; Cisterna, R.; Romo, F.G.; Hontangas, J.L.; Calvo, C.R.; Barrenechea, A.I.; et al. Antimicrobial susceptibility of Gram-negative organisms from intraabdominal infections and evolution of isolates with extended spectrum β-lactamases in the SMART study in Spain (2002–2010). Rev. Esp. Quimioter. 2011, 24, 223–232. [Google Scholar]
- Hayajneh, W.A.; Hajj, A.; Hulliel, F.; Sarkis, D.K.; Irani-Hakimeh, N.; Kazan, L.; Badal, R.E. Susceptibility trends and molecular characterization of Gram-negative bacilli associated with urinary tract and intra-abdominal infections in Jordan and Lebanon: SMART 2011-2013. Int. J. Infect. Dis. 2015, 35, 56–61. [Google Scholar] [CrossRef]
- Lee, Y.L.; Chen, Y.S.; Toh, H.S.; Huang, C.C.; Liu, Y.M.; Ho, C.M.; Lu, P.L.; Ko, W.C.; Chen, Y.H.; Wang, J.H.; et al. Antimicrobial susceptibility of pathogens isolated from patients with complicated intra-abdominal infections at five medical centers in Taiwan that continuously participated in the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2006 to 2010. Int. J. Antimicrob. Agents 2012, 40, S29–S36. [Google Scholar] [CrossRef] [PubMed]
- Maseda, E.; Suárez-de-la-Rica, A.; Anillo, V.; Salgado, P.; Tamayo, E.; García-Bernedo, C.A.; Ramasco, F.; Villagrán, M.J.; López-Tofiño, A.; Giménez, M.J.; et al. A practice-based observational study identifying factors associated with the use of high-dose tigecycline in the treatment of secondary peritonitis in severely ill patients. Rev. Esp. Quimioter. 2015, 28, 47–53. [Google Scholar]
- Swenson, B.R.; Metzger, R.; Hedrick, T.L.; McElearney, S.T.; Evans, H.L.; Smith, R.L.; Chong, T.W.; Popovsky, K.A.; Pruett, T.L.; Sawyer, R.G. Choosing antibiotics for intra-abdominal infections: What do we mean by “high risk”? Surg. Infect. 2009, 10, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Maseda, E.; Mensa, J.; Valía, J.C.; Gomez-Herreras, J.I.; Ramasco, F.; Samso, E.; Chiveli, M.A.; Pereira, J.; González, R.; Aguilar, G.; et al. Bugs, hosts and ICU environment: Countering pan-resistance in nosocomial microbiota and treating bacterial infections in the critical care setting. Rev. Esp. Quimioter. 2013, 26, 312–331. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Cristini, F.; Coccolini, F.; Labricciosa, F.M.; Siquini, W.; Catena, F. A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections. Antibiotics 2022, 11, 1394. [Google Scholar] [CrossRef]
- Morvan, A.C.; Hengy, B.; Garrouste-Orgeas, M.; Ruckly, S.; Forel, J.M.; Argaud, L.; Rimmelé, T.; Bedos, J.P.; Azoulay, E.; Dupuis, C.; et al. Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care-an analysis of the OUTCOMEREA database. Crit. Care 2019, 23, 307. [Google Scholar] [CrossRef]
- Maseda, E.; Aguilar, L.; Gimenez, M.J.; Gilsanz, F. Ceftolozane/tazobactam (CXA 201) for the treatment of intra-abdominal infections. Expert. Rev. Anti Infect. Ther. 2014, 12, 1311–1324. [Google Scholar] [CrossRef]
- Liscio, J.L.; Mahoney, M.V.; Hirsch, E.B. Ceftolozane/tazobactam and ceftazidime/avibactam: Two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 2015, 46, 266–271. [Google Scholar] [CrossRef]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef]
- Lucasti, C.; Popescu, I.; Ramesh, M.K.; Lipka, J.; Sable, C. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: Results of a randomized, double-blind, Phase II trial. J. Antimicrob. Chemother. 2013, 68, 1183–1192. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Gasink, L.B.; Armstrong, J.; Broadhurst, H.; Stone, G.G.; Rank, D.; Llorens, L.; Newell, P.; Pachl, J. Efficacy and Safety of Ceftazidime-Avibactam Plus Metronidazole Versus Meropenem in the Treatment of Complicated Intra-Abdominal Infection—Results from a Randomized, Controlled, Double-Blind, Phase 3 Program. Clin. Infect. Dis. 2016, 62, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A.; et al. Phase 2, Dose-Ranging Study of Relebactam with Imipenem-Cilastatin in Subjects with Complicated Intra-abdominal Infection. Antimicrob. Agents Chemother. 2016, 60, 6234–6243. [Google Scholar] [CrossRef] [PubMed]
- Kohno, S.; Bando, H.; Yoneyama, F.; Kikukawa, H.; Kawahara, K.; Shirakawa, M.; Aoyama, N.; Brown, M.; Paschke, A.; Takase, A. The safety and efficacy of relebactam/imipenem/cilastatin in Japanese patients with complicated intra-abdominal infection or complicated urinary tract infection: A multicenter, open-label, noncomparative phase 3 study. J. Infect. Chemother. 2021, 27, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 69, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.; Evans, D.; Slepavicius, A.; Lee, P.; Marsh, A.; Tsai, L.; Sutcliffe, J.A.; Horn, P. Assessing the Efficacy and Safety of Eravacycline vs Ertapenem in Complicated Intra-abdominal Infections in the Investigating Gram-Negative Infections Treated With Eravacycline (IGNITE 1) Trial: A Randomized Clinical Trial. JAMA Surg. 2017, 152, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Gracia-Ahufinger, I.; Pérez-Nadales, E.; Causse, M.; Castón, J.J.; Guzman-Puche, J.; Torre-Giménez, J.; Kindelán, L.; et al. Risks of Infection and Mortality Among Patients Colonized with Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Validation of Scores and Proposal for Management. Clin. Infect. Dis. 2018, 66, 1204–1210. [Google Scholar] [CrossRef]
- Giannella, M.; Trecarichi, E.M.; De Rosa, F.G.; Del Bono, V.; Bassetti, M.; Lewis, R.E.; Losito, A.R.; Corcione, S.; Saffioti, C.; Bartoletti, M.; et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study. Clin. Microbiol. Infect. 2014, 20, 1357–1362. [Google Scholar] [CrossRef]
- Detsis, M.; Karanika, S.; Mylonakis, E. ICU Acquisition Rate, Risk Factors, and Clinical Significance of Digestive Tract Colonization with Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: A Systematic Review and Meta-Analysis. Crit. Care Med. 2017, 45, 705–714. [Google Scholar] [CrossRef]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 79. [Google Scholar] [CrossRef]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Tubach, F.; Lescot, T.; Veber, B.; Esposito-Farèse, M.; Seguin, P.; Paugam, C.; Lepape, A.; Meistelman, C.; Cousson, J.; et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomised clinical trial. Intensive Care Med. 2018, 44, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Suarez-de-la-Rica, A.; Gilsanz, F.; Maseda, E.; Montravers, P.; Lasocki, S.; Lescot, T.; Dupont, H. Is very short-course antibiotic therapy possible in postoperative intra-abdominal infections? Discussion on “Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomised clinical trial”. Intensive Care Med. 2018, 44, 695–696. [Google Scholar] [CrossRef] [PubMed]
- Maseda, E.; Suarez-de-la-Rica, A.; Anillo, V.; Tamayo, E.; Garcia-Bernedo, C.A.; Ramasco, F.; Villagran, M.J.; Maggi, G.; Gimenez, M.J.; Aguilar, L.; et al. Procalcitonin-guided therapy may reduce length of antibiotic treatment in intensive care unit patients with secondary peritonitis: A multicenter retrospective study. J. Crit. Care 2014, 30, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Augustin, P.; Grall, N.; Desmard, M.; Allou, N.; Marmuse, J.P.; Guglielminotti, J. Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit. Care 2016, 20, 83. [Google Scholar] [CrossRef]
- Tabah, A.; Cotta, M.O.; Garnacho-Montero, J.; Schouten, J.; Roberts, J.A.; Lipman, J.; Tacey, M.; Timsit, J.F.; Leone, M.; Zahar, J.R.; et al. A Systematic Review of the Definitions, Determinants, and Clinical Outcomes of Antimicrobial De-escalation in the Intensive Care Unit. Clin. Infect. Dis. 2016, 62, 1009–1017. [Google Scholar] [CrossRef]
- De Waele, J.J.; Girardis, M.; Martin-Loeches, I. Source control in the management of sepsis and septic shock. Intensive Care Med. 2022, 48, 1799–1802. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Hecker, A.; Reichert, M.; Reuß, C.J.; Schmoch, T.; Riedel, J.G.; Schneck, E.; Padberg, W.; Weigand, M.A.; Hecker, M. Intra-abdominal sepsis: New definitions and current clinical standards. Langenbecks Arch. Surg. 2019, 404, 257–271. [Google Scholar] [CrossRef]
- De Waele, J.J. Early source control in sepsis. Langenbecks Arch. Surg. 2010, 395, 489–494. [Google Scholar] [CrossRef]
- Azuhata, T.; Kinoshita, K.; Kawano, D.; Komatsu, T.; Sakurai, A.; Chiba, Y.; Tanjho, K. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit. Care 2014, 18, R87. [Google Scholar] [CrossRef] [PubMed]
- Bloos, F.; Rüddel, H.; Thomas-Rüddel, D.; Schwarzkopf, D.; Pausch, C.; Harbarth, S.; Schreiber, T.; Gründling, M.; Marshall, J.; Simon, P.; et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: A cluster randomized trial. Intensive Care Med. 2017, 43, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.; Krause, C.; Luo-Owen, X.; McArthur, K.; Cochran-Yu, M.; Swentek, L.; Burruss, S.; Turay, D.; Krasnoff, C.; Grigorian, A.; et al. Time is domain: Factors affecting primary fascial closure after trauma and non-trauma damage control laparotomy (data from the EAST SLEEP-TIME multicenter registry). Eur. J. Trauma. Emerg. Surg. 2022, 48, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Antonelli, M.; Deschepper, M.; Arvaniti, K.; Blot, K.; Brown, B.C.; de Lange, D.; De Waele, J.; Dikmen, Y.; Dimopoulos, G.; et al. Poor timing and failure of source control are risk factors for mortality in critically ill patients with secondary peritonitis. Intensive Care Med. 2022, 48, 1593–1606. [Google Scholar] [CrossRef]
- Soop, M.; Carlson, G.L. Recent developments in the surgical management of complex intra-abdominal infection. Br. J. Surg. 2017, 104, e65–e74. [Google Scholar] [CrossRef] [PubMed]
- Cereatti, F.; Grassia, R.; Drago, A.; Conti, C.B.; Donatelli, G. Endoscopic management of gastrointestinal leaks and fistulae: What option do we have. World J. Gastroenterol. 2020, 26, 4198–4217. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Coccolini, F.; Kluger, Y.; Agastra, E.; Abu-Zidan, F.M.; Abbas, A.E.S.; Ansaloni, L.; Adesunkanmi, A.K.; Atanasov, B.; Augustin, G.; et al. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J. Emerg. Surg. 2021, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Montori, G.; Ceresoli, M.; Catena, F.; Moore, E.E.; Ivatury, R.; Biffl, W.; Peitzman, A.; Coimbra, R.; Rizoli, S.; et al. The role of open abdomen in non-trauma patient: WSES Consensus Paper. World J. Emerg. Surg. 2017, 12, 39. [Google Scholar] [CrossRef]
- Regner, J.L.; Kobayashi, L.; Coimbra, R. Surgical Strategies for Management of the Open Abdomen. World J. Surg. 2011, 36, 497–510. [Google Scholar] [CrossRef]
- Chiara, O.; Cimbanassi, S.; Biffl, W.; Leppaniemi, A.; Henry, S.; Scalea, T.M.; Catena, F.; Ansaloni, L.; Chieregato, A.; de Blasio, E.; et al. International consensus conference on open abdomen in trauma. J. Trauma. Acute Care Surg. 2016, 80, 173–183. [Google Scholar] [CrossRef]
- Girard, E.; Abba, J.; Boussat, B.; Trilling, B.; Mancini, A.; Bouzat, P.; Létoublon, C.; Chirica, M.; Arvieux, C. Damage Control Surgery for Non-traumatic Abdominal Emergencies. World J. Surg. 2017, 42, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.J.; Bobrovitz, N.; Zygun, D.A.; Ball, C.G.; Kirkpatrick, A.W.; Faris, P.D.; Brohi, K.; D’Amours, S.; Fabian, T.C.; Inaba, K.; et al. Indications for Use of Damage Control Surgery in Civilian Trauma Patients: A Content Analysis and Expert Appropriateness Rating Study. Ann. Surg. 2015, 263, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.J.; Bobrovitz, N.; Zygun, D.A.; Ball, C.G.; Kirkpatrick, A.W.; Faris, P.D.; Stelfox, H.T. Indications for use of damage control surgery and damage control interventions in civilian trauma patients: A scoping review. J. Trauma. Acute Care Surg. 2015, 78, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.J.; Zygun, D.A.; Faris, P.D.; Ball, C.G.; Kirkpatrick, A.W.; Stelfox, H.T.; Indications for Trauma Damage Control Surgery International Study Group. Opinions of Practicing Surgeons on the Appropriateness of Published Indications for Use of Damage Control Surgery in Trauma Patients: An International Cross-Sectional Survey. J. Am. Coll. Surg. 2016, 223, 515–529. [Google Scholar] [CrossRef]
- Holodinsky, J.K.; Roberts, D.J.; Ball, C.G.; Reintam Blaser, A.; Starkopf, J.; Zygun, D.A.; Stelfox, H.T.; Malbrain, M.L.; Jaeschke, R.C.; Kirkpatrick, A.W. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: A systematic review and meta-analysis. Crit. Care 2013, 17, R249. [Google Scholar] [CrossRef]
- Moore, L.J.; Moore, F.A. Epidemiology of sepsis in surgical patients. Surg. Clin. N. Am. 2012, 92, 1425–1443. [Google Scholar] [CrossRef]
- Weber, D.G.; Bendinelli, C.; Balogh, Z.J. Damage control surgery for abdominal emergencies. Br. J. Surg. 2014, 101, e109–e118. [Google Scholar] [CrossRef]
- Ordóñez, C.A.; Sánchez, A.I.; Pineda, J.A.; Badiel, M.; Mesa, R.; Cardona, U.; Arias, R.; Rosso, F.; Granados, M.; Gutiérrez-Martínez, M.I.; et al. Deferred primary anastomosis versus diversion in patients with severe secondary peritonitis managed with staged laparotomies. World J. Surg. 2010, 34, 169–176. [Google Scholar] [CrossRef]
- Plantefeve, G.; Hellmann, R.; Pajot, O.; Thirion, M.; Bleichner, G.; Mentec, H. Abdominal compartment syndrome and intraabdominal sepsis: Two of the same kind? Acta Clin. Belg. Suppl. 2007, 62, 162–167. [Google Scholar] [CrossRef]
- Kirkpatrick, A.W.; Coccolini, F.; Ansaloni, L.; Roberts, D.J.; Tolonen, M.; McKee, J.L.; Leppaniemi, A.; Faris, P.; Doig, C.J.; Catena, F.; et al. Closed or Open after Source Control Laparotomy for Severe Complicated Intra-Abdominal Sepsis (the COOL trial): Study protocol for a randomized controlled trial. World J. Emerg. Surg. 2018, 13, 26. [Google Scholar] [CrossRef]
- Atema, J.J.; Gans, S.L.; Boermeester, M.A. Systematic review and meta-analysis of the open abdomen and temporary abdominal closure techniques in non-trauma patients. World J. Surg. 2015, 39, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Dold, S.; Doberauer, J.P.; Mai, P.; Schuld, J. Negative pressure wound therapy for the treatment of the open abdomen and incidence of enteral fistulas: A retrospective bicentre analysis. Gastroenterol. Res. Pract. 2013, 2013, 730829. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.J.; Dubose, J.J.; Scalea, T.M.; Holcomb, J.B.; Shrestha, B.; Okoye, O.; Inaba, K.; Bee, T.K.; Fabian, T.C.; Whelan, J.F.; et al. Independent predictors of enteric fistula and abdominal sepsis after damage control laparotomy: Results from the prospective AAST Open Abdomen registry. JAMA Surg. 2013, 148, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L.; Luque-de-Leon, E.; Mier, J.; Blanco-Benavides, R.; Robledo, F. Systematic management of postoperative enterocutaneous fistulas: Factors related to outcomes. World J. Surg. 2008, 32, 436–443; discussion 444. [Google Scholar] [CrossRef] [PubMed]
- Tavusbay, C.; Genc, H.; Cin, N.; Kar, H.; Kamer, E.; Atahan, K.; Haciyanli, M. Use of a vacuum-assisted closure system for the management of enteroatmospheric fistulae. Surg. Today 2014, 45, 1102–1111. [Google Scholar] [CrossRef]
- D’Hondt, M.; Devriendt, D.; Van Rooy, F.; Vansteenkiste, F.; D’Hoore, A.; Penninckx, F.; Miserez, M. Treatment of small-bowel fistulae in the open abdomen with topical negative-pressure therapy. Am. J. Surg. 2011, 202, e20–e24. [Google Scholar] [CrossRef]
- Marinis, A.; Gkiokas, G.; Argyra, E.; Fragulidis, G.; Polymeneas, G.; Voros, D. “Enteroatmospheric Fistulae”—Gastrointestinal Openings in the Open Abdomen: A Review and Recent Proposal of a Surgical Technique. Scand. J. Surg. 2013, 102, 61–68. [Google Scholar] [CrossRef]
- Coccolini, F.; Ceresoli, M.; Kluger, Y.; Kirkpatrick, A.; Montori, G.; Salvetti, F.; Fugazzola, P.; Tomasoni, M.; Sartelli, M.; Ansaloni, L.; et al. Open abdomen and entero-atmospheric fistulae: An interim analysis from the International Register of Open Abdomen (IROA). Injury 2019, 50, 160–166. [Google Scholar] [CrossRef]
- Coccolini, F.; Montori, G.; Ceresoli, M.; Catena, F.; Ivatury, R.; Sugrue, M.; Sartelli, M.; Fugazzola, P.; Corbella, D.; Salvetti, F.; et al. IROA: International Register of Open Abdomen, preliminary results. World J. Emerg. Surg. 2017, 12, 10. [Google Scholar] [CrossRef]
- Ceresoli, M.; Salvetti, F.; Kluger, Y.; Braga, M.; Viganò, J.; Fugazzola, P.; Sartelli, M.; Ansaloni, L.; Catena, F.; Coccolini, F.; et al. Open Abdomen in Obese Patients: Pay Attention! New Evidences from IROA, the International Register of Open Abdomen. World J. Surg. 2020, 44, 53–62. [Google Scholar] [CrossRef]
- Coccolini, F.; Perrina, D.; Ceresoli, M.; Kluger, Y.; Kirkpatrick, A.; Sartelli, M.; Ansaloni, L.; Catena, F. Open abdomen and age; results from IROA (International Register of Open Abdomen). Am. J. Surg. 2020, 220, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Gubbiotti, F.; Ceresoli, M.; Tartaglia, D.; Fugazzola, P.; Ansaloni, L.; Sartelli, M.; Kluger, Y.; Kirkpatrick, A.; Amico, F.; et al. Open Abdomen and Fluid Instillation in the Septic Abdomen: Results from the IROA Study. World J. Surg. 2020, 44, 4032–4040. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.G.; Inaba, K.; Dubose, J.; Salim, A.; Brown, C.; Rhee, P.; Browder, T.; Demetriades, D. Enterocutaneous fistula complicating trauma laparotomy: A major resource burden. Am. Surg. 2009, 75, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Schecter, W.P.; Ivatury, R.R.; Rotondo, M.F.; Hirshberg, A. Open abdomen after trauma and abdominal sepsis: A strategy for management. J. Am. Coll. Surg. 2006, 203, 390–396. [Google Scholar] [CrossRef]
- Carlson, G.L.; Patrick, H.; Amin, A.I.; McPherson, G.; Maclennan, G.; Afolabi, E.; Mowatt, G.; Campbell, B. Management of the Open Abdomen: A National Study of Clinical Outcome and Safety of Negative Pressure Wound Therapy. Ann. Surg. 2013, 257, 1154–1159. [Google Scholar] [CrossRef]
- Cheatham, M.L.; Demetriades, D.; Fabian, T.C.; Kaplan, M.J.; Miles, W.S.; Schreiber, M.A.; Holcomb, J.B.; Bochicchio, G.; Sarani, B.; Rotondo, M.F. Prospective study examining clinical outcomes associated with a negative pressure wound therapy system and Barker’s vacuum packing technique. World J. Surg. 2013, 37, 2018–2030. [Google Scholar] [CrossRef]
Author | Year | Mild to Moderate | Severe | Ref. |
---|---|---|---|---|
Spanish consensus | 2009 | Piperacillin/tazobactam ± Fluconazole For β-lactam allergic patients: Tigecycline ± Fluconazole | [47] | |
SIS/IDSA | 2010 | Meropenem or Imipenem or Doripenem or Piperacillin/tazobactam or Ceftazidime or (Cefepime + Metronidazole) or Aminoglycosides or Colistin | [44] | |
WSES | 2013 | Piperacillin/tazobactam + Tigecycline + Fluconazole | Piperacillin/tazobactam + Tigecycline +Echinocandin Alternative: Meropenem or Imipenem or Doripenem + Teicoplanin + Echinocandin | [46] |
Asian consensus | 2014 | Meropenem or Imipenem or Doripenem or Pieracillin/tazobactam Alternative: Cefepime or (Levofloxacin or Ciprofloxacin + Metronidazole) For β-lactam allergic patients: Tigecycline or Moxifloxacin or Ertapenem | Meropenem or Imipenem or Doripenem Alternative: Meropenem or Imipenem or Doripenem + Vancomycin or Linezolid OR Tigecycline + Aztreonam or Ciprofloxacin or Levofloxacin For β-lactam allergic patients: Tigecycline + (Ciprofloxacin or Levofloxacin) Or Carbapenem or Tigecycline or (Polymixin B or Colistin ± Aminoglycoside) Or Carbapenem + Tigecycline or Polymixin B or Colistin | [48] |
SFAR | 2015 | Piperacillin/tazobactam ± Amikacin Alternative: (Imipenem or Meropenem) ± Amikacin For β-lactam allergic patients: Ciprofloxacin + Amikacin + Vancomycin + Metronidazole Or Aztreonam + Amikacin + Vancomycin + Metronidazole Or Tigecycline + Ciprofloxacin | [45] |
Abbreviated Laparotomy due to Severe Physiological Derangement |
---|
Need for a deferred intestinal anastomosis |
Planned second look for intestinal ischemia |
Persistent source of peritonitis (failure of source control) |
Extensive visceral oedema with the concern for development of abdominal compartment syndrome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Waele, J.J.; Coccolini, F.; Lagunes, L.; Maseda, E.; Rausei, S.; Rubio-Perez, I.; Theodorakopoulou, M.; Arvaniti, K. Optimized Treatment of Nosocomial Peritonitis. Antibiotics 2023, 12, 1711. https://doi.org/10.3390/antibiotics12121711
De Waele JJ, Coccolini F, Lagunes L, Maseda E, Rausei S, Rubio-Perez I, Theodorakopoulou M, Arvaniti K. Optimized Treatment of Nosocomial Peritonitis. Antibiotics. 2023; 12(12):1711. https://doi.org/10.3390/antibiotics12121711
Chicago/Turabian StyleDe Waele, Jan J., Federico Coccolini, Leonel Lagunes, Emilio Maseda, Stefano Rausei, Ines Rubio-Perez, Maria Theodorakopoulou, and Kostoula Arvaniti. 2023. "Optimized Treatment of Nosocomial Peritonitis" Antibiotics 12, no. 12: 1711. https://doi.org/10.3390/antibiotics12121711
APA StyleDe Waele, J. J., Coccolini, F., Lagunes, L., Maseda, E., Rausei, S., Rubio-Perez, I., Theodorakopoulou, M., & Arvaniti, K. (2023). Optimized Treatment of Nosocomial Peritonitis. Antibiotics, 12(12), 1711. https://doi.org/10.3390/antibiotics12121711