Evaluation of Two Tests for the Rapid Detection of CTX-M Producers Directly in Urine Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Microbiological Methods
2.3. Methods for Assessing the Performance of the NG-Test CTX-M MULTI and the Rapid ESBL NP Test
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Hyle, E.P.; Lipworth, A.D.; Zaoutis, T.E.; Nachamkin, I.; Bilker, W.B.; Lautenbach, E. Impact of inadequate initial antimicrobial therapy on mortality in infections due to extended-spectrum β-lactamase–producing Enterobacteriaceae: Variability by site of infection. Arch. Intern. Med. 2005, 165, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.; Lo, W.U.; Chan, J.F.; Tse, H.; Cheng, V.C.; Ho, P.L. Clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteremia in an area with high endemicity. Int. J. Infect. Dis. 2013, 17, e120–e124. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef]
- Ho, P.L.; Poon, W.W.; Loke, S.L.; Leung, M.S.; Chow, K.H.; Wong, R.C.; Yip, K.S.; Lai, E.L.; Tsang, K.W. Community emergence of CTX-M type extended-spectrum β-lactamases among urinary Escherichia coli from women. J. Antimicrob. Chemother. 2007, 60, 140–144. [Google Scholar] [CrossRef]
- Ho, P.L.; Yeung, M.K.; Lo, W.U.; Tse, H.; Li, Z.; Lai, E.L.; Chow, K.H.; To, K.K.; Yam, W.C. Predominance of pHK01-like incompatibility group FII plasmids encoding CTX-M-14 among extended-spectrum beta-lactamase–producing Escherichia coli in Hong Kong, 1996–2008. Diagn. Microbiol. Infect. Dis. 2012, 73, 182–186. [Google Scholar] [CrossRef]
- Ho, P.L.; Chu, Y.P.S.; Lo, W.U.; Chow, K.H.; Law, P.Y.; Tse, C.W.S.; Ng, T.K.; Cheng, V.C.C.; Que, T.L. High prevalence of Escherichia coli sequence type 131 among antimicrobial-resistant E. coli isolates from geriatric patients. J. Med. Microbiol. 2015, 64, 243–247. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Vachvanichsanong, P.; McNeil, E.B.; Dissaneewate, P. Extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae urinary tract infections. Epidemiol. Infect. 2021, 149, e12. [Google Scholar] [CrossRef]
- Liofilchem. Rapid ESBL NP Test Package Insert; Rev.0.2/10.02.2022. Abruzzi, Italy. 2022. Available online: http://www.liofilchem.net/login/pd/pi/76036_PI.pdf (accessed on 25 September 2023).
- NG-Biotech Labortories. NG-Test CTX-M MULTI Package Insert. ENO 002CTM Version 181025. Guipry, France. 2021. Available online: https://amr.ngbiotech.com/wp-content/uploads/2022/03/Instructions-For-Use-NG-Test_CTX-M_MULTI-v220127.pdf (accessed on 25 September 2023).
- Boattini, M.; Bianco, G.; Comini, S.; Iannaccone, M.; Casale, R.; Cavallo, R.; Nordmann, P.; Costa, C. Direct detection of extended-spectrum-β-lactamase-producers in Enterobacterales from blood cultures: A comparative analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Lee, C.H.; Cao, H.; Jiang, S.; So, S.Y.C.; Tse, C.W.S.; Cheng, V.C.C.; Ho, P.L. Evaluation of a Lateral Flow Immunoassay for Rapid Detection of CTX-M Producers from Blood Cultures. Microorganisms 2023, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Leber, A.L. (Ed.) Urine Cultures. In Clinical Microbiology Procedures Handbook, 4th ed.; ASM Press: Washington, DC, USA, 2016; pp. 1–33. [Google Scholar]
- McCarter, Y.S.; Burd, E.M.; Hall, G.S.; Zervos, M. Cumitech 2C, Laboratory Diagnosis of Urinary Tract Infections; ASM Press: Washiington, DC, USA, 2009. [Google Scholar]
- Ho, P.L.; Liu, M.C.J.; Lo, W.U.; Lai, E.L.Y.; Lau, T.C.K.; Law, O.K.; Chow, K.H. Prevalence and characterization of hybrid blaCTX-M among Escherichia coli isolates from livestock and other animals. Diagn. Microbiol. Infect. Dis. 2015, 82, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Ho, P.L.; Kwan, G.S.; She, K.K.; Siu, G.K.; Cheng, V.C.; Yuen, K.Y.; Yam, W.C. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization–time of flight mass spectrometry systems. J. Clin. Microbiol. 2013, 51, 1733–1739. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2022. [Google Scholar]
- Eisinger, S.W.; Schwartz, M.; Dam, L.; Riedel, S. Evaluation of the BD Vacutainer Plus Urine C&S Preservative Tubes compared with nonpreservative urine samples stored at 4 °C and room temperature. Am. J. Clin. Pathol. 2013, 140, 306–313. [Google Scholar] [CrossRef]
- Wang, T.; Kumru, O.S.; Yi, L.; Wang, Y.J.; Zhang, J.; Kim, J.H.; Joshi, S.B.; Middaugh, C.R.; Volkin, D.B. Effect of ionic strength and pH on the physical and chemical stability of a monoclonal antibody antigen-binding fragment. J. Pharm. Sci. 2013, 102, 2520–2537. [Google Scholar] [CrossRef]
- Bernabeu, S.; Ratnam, K.C.; Boutal, H.; Gonzalez, C.; Vogel, A.; Devilliers, K.; Plaisance, M.; Oueslati, S.; Malhotra-Kumar, S.; Dortet, L.; et al. A lateral flow immunoassay for the rapid identification of CTX-M-producing Enterobacterales from culture plates and positive blood cultures. Diagnostics 2020, 10, 764. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Cavallo, R.; Costa, C. Evaluation of the NG-Test CTX-M MULTI immunochromatographic assay for the rapid detection of CTX-M extended-spectrum-β-lactamase producers from positive blood cultures. J. Hosp. Infect. 2020, 105, 341–343. [Google Scholar] [CrossRef]
- Cendejas-Bueno, E.; del Pilar Romero-Gómez, M.; Falces-Romero, I.; Aranda-Diaz, A.; García-Ballesteros, D.; Mingorance, J.; García-Rodríguez, J. Evaluation of a lateral flow immunoassay to detect CTX-M extended-spectrum β-lactamases (ESBL) directly from positive blood cultures for its potential use in Antimicrobial Stewardship programs. Rev. Española Quimioter. 2022, 35, 284. [Google Scholar] [CrossRef]
- Comini, S.; Bianco, G.; Boattini, M.; Banche, G.; Ricciardelli, G.; Allizond, V.; Cavallo, R.; Costa, C. Evaluation of a diagnostic algorithm for rapid identification of Gram-negative species and detection of extended-spectrum β-lactamase and carbapenemase directly from blood cultures. J. Antimicrob. Chemother. 2022, 77, 2632–2641. [Google Scholar] [CrossRef]
- Keshta, A.S.; Elamin, N.; Hasan, M.R.; Pérez-López, A.; Roscoe, D.; Tang, P.; Suleiman, M. Evaluation of rapid immunochromatographic tests for the direct detection of extended spectrum beta-lactamases and carbapenemases in Enterobacterales isolated from positive blood cultures. Microbiol. Spectr. 2021, 9, e00785-21. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Bodendoerfer, E.; Kolesnik-Goldmann, N.; Mancini, S. Rapid identification of CTX-M-type extended-spectrum β-lactamase-producing Enterobacterales from blood cultures using a multiplex lateral flow immunoassay. J. Glob. Antimicrob. Resist. 2021, 26, 130–132. [Google Scholar] [CrossRef]
- Sugianli, A.K.; Ginting, F.; Parwati, I.; de Jong, M.D.; van Leth, F.; Schultsz, C. Antimicrobial resistance among uropathogens in the Asia-Pacific region: A systematic review. JAC-Antimicrob. Resist. 2021, 3, dlab003. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Ho, A.Y.; Chow, K.H.; Wong, R.C.; Duan, R.S.; Ho, W.L.; Mak, G.C.; Tsang, K.W.; Yam, W.C.; Yuen, K.Y. Occurrence and molecular analysis of extended-spectrum β-lactamase-producing Proteus mirabilis in Hong Kong, 1999–2002. J. Antimicrob. Chemother. 2005, 55, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Shek, R.H.; Chow, K.H.; Duan, R.S.; Mak, G.C.; Lai, E.L.; Yam, W.C.; Tsang, K.W.; Lai, W.M. Detection and characterization of extended-spectrum β-lactamases among bloodstream isolates of Enterobacter spp. in Hong Kong, 2000–2002. J. Antimicrob. Chemother. 2005, 55, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Zboromyrska, Y.; Rico, V.; Pitart, C.; Fernández-Pittol, M.J.; Soriano, Á.; Bosch, J. Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis. Antibiotics 2022, 11, 582. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L.; Gaido, L. Laboratory diagnosis of urinary tract infections in adult patients. Clin. Infect. Dis. 2004, 38, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Kupelian, A.S.; Horsley, H.; Khasriya, R.; Amussah, R.T.; Badiani, R.; Courtney, A.M.; Chandhyoke, N.S.; Riaz, U.; Savlani, K.; Moledina, M.; et al. Discrediting microscopic pyuria and leucocyte esterase as diagnostic surrogates for infection in patients with lower urinary tract symptoms: Results from a clinical and laboratory evaluation. BJU Int. 2013, 112, 231–238. [Google Scholar] [CrossRef]
- Morency-Potvin, P.; Schwartz, D.N.; Weinstein, R.A. Antimicrobial stewardship: How the microbiology laboratory can right the ship. Clin. Microbiol. Rev. 2017, 30, 381–407. [Google Scholar] [CrossRef]
- Morado, F.; Wong, D.W. Applying diagnostic stewardship to proactively optimize the management of urinary tract infections. Antibiotics 2022, 11, 308. [Google Scholar] [CrossRef]
- Advani, S.D.; Turner, N.A.; Schmader, K.E.; Wrenn, R.H.; Moehring, R.W.; Polage, C.R.; Vaughn, V.M.; Anderson, D.J. Optimizing reflex urine cultures: Using a population-specific approach to diagnostic stewardship. Infect. Control. Hosp. Epidemiol. 2023, 44, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Tomura, Y.; Oshida, J.; Fukui, S.; Kodama, T.; Kobayashi, D. The Role of Gram Stain in Reducing Broad-spectrum Antibiotic Use: A Systematic Literature Review and Meta-analysis. Infect. Dis. Now 2023, 53, 104764. [Google Scholar] [CrossRef] [PubMed]
- Wiwanitkit, V.; Udomsantisuk, N.; Boonchalermvichian, C. Diagnostic value and cost utility analysis for urine Gram stain and urine microscopic examination as screening tests for urinary tract infection. Urol. Res. 2005, 33, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.; Mach, K.E.; Shortliffe, L.M.D.; Banaei, N.; Wang, T.H.; Liao, J.C. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 2017, 14, 296–310. [Google Scholar] [CrossRef]
- Shang, Y.J.; Wang, Q.Q.; Zhang, J.R.; Xu, Y.L.; Zhang, W.W.; Chen, Y.; Gu, M.L.; Hu, Z.D.; Deng, A.M. Systematic review and meta-analysis of flow cytometry in urinary tract infection screening. Clin. Chim. Acta 2013, 424, 90–95. [Google Scholar] [CrossRef]
- Chun, T.T.S.; Ruan, X.; Ng, S.L.; Wong, H.L.; Ho, B.S.H.; Tsang, C.F.; Lai, T.C.T.; Ng, A.T.L.; Ma, W.K.; Lam, W.P.; et al. The diagnostic value of rapid urine test platform UF-5000 for suspected urinary tract infection at the emergency department. Front. Cell. Infect. Microbiol. 2022, 12, 936854. [Google Scholar] [CrossRef]
- Enko, D.; Stelzer, I.; Böckl, M.; Schnedl, W.J.; Meinitzer, A.; Herrmann, M.; Tötsch, M.; Gehrer, M. Comparison of the reliability of Gram-negative and Gram-positive flags of the Sysmex UF-5000 with manual Gram stain and urine culture results. Clin. Chem. Lab. Med. 2021, 59, 619–624. [Google Scholar] [CrossRef]
- Toledo, H.; Punzón, S.G.; Martín-Gutiérrez, G.; Pérez, J.A.; Lepe, J.A. Usefulness of UF-5000 automatic screening system in UTI diagnosis. Braz. J. Microbiol. 2023, 54, 1803–1808. [Google Scholar] [CrossRef]
- Burillo, A.; Rodríguez-Sánchez, B.; Ramiro, A.; Cercenado, E.; Rodríguez-Créixems, M.; Bouza, E. Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PLoS ONE 2014, 9, e86915. [Google Scholar] [CrossRef]
- Kang, C.I.; Kim, J.; Park, D.W.; Kim, B.N.; Ha, U.S.; Lee, S.J.; Yeo, J.K.; Min, S.K.; Lee, H.; Wie, S.H. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect. Chemother. 2018, 50, 67. [Google Scholar] [CrossRef]
Characteristic | No. (%) of Urine Samples |
---|---|
Urinalysis (concentration range) | |
pH 5–6 | 248 (89.5) |
pH 7–8 | 29 (10.5) |
Glucose + (2.8–56 mmol/L) | 27 (9.7) |
Glucose − | 250 (90.3) |
Protein + (0.3–5 g/L) | 157 (56.7) |
Protein − | 120 (43.3) |
RBC + (1– > 100/µL) | 58 (21.9) |
RBC − | 219 (79.1) |
WBC + (10– > 100/µL) | 269 (97.1) |
WBC − | 8 (2.9) c |
Samples with organisms | |
Escherichia coli | 217 (78.3) |
Klebsiella pneumoniae | 40 (14.4) |
Proteus mirabilis | 24 (8.7) |
Other Enterobacterales a | 23 (8.3) |
Acinetobacter baumannii complex | 4 (1.4) |
Pseudomonas aeruginosa | 2 (0.7) |
Other bacteria b | 13 (4.7) |
Number of organisms | |
Monomicrobial | 234 (84.5) |
Polymicrobial | 43 (15.5) |
CTX-M identified | |
CTX-M-1 subgroup | 24 (8.7) |
CTX-M-9 subgroup | 40 (14.4) |
Both CTX-M-1 and CTX-M-9 subgroup | 2 (0.7) |
CTX-M hybrid subgroup | 1 (0.4) |
Negative for CTX-M | 210 (75.8) |
Total | 277 (100) |
Method and Sample Description | Result (No.) | Test Performance d | ||||
---|---|---|---|---|---|---|
TP | FP | FN | TN | Sensitivity, % | Specificity, % | |
NG CTX-M MULTI | ||||||
Retrospective testing a | 30 | 0 | 0 | 30 | 100 (88.4–100) | 100 (88.4–100) |
Immediate testing b | 37 | 2 | 0 | 178 | 100 (90.5–100) | 98.9 (96.0–99.9) |
Total | 67 | 2 | 0 | 208 | 100 (94.6–100) | 99.1 (96.6–99.9) |
Rapid ESBL NP | ||||||
Retrospective testing a | 28 | 0 | 2 | 30 | 93.3 (77.9–99.2) | 100 (88.4–100) |
Immediate testing b | 30 | 0 | 7 | 177 c | 81.1 (64.8–92.0) | 100 (97.9–100) |
Total | 58 | 0 | 9 | 207 | 86.6 (76.0–93.7) | 100 (98.2–100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Lee, C.-H.; Li, X.; Jiang, S.; Chow, K.-H.; Tse, C.W.-S.; Ho, P.-L. Evaluation of Two Tests for the Rapid Detection of CTX-M Producers Directly in Urine Samples. Antibiotics 2023, 12, 1585. https://doi.org/10.3390/antibiotics12111585
Tang F, Lee C-H, Li X, Jiang S, Chow K-H, Tse CW-S, Ho P-L. Evaluation of Two Tests for the Rapid Detection of CTX-M Producers Directly in Urine Samples. Antibiotics. 2023; 12(11):1585. https://doi.org/10.3390/antibiotics12111585
Chicago/Turabian StyleTang, Forrest, Chung-Ho Lee, Xin Li, Shuo Jiang, Kin-Hung Chow, Cindy Wing-Sze Tse, and Pak-Leung Ho. 2023. "Evaluation of Two Tests for the Rapid Detection of CTX-M Producers Directly in Urine Samples" Antibiotics 12, no. 11: 1585. https://doi.org/10.3390/antibiotics12111585
APA StyleTang, F., Lee, C. -H., Li, X., Jiang, S., Chow, K. -H., Tse, C. W. -S., & Ho, P. -L. (2023). Evaluation of Two Tests for the Rapid Detection of CTX-M Producers Directly in Urine Samples. Antibiotics, 12(11), 1585. https://doi.org/10.3390/antibiotics12111585