Development and Validation of a Gas Chromatography–Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC–MS Analysis of the Plant-Based Substance
2.2. Validation of GC–MS Analysis
2.2.1. Suitability of the Chromatographic System
2.2.2. Specificity
2.2.3. Linearity
2.2.4. Accuracy
2.2.5. Intraday and Interday Precision
3. Materials and Methods
3.1. Chemicals and Plant Materials
3.2. Standard and Test Sample Solution Preparation
3.3. GC–MS Conditions
3.4. Validation Study of the Analytical Method
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez Villanueva, J.; Martín Esteban, J.; Rodríguez Villanueva, L. Pharmacological Activities of Phytomedicines: A Challenge Horizon for Rational Knowledge. Challenges 2018, 9, 15. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, N.; Vlasova, I.; Skowrońska, W.; Bazylko, A.; Piwowarski, J.P.; Granica, S. Current Knowledge on Interactions of Plant Materials Traditionally Used in Skin Diseases in Poland and Ukraine with Human Skin Microbiota. Int. J. Mol. Sci. 2022, 23, 9644. [Google Scholar] [CrossRef]
- Filatov, V.A.; Kulyak, O.Y.; Kalenikova, E.I. Chemical Composition and Antimicrobial Potential of a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Pharmaceuticals 2023, 16, 328. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Madzia, S.E.; Batra, R. Etiology and management of Seborrheic dermatitis. Dermatology 2004, 208, 89–93. [Google Scholar] [CrossRef]
- Borda, L.J.; Wikramanayake, T.C. Seborrheic Dermatitis and Dandruff: A Comprehensive Review. J. Clin. Investig. Derm. 2015, 3, 1–22. [Google Scholar]
- Massiot, P.; Clavaud, C.; Thomas, M.; Ott, A.; Guéniche, A.; Panhard, S.; Muller, B.; Michelin, C.; Kerob, D.; Bouloc, A.; et al. Continuous clinical improvement of mild-to-moderate seborrheic dermatitis and rebalancing of the scalp microbiome using a selenium disulfide–based shampoo after an initial treatment with ketoconazole. J. Cosmet. Dermatol. 2022, 21, 2215–2225. [Google Scholar] [CrossRef]
- Park, M.; Cho, Y.-J.; Lee, Y.W.; Jung, W.H. Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Front. Cell. Infect. Microbiol. 2020, 10, 191. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yang, S.K.; Lai, K.S.; Lim, S.H.E. Essential Oils: The Ultimate Solution to Antimicrobial Resistance in Escherichia coli? In Recent Advances on Physiology, Pathogenesis and Biotechnological Applications, 1st ed.; Samie, A., Ed.; IntechOpen: London, UK, 2017; Volume 15, pp. 299–313. [Google Scholar]
- Chacón, L.; Arias-Andres, M.; Mena, F.; Rivera, L.; Hernández, L.; Achi, R.; Garcia, F.; Rojas-Jimenez, K. Short-term exposure to benzalkonium chloride in bacteria from activated sludge alters the community diversity and the antibiotic resistance profile. J. Water Health 2021, 19, 895–906. [Google Scholar] [CrossRef]
- Joynson, J.A.; Forbes, B.; Lambert, R.J. Adaptive resistance to benzalkonium chloride, amikacin and tobramycin: The effect on susceptibility to other antimicrobials. J. Appl. Microbiol. 2002, 93, 96–107. [Google Scholar] [CrossRef]
- Leong, C.; Kit, J.C.H.; Lee, S.M.; Lam, Y.I.; Goh, J.P.Z.; Ianiri, G.; Dawson, T.L., Jr. Azole resistance mechanisms in pathogenic M. furfur. Antimicrob. Agents Chemother. 2021, 65, e01975. [Google Scholar] [CrossRef] [PubMed]
- Naldi, L.; Rebora, A. Clinical practice. Seborrheic dermatitis. N. Engl. J. Med. 2009, 360, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Okokon, E.O.; Verbeek, J.H.; Ruotsalainen, J.H.; Ojo, A.O.; Bakhoya, V.N. Topical antifungals for seborrhoeic dermatitis. Cochrane Database Syst. Rev. 2015, 5, 1–234. [Google Scholar]
- Del Rosso, J.Q. Adult seborrheic dermatitis: A status report on practical topical management. J. Clin. Aesthet. Derm. 2011, 4, 32–38. [Google Scholar]
- Filatov, V.A.; Kulyak OYu Kalenikova, E.I. In vitro and in vivo antimicrobial activity of an active plant-based quadrocomplex for skin hygiene. J. Pharm. Pharmacogn. Res. 2022, 10, 905–921. [Google Scholar] [CrossRef]
- Filatov, V.A.; Kulyak, O.Y.; Kalenikova, E.I. The Development of Medical Shampoo with a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Med. Sci. Forum 2023, 21, 51. [Google Scholar]
- Qian, Y.; Zhang, L.; Gu, X.; Wei, L.; Wang, J.; Wang, Y. Biological Synergy and Antimicrobial Mechanism of Hydroxypropyltrimethyl Ammonium Chloride Chitosan with Benzalkonium Chloride. Chem. Pharm. Bull. 2021, 69, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Bastianini, L. Antibacterial, antifungal and antiprotozoal activity of a preparation based on benzalkonium chloride. Farmaco. Prat. 1974, 29, 594–601. [Google Scholar]
- Wigger-Alberti, W.; Kluge, K.; Elsner, P. Clinical effectiveness and tolerance of climbazole containing dandruff shampoo in patients with seborrheic scalp eczema. Praxis 2001, 90, 1346–1349. [Google Scholar]
- Schmidt-Rose, T.; Braren, S.; Fölster, H.; Hillemann, T.; Oltrogge, B.; Philipp, P.; Weets, G.; Fey, S. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff. Int. J. Cosmet. Sci. 2011, 33, 276–282. [Google Scholar] [CrossRef]
- Mayser, P.; Argembeaux, H.; Rippke, F. The hair strand test—A new method for testing antifungal effects of antidandruff preparations. J. Cosmet. Sci. 2003, 54, 263–270. [Google Scholar]
- Carr, M.M.; Pryce, D.M.; Ive, F.A. Treatment of seborrheic dermatitis with ketoconazole: I. Response of seborrheic dermatitis of the scalp to topical ketoconazole. Br. J. Dermatol. 1987, 116, 213–216. [Google Scholar] [CrossRef]
- Faergemann, J. Treatment of seborrhoeic dermatitis of the scalp with ketoconazole shampoo. A double-blind study. Acta Derm. Venereol. 1990, 70, 171–172. [Google Scholar] [CrossRef]
- Clark, G.W.; Pope, S.M.; Jaboori, K.A. Diagnosis and treatment of seborrheic dermatitis. Am. Fam. Physician. 2015, 91, 185–190. [Google Scholar]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents. Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Susceptibility of transient and commensal skin flora to the essential oil of Melaleuca alternifolia (tea tree oil). Am. J. Infect. Control 1996, 24, 186–189. [Google Scholar] [CrossRef]
- Mączka, W.; Duda-Madej, A.; Górny, A.; Grabarczyk, M.; Wińska, K. Can eucalyptol replace antibiotics? Molecules 2021, 26, 4933. [Google Scholar] [CrossRef]
- Simsek, M.; Duman, R. Investigation of effect of 1,8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacogn. Res. 2017, 9, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Eddin, L.B.; Jha, N.K.; Goyal, S.N.; Agrawal, Y.O.; Subramanya, S.B.; Bastaki, S.M.A.; Ojha, S. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients 2022, 14, 1370. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.F.; Júnior, J.G.d.A.; Honorato, R.d.L.; Santos, A.T.L.d.; Silva, J.C.P.d.; Silva, T.G.d.; Freitas, T.S.d.; Vieira, T.A.T.; Bezerra, M.C.F.; Lima Sales, D.; et al. Antifungal Effect of Liposomal α-Bisabolol and When Associated with Fluconazole. Cosmetics 2021, 8, 28. [Google Scholar] [CrossRef]
- Chamorro, E.R.; Zambon, S.N.; Morales, W.G.; Sequeira, A.F.; Velasco, G.A. Study of the Chemical Composition of Essential Oils by Gas Chromatography. In Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications; Salih, B., Çelikbıçak, Ö., Eds.; InTechOpen: London, UK, 2012; Volume 1, pp. 307–323. [Google Scholar]
- Carazzone, C.; Rodríguez, J.P.G.; Gonzalez, M.; López, G.D. Volatilomics of Natural Products: Whispers from Nature. In Metabolomics-Methodology and Applications in Medical Sciences and Life Sciences; Zhan, X., Ed.; IntechOpen: London, UK, 2021; Volume 11. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Răileanu, M.; Todan, L.; Voicescu, M.; Ciuculescu, C.; Maganu, M. A way for improving the stability of the essential oils in an environmental friendly formulation. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 3281–3288. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Oprean, R.; Tamas, M.; Roman, L. Comparison of GC-MS and TLC techniques for asarone isomers determination. J. Pharm. Biomed Anal. 1998, 18, 227–234. [Google Scholar] [CrossRef]
- Tuzimski, T.; Sherma, J. Thin-Layer Chromatography and Mass Spectrometry for the Analysis of Lipids. In Encyclopedia of Lipidomics; Wenk, M.R., Ed.; Springer: Dordrecht, Germany, 2022; Volume 1, pp. 1–20. [Google Scholar]
- Vázquez-Martínez, J.G.; López, M. Chemometrics-Based TLC and GC-MS for Small Molecule Analysis: A Practical Guide. In Chemometrics and Data Analysis in Chromatography; Hoang, V.D., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Witte, L. GC-MS Methods for Terpenoids. In Gas Chromatography/Mass Spectrometry. Modern Methods of Plant Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Dordrecht, Germany, 1986; Volume 3. [Google Scholar]
- Marriot, P.J.; Shellie, R.; Cornwell, C. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 1–804. [Google Scholar]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef]
- Kumari, K.M.U.; Yadav, N.P.; Luqman, S. Promising Essential Oils/Plant Extracts in the Prevention and Treatment of Dandruff Pathogenesis. Curr. Top. Med. Chem. 2022, 22, 1104–1133. [Google Scholar] [CrossRef] [PubMed]
- Maciel, M.V.; Morais, S.M.; Bevilaqua, C.M.L.; Silva, R.A.; Barros, R.S.; Sousa, R.N.; Sousa, L.C.; Brito, E.S.; Souza-Neto, M.A. Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet. Parasitol. 2010, 167, 1–7. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Muhayimana, A.; Habimana, J.B.; Chabard, J.L. Aromatic plants of Rwanda. II. Chemical composition of essential oils of ten Eucalyptus species growing in Ruhande Arboretum, Butare, Rwanda. J. Essent. Oil Res. 1997, 9, 159–165. [Google Scholar] [CrossRef]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.M.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.M.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [CrossRef]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog. 2018, 118, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Draelos, Z.D. A Pilot Study Investigating the Efficacy of Botanical Anti-Inflammatory Agents in an OTC Eczema Therapy. J. Cosmet. Derm. 2016, 15, 117–119. [Google Scholar] [CrossRef]
- Leite, G.O.; Leite, L.H.I.; Sampaio, R.S.; Araruna, M.K.A.; Menezes, I.R.A.; Costa, J.G.M.C.; Campos, A.R. (-)-α-Bisabolol Attenuates Visceral Nociception and Inflammation in Mice. Fitoterapia 2011, 82, 208–211. [Google Scholar] [CrossRef]
- Maurya, A.K.; Singh, M.; Dubey, V.; Srivastava, S.; Luqman, S.; Bawankule, D.U. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr. Pharm. Biotechnol. 2014, 15, 173–181. [Google Scholar] [CrossRef]
- Romagnoli, C.; Baldisserotto, A.; Malisardi, G.; Vicentini, C.B.; Mares, D.; Andreotti, E.; Vertuani, S.; Manfredini, S. A Multi-Target Approach Toward the Development of Novel Candidates for Antidermatophytic Activity: Ultra-structural Evidence on α-Bisabolol-Treated Microsporum Gypseum. Molecules 2015, 20, 11765–11776. [Google Scholar] [CrossRef]
- Femenıa-Font, A.; Balaguer-Fernandez, C.; Merino, V.; Rodilla, V.; López-Castellano, A. Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. Eur. J. Pharm. Biopharm. 2005, 61, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J. Mass spectrometric detectors for gas chromatography. In Gas Chromatography; Elsevier: Amsterdam, The Netherlands, 2021; pp. 399–424. [Google Scholar]
- NIST Chemistry WebBook: NIST Standard Reference Database Number 69. Available online: http://webbook.nist.gov/chemistry/ (accessed on 3 September 2023).
- Sparkman, D.O. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert, P. Adams. J. Am. Soc. Mass Spectrom. 2005, 16, 1902–1903. [Google Scholar] [CrossRef]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Salah, K.B.; Aouni, M.; Khouja, M.L.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation between chemical composition and antibacterial activity of essential oils from fifteen Eucalyptus species growing in the Korbous and Jbel Abderrahman arboreta (North East Tunisia). Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef]
- Alitonou, G.A.; Sessou, P.; Tchobo, F.P.; Noudogbessi, J.P.; Avlessi, F.; Yehouenou, B.; Menut, C.; Villeneuve, P.; Sohounhloue, D.C.K. Chemical composition and biological activities of essential oils of Chenopodium ambrosioides L. collected in two areas of Benin. Int. J. Biosci. 2012, 2, 58–66. [Google Scholar]
- Hong, Y.J.; Tantillo, D.J. Branching out from the bisabolyl cation. Unifying mechanistic pathways to barbatene, bazzanene, chamigrene, chamipinene, cumacrene, cuprenene, dunniene, isobazzanene, iso-γ-bisabolene, isochamigrene, laurene, microbiotene, sesquithujene, sesquisabinene, thujopsene, trichodiene, and widdradiene sesquiterpenes. J. Am. Chem. Soc. 2014, 136, 2450–2463. [Google Scholar] [PubMed]
- Kyoui, D.; Saito, Y.; Takahashi, A.; Tanaka, G.; Yoshida, R.; Maegaki, Y.; Kawarai, T.; Ogihara, H.; Suzuki, C. Antibacterial Activity of Hexanol Vapor in Vitro and on the Surface of Vegetables. Foods 2023, 12, 3097. [Google Scholar] [CrossRef]
- Tabanca, N.; Kirimer, N.; Demirci, B.; Demirci, F.; Başer, K.H. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J. Agric. Food Chem. 2001, 49, 4300–4303. [Google Scholar] [CrossRef]
- Inoue, Y.; Hada, T.; Shiraishi, A.; Hirose, K.; Hamashima, H.; Kobayashi, S. Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrob. Agents. Chemother. 2005, 49, 1770–1774. [Google Scholar] [CrossRef]
- Siqueira, H.D.S.; Neto, B.S.; Sousa, D.P.; Gomes, B.S.; da Silva, F.V.; Cunha, F.V.M.; Wanderley, C.W.S.; Pinheiro, G.; Cândido, A.G.F.; Wong, D.V.T.; et al. α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci. 2016, 160, 27–33. [Google Scholar] [CrossRef]
- de Oliveira, M.G.; Marques, R.B.; de Santana, M.F.; Santos, A.B.; Brito, F.A.; Barreto, E.O.; De Sousa, D.P.; Almeida, F.R.; Badauê-Passos, D., Jr.; Antoniolli, A.R.; et al. α-terpineol re-duces mechanical hypernociception and inflammatory response. Basic Clin. Pharmacol. Toxicol. 2012, 111, 120–125. [Google Scholar] [PubMed]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia, 11th ed.; European Directorate for the Quality of Medicines: Strasburg, France, 2023.
- Pharmacopoeia of the Russian Federation, 14th ed.; Ministry of Health of Russian Federation: Moscow, Russian, 2018.
- The European Medicines Agency. Commission Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; The European Medicines Agency: Amsterdam, The Netherlands, 2010.
- Soboleva, E.; Ambrus, A. Application of a system suitability test for quality assurance and performance optimization of a gas chromatographic system for pesticide residue analysis. J. Chromatogr. A 2004, 1027, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Cagliero, C.; Bicchi, C.; Marengo, A.; Rubiolo, P.; Sgorbini, B. Gas chromatography of essential oil: State-of-the-art, recent advances, and perspectives. J. Sep. Sci. 2022, 45, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Commission Decision. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). Off. J. Eur. Union 2002, L221, 8–36. [Google Scholar]
- Güzel, B.; Canlı, O.; Hocaoğlu, S.M. Method development and validation for accurate and sensitive determination of terpenes in bio-based (citrus) oils by single quadrupole gas chromatography-mass spectrometry (GC/MS). Microchem. J. 2023, 191, 108903. [Google Scholar] [CrossRef]
- Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile profiles of emissions from different activities analyzed using canister samplers and gas chromatography-mass spectrometry (GC/MS) analysis: A case study. Int. J. Environ. Res. Public Health 2017, 14, 195. [Google Scholar] [CrossRef]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef]
- Branch, S.K. Guidelines from the international conference on harmonization (ICH). J. Pharm. Biomed. Anal. 2005, 38, 798–805. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | MW | Chemical Class | RT (min) | Literature RI [44] | Relative Content, % |
---|---|---|---|---|---|---|
1 | 1,8-cineole | 154.25 | Bicyclic epoxygenated monoterpene | 1.775 | 1032 | 42.06 |
2 | m-cymene | 134.22 | Aromatic monoterpene | 2.158 | 1022 | 0.31 |
3 | 2-hexanol | 102.17 | Six carbon alcohol | 2.434 | 865 | 0.48 |
4 | Terpinen-4-ol | 154.25 | Cyclic oxygenated monoterpene | 5.392 | 1177 | 25.00 |
5 | endo-borneol | 154.25 | Cyclic oxygenated monoterpene | 6.488 | 1166 | 0.19 |
6 | α-bisabolene | 204.36 | Monocyclic sesquiterpene | 6.777 | 1540 | 0.07 |
7 | Trans-ascaridole glycol | 170.25 | Cyclic oxygenated monoterpene | 9.773 | 1273 | 0.17 |
8 | (−)-α-bisabolol | 222.37 | Monocyclic sesquiterpene alcohol | 10.492 | 1683 | 31.70 |
No. | Compound | MW | Chemical Class | RT (min) | Main m/z | Relative Content, % |
---|---|---|---|---|---|---|
1 | β-myrcene | 136.23 | Acyclic monoterpene | 1.55 | 93 | 0.27 |
2 | α-phellandrene | 136.24 | Cyclic monoterpene | 1.66 | 93 | 3.86 |
3 | α-terpinene | 136.24 | Cyclic monoterpene | 1.67 | 93 | 3.86 |
4 | D-limonene | 136.24 | Cyclic monoterpene | 1.77 | 68 | 0.45 |
5 | 1,8-cineole | 154.25 | Bicyclic epoxygenated monoterpene | 1.83 | 43 | 25.63 |
6 | γ-terpinene | 136.24 | Cyclic monoterpene | 2.05 | 93 | 10.36 |
7 | m-cymene | 134.22 | Aromatic monoterpene | 2.23 | 119 | 3.78 |
8 | Terpinen-4-ol | 154.25 | Cyclic oxygenated monoterpene | 5.42 | 71 | 16.98 |
9 | α-terpineol | 154.25 | Cyclic monoterpene | 6.49 | 59 | 15.31 |
10 | δ-cadinene | 204.36 | Bicyclic sesquiterpene | 7.08 | 161 | 0.31 |
11 | β-bisabolol | 222.36 | Sesquiterpene | 10.13 | 82 | 0.27 |
12 | β-caryophyllene | 204.36 | Sesquiterpene | 10.42 | 93 | 0.79 |
13 | (−)-α-bisabolol | 222.37 | Monocyclic sesquiterpene alcohol | 10.49 | 119 | 27.67 |
14 | Farnesol | 226.36 | Acyclic monoterpene | 10.80 | 69 | 2.52 |
15 | Trans-geranylgeraniol | 290.48 | Acyclic monoterpene | 11.00 | 69 | 0.55 |
No. | Compound | MW | Chemical Formula | m/z Peaks | |
---|---|---|---|---|---|
Main Peak | Highest Peaks | ||||
1 | 1,8-cineole | 154.25 | C10H18O | 43 | 58, 71, 81, 93, 108, 139, 154 |
2 | Terpinen-4-ol | 154.25 | C10H18O | 71 | 43, 93, 111, 136, 154 |
3 | (−)-α-bisabolol | 222.37 | C15H26O | 119 | 41, 43, 69, 71, 93, 109, 134, 161, 189, 204 |
Parameters | Typical Acceptance Criteria | Observations | |||
---|---|---|---|---|---|
1,8-cineole | terpinen-4-ol | (−)-α-bisabolol | |||
System suitability | NTPs a for each peak ≥ 10,000 | 19,319 | 179,154 | 678,580 | |
Resolution between all peaks ≥ 1.5 | ≥2.0 | ≥2.0 | ≥2.0 | ||
RSD b of RT < 1.0% | 0.05% | 0.04% | 0.02% | ||
RSD b of each peak of <2.0–3.0% | 2.6% | 3.2% | 2.7% | ||
Peak skewness factor = 1 | 1 | 1 | 1 | ||
Specificity | RT of these phytocompounds | test sample | 1.768 | 5.388 | 10.492 |
standard | 1.774 | 5.389 | 10.490 | ||
NTPs | test sample | 19,275 | 179,021 | 678,839 | |
standard | 19,319 | 179,154 | 678,580 | ||
Content of compound in the substance | 23.01–23.51% | 18.57–18.75% | 29.74–30.16% | ||
Linearity | Range (n = 3) | ||||
Square of the correlation coefficient for each substance should be ≥0.99 | 0.999 | 0.999 | 0.999 | ||
Accuracy | Recovery (n = 9), % | 100.2 ± 2.3 | 100.7 ± 2.1 | 100.0 ± 3.5 | |
Dispersion, % | 1.008 | 0.788 | 2.280 | ||
Variation coefficient should be ≤2.0% | 1.0% | 0.9% | 1.5% | ||
Reproducibility | Mean content (n = 6), % | 0.0132 | 0.006 | 0.0253 | |
Variation coefficient should be ≤2.0% | 1.28% | 1.96% | 1.99% |
Substance | Retention Time | Peak Area | Peak Asymmetry Factor | Average NTPs | ||
---|---|---|---|---|---|---|
Average Value, min | RSD, % | Average Value | RSD, % | |||
1,8-cineole | 1.774 | 0.05 | 3,503,956 | 2.6 | 1 | 19,319 |
Terpinen-4-ol | 5.389 | 0.04 | 1,815,200 | 3.2 | 1 | 179,154 |
(−)-α-bisabolol | 10.489 | 0.02 | 2,376,829 | 2.7 | 1 | 678,580 |
Sample | RT, min | ||
---|---|---|---|
1,8-cineole | terpinen-4-ol | (−)-α-bisabolol | |
Standard sample solution | 1.774 | 5.389 | 10.490 |
Test sample solution | 1.768 | 5.388 | 10.492 |
Compound | Average Content, % | Added Content, % | Recovery, % | Mean Recovery, % | CV a, % | RSD, % |
---|---|---|---|---|---|---|
1,8-cineole | 0.001 | 0.0002 | 99.4 | 100.2 | 1.01 | 1.0 |
0.005 | 0.001 | 100.5 | ||||
0.01 | 0.002 | 100.8 | ||||
Terpinen-4-ol | 0.0003 | 0.00006 | 100.0 | 100.7 | 0.79 | 0.88 |
0.0015 | 0.0003 | 101.1 | ||||
0.003 | 0.0006 | 101.2 | ||||
(−)-α-bisabolol | 0.001 | 0.0002 | 98.6 | 100.0 | 2.28 | 1.51 |
0.005 | 0.001 | 101.6 | ||||
0.01 | 0.002 | 99.9 |
The Test Sample Solution | |||
---|---|---|---|
Concentration of the Plant-Based Substance, Weight% | Compound | Precision for Each Compound (CV, %) | |
Intraday (n = 6) | Interday (n = 18) | ||
0.02 | 1,8-cineole | 1.38 | 1.57 |
Terpinen-4-ol | 1.97 | 1.82 | |
(−)-α-bisabolol | 2.47 | 2.19 | |
0.1 | 1,8-cineole | 0.86 | 1.27 |
Terpinen-4-ol | 1.16 | 2.53 | |
(−)-α-bisabolol | 1.92 | 2.13 | |
0.2 | 1,8-cineole | 1.28 | 1.64 |
Terpinen-4-ol | 1.96 | 2.52 | |
(−)-α-bisabolol | 1.99 | 2.56 |
No. | Chemical | Origin | CAS Number | Assay | Manufacturer |
---|---|---|---|---|---|
Substances for standard sample | |||||
1 | Terpinen-4-ol natural | Leaves of Eucalyptus globulus | 562-74-3; 20126-76-5 | >99.5% | Ernesto Ventos S.A., Spain |
2 | 1,8-cineole (eucalyptol) natural | Leaves of Eucalyptus spp. | 470-82-6 | >99.5% | Ernesto Ventos S.A., Spain |
3 | (−)-α-bisabolol natural | Leaves of Vanillomospsis erythropappa | 23089-26-1 | >95% | Ernesto Ventos S.A., Spain |
Substances for test sample | |||||
4 | Melaleuca alternifolia leaf oil standardized in terpinen-4-ol content | Leaves of M. alternifolia | 68647-73-4 | >30% of terpinene-4-ol | Bernardi Group, Grasse, France |
5 | 1,8-cineole (eucalyptol) | Leaves of Eucalyptus spp. | 470-82-6 | >99.5% | Wuxi Lous Essence Co., Ltd., Wuxi, Jiangsu, China |
6 | (−)-α-bisabolol | Leaves of Hymenocrater yazdianus | 23089-26-1 | >95% | Merck KGaA, Darmstadt, Germany |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filatov, V.A.; Ilin, E.A.; Kulyak, O.Y.; Kalenikova, E.I. Development and Validation of a Gas Chromatography–Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity. Antibiotics 2023, 12, 1558. https://doi.org/10.3390/antibiotics12101558
Filatov VA, Ilin EA, Kulyak OY, Kalenikova EI. Development and Validation of a Gas Chromatography–Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity. Antibiotics. 2023; 12(10):1558. https://doi.org/10.3390/antibiotics12101558
Chicago/Turabian StyleFilatov, Viktor A., Egor A. Ilin, Olesya Yu. Kulyak, and Elena I. Kalenikova. 2023. "Development and Validation of a Gas Chromatography–Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity" Antibiotics 12, no. 10: 1558. https://doi.org/10.3390/antibiotics12101558
APA StyleFilatov, V. A., Ilin, E. A., Kulyak, O. Y., & Kalenikova, E. I. (2023). Development and Validation of a Gas Chromatography–Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity. Antibiotics, 12(10), 1558. https://doi.org/10.3390/antibiotics12101558