Antimicrobial Stewardship in the Hospital Setting: A Narrative Review
Abstract
:1. Introduction
2. Redefining the Problem of Antimicrobial Resistance in the 21st Century
3. Facing the End of Antibiotics
4. Antimicrobial Stewardship in the Hospital Setting: Definitions—Personnel
- The collaboration of the AS Team members with the Hospital Infection Control Committee, the pharmacy, and all other hospital therapeutic committees with emphasis on official surgery and Hematology/Oncology representation, whenever required.
- The support and collaboration of hospital administrators with the medical staff leaders.
- The negotiation of the ID physician and the head of the pharmacy with the hospital administration, regarding authority and compensation in relation to the expected outcome of the AS program.
- The hospital administrative support to measure antibiotic consumption and to track use on an ongoing basis through the necessary infrastructure.
- Hospital Leadership Commitment referring to “Dedicated necessary, human, financial and information technology resources” with emphasis on “the necessity of AS programs leaders having dedicated time and resources to operate the program effectively”. Additionally, support from the senior leadership of the hospital, particularly the Chief Medical Officer, the Chief Nursing Officer, and the Director of Pharmacy, is considered critical for the success of AS programs. To be also pointed out is that the hospital leaderships play a critical role in obtaining the resources required to accomplish AS targets.
- Accountability regarding the appointment of a leader or co-leaders, i.e., a physician and a pharmacist trained in Infectious Diseases, both responsible for the program application and the outcome.
- Drug Expertise appointment, aiming to lead implementation effort to improve antibiotic use.
- Tracking antibiotic prescribing, impact of interventions, side effects, and resistance patterns, elements vital for continuous assessment.
- Reporting at regular time intervals information on antibiotic consumption and incidence of resistance rated to prescribers, pharmacists, nurses, and hospital leadership as well.
- Education targeting prescribers, pharmacists, and nurses regarding antibiotic resistance, optimal prescribing, and adverse reaction of antibiotics.
- Action requiring implementation of interventions focusing on a restrictive antibiotic formulary and preauthorization as well as in a prospective audit and feedback, which are both characterized as “priority interventions”.
5. Antibiotic Stewardship in the Hospital Setting: Strategies of Implementation
5.1. Restrictive Antibiotic Formulary and Preauthorization
5.2. Prospective Audit and Feedback (PAF) (or Post-Prescription Review)
5.3. International Evidence on the Reduction in Antibiotic Resistance
5.4. The Greek Experience on Antimicrobial Stewardship
5.5. Facility-Specific Guidelines
- Moment 1: Does the patient have an infection that requires antibiotics?
- Moment 2: Have I ordered appropriate cultures before starting antibiotics? What empirical antibiotic therapy should I initiate?
- Moment 3: A day or more has passed. Can I stop antibiotics? Can I narrow therapy? Can I change from iv to per os therapy?
- Moment 4: What duration of antibiotic therapy is needed for the referred patient’s diagnosis?
6. Antimicrobial Stewardship in the ICU Setting
7. Applying Antimicrobial Stewardship in Surgery
7.1. Antimicrobial Prophylaxis
7.1.1. Operative Procedures That Require Prophylaxis
7.1.2. Choice of Antimicrobial Agent
7.1.3. Optimal Dose
7.1.4. Timing of Antibiotics Administration
7.1.5. Duration of Surgical Prophylaxis
7.1.6. Decolonization of S. aureus
7.2. Antimicrobial Therapy
- I.
- The appropriate source control by identifying and eliminating the source of infection or reducing the bacterial load particularly in intra-abdominal and soft tissue infections. These techniques include drainage of abscesses or infected fluid collections and debridement of necrotic tissues, applying both operative and non-operative techniques as soon as possible, particularly in the critically ill patients [80].
- II.
- The choice of empirical antibiotic therapy, which should be based on local epidemiology, individual patient risk factors for DTR [11], severity of infection, and infection source.
- III.
- The necessity of obtaining appropriate culture specimens in the operation room for direct Gram staining and pathogen identification as well as for susceptibility testing, prior to antibiotic initiation [98].
- IV.
- The duration of postoperative therapy for intra-abdominal infections, which according to current guidelines and in case of adequate source control, should not exceed 4 days [99].
- V.
- The prediction of resistant pathogens while awaiting culture results, e.g., infection acquired in a healthcare setting, recent administration of antibiotics, as well as the underlying immune status of the infected host.
- VI.
- The substitution with targeted antimicrobial therapy as soon as possible when culture results and susceptibility testing are available.
8. Redefining the Role of Microbiology Lab in the Application of Antibiotics Stewardship in the Hospital Setting: The Diagnostic Stewardship
- Rapid Bacterial Identification. Implementing PCR techniques alongside conventional cultures and stains can expedite the identification of bacterial isolates in various specimens such as rhinopharyngeal, bronchial, blood, CSF, and fecal samples, with results available in less than an hour [100,101,102].
- MALDI-TOF MS Bacterial Species Identification. This technique allows for precise identification of bacterial species in under 30 min. The impact of MALDI-TOF MS plus stewardship interventions in patients with bacteremia or candidiasis was evaluated by Huang et al. [103]. MALDI-TOF MS results followed by real-time notification to a member of the AS Team, when compared to traditional methodology, improved time to initiate optimal antibiotic treatment (80.9 vs. 23hours; p < 0.001), whereas during the intervention period, mortality was lower (21% vs. 8.9%, p = 0.01). Therefore, authors recommended that AS programs in combination with rapid diagnostics were beneficial in terms of the patient outcome. A major advantage is the determination of underlying resistance mechanisms at the level of ESBL and carbapenemase products, aiding in the decision to administer advanced antibiotics while awaiting susceptibility test results [100,101].
- Rapid Antibiotic Susceptibility Testing. Rapid diagnostics that enable tailoring of therapy on the same day blood cultures turn positive have been developed. Commercially available options like the Accelerate Pheno® system (Accelerate Diagnostics, Tucson, Arizona, United States) and VITEK® REVEAL™ (Bio-Merieux, Marcy l’Étoile, France, Europe) offer results in approximately 6 h and 4.5 h, respectively [104,105,106]. These tests are particularly beneficial in cases of bloodstream infections and sepsis, where immediate initiation of effective antimicrobial therapy is critical.
- The Selective Reporting of Antibiotic Susceptibility Test. The IDSA recommends the practice of selective and cascade reporting of antibiotics rather than reporting results for all tested antibiotics [107]. This approach encourages reporting of antibiotics that are specifically suitable for the site of infection, or prioritizing “narrower spectrum agents over broad-spectrum ones” [107]. However, the IDSA characterizes these recommendations as weak and based on low-quality evidence, indicating a need for further data. It is important to note that the Microbiology Lab should provide the AS Team with cumulative antimicrobial susceptibility reports for bacterial isolates, ideally on a semi-annual or annual basis, and separately for each hospital clinical department [108,109]. This reporting strategy empowers the AS Team to engage in discussions and share insights with individual-clinical-department medical staff, influencing their antibiotic selection decisions.
- Biomarkers. Procalcitonin (PCT) is a valuable biomarker that becomes elevated during systemic inflammation and therefore can help differentiate between bacterial and viral infections. It plays a role in assessing the likelihood of a bacterial infection’s presence and, notably, guiding the cessation of antibiotic treatment [110]. PCT, however, should not be relied upon as the sole determinant for initiating empirical antibiotic therapy. Elevated PCT levels can also result from conditions such as severe trauma, surgery, burns, cardiac shock, malaria, systemic vasculitis, and end-stage renal disease, while it may remain negative in localized infections or when measured too early. PCT levels of less than 0.3 mg/L, between 0.3 mg/L and 0.5 mg/L, or a drop of 80% or more from the initial abnormal value may encourage the discontinuation of antibiotics. However, if a patient remains clinically unstable, the continuation of antibiotic therapy should be considered. It is evident that the major contribution of PCT values lies in facilitating the discontinuation of antibiotics, a critical task that should be integrated into the responsibilities of the AS Team, particularly in the ICU.
- Next-Generation Sequencing. Next-generation sequencing (NGS) technologies have become increasingly available for use in the clinical microbiology diagnostic environment. There are three main applications of these technologies in the clinical microbiology laboratory: whole genome sequencing (WGS), targeted metagenomics sequencing, and shotgun metagenomics sequencing. These applications are being utilized for initial identification of pathogenic organisms, the detection of antimicrobial resistance mechanisms, and for epidemiologic tracking of organisms within hospital systems [111]. In the context of diagnostic stewardship, NGS technologies can be used to optimize antimicrobial use. For instance, NGS-based rapid diagnostic tests can help identify the resistance genes in bacteria, leading to a more targeted and effective antibiotic. Moreover, NGS can also be used to predict the susceptibility and resistance of certain bacteria to specific drugs [112]. NGS technologies offer significant potential in diagnostic stewardship, particularly in the areas of antimicrobial resistance surveillance and management. By providing detailed information about the genetic makeup of bacteria, NGS can help clinicians make more informed decisions about treatment, ultimately improving patient outcomes [111,112].
9. Redefining the Role of Registered Nurse in Hospital Antibiotic Stewardship Providers
10. Other Antimicrobial Stewardship Interventions
10.1. Assessing Penicillin Allergy
10.2. Reporting
10.3. Education
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, A. Penicillin finder assays its future. New York Times, 26 June 1945; 21. [Google Scholar]
- Spink, W.W.; Ferris, V. Quantitative action of penicillin inhibitor from penicillin-resistant strain of Staphylococcus. Science 1945, 102, 221–223. [Google Scholar] [CrossRef]
- Barrett, F.F.; McGehee, R.F.; Finland, M. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. N. Engl. J. Med. 1968, 279, 441–448. [Google Scholar] [CrossRef]
- Lynch, J.P., 3rd; Zhanel, G.G. Streptococcus pneumoniae: Epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr. Opin. Pulm. Med. 2010, 16, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Nakane, K.; Yasuda, M.; Maeda, S. Emergence and spread of drug resistant Neisseria gonorrhoeae. J. Urol. 2010, 184, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Bonten, M.J.; Willems, R.; Weinstein, R.A. Vancomycin-resistant enterococci: Why are they here, and where do they come from? Lancet. Infect. Dis. 2001, 1, 314–325. [Google Scholar] [CrossRef]
- Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: A new model of antibiotic resistance. Lancet. Infect. Dis. 2001, 1, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet. Infect. Dis. 2009, 9, 228–236. [Google Scholar] [CrossRef]
- Oteo, J.; Perez-Vazquez, M.; Campos, J. Extended-spectrum beta-lactamase producing Escherichia coli: Changing epidemiology and clinical impact. Curr. Opin. Infect. Dis. 2010, 23, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Amaya-Villar, R. Multi-resistant Acinetobacter baumannii infections: Epidemiology and management. Curr. Opin. Infect. Dis. 2010, 23, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Giamarellou, H.; Karaiskos, I. Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics 2022, 11, 1009. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 12 September 2023).
- The Review on Antimicrobial Resistance Chaired by Jim O’Neill. December 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 12 September 2023).
- World Health Organization. Antimicrobial Resistance Expected to Cause 5.2 Million Deaths in the Western Pacific by 2030. 2023. Available online: https://www.who.int/westernpacific/news/item/13-06-2023-antimicrobial-resistance-expected-to-cause-5.2-million-deaths-in-the-western-pacific-by-2030 (accessed on 12 September 2023).
- Littmann, J.; Buyx, A.; Cars, O. Antibiotic resistance: An ethical challenge. Int. J. Antimicrob. Agents 2015, 46, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Deresinki, S. Principles of antibiotic therapy in severe infections: Optimizing the therapeutic approach by use of laboratory and clinical data. Clin. Infect. Dis. 2007, 45 (Suppl. 3), S177–S183. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Society for Healthcare Epidemiology of America; Infectious Diseases Society of America; Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect. Control Hosp. Epidemiol. 2012, 33, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Centers for Diseases Control and Prevention. Antibiotic Prescribing and Use. 2021. Available online: http://www.cdc.gov/antibiotic-use/ (accessed on 12 September 2023).
- Barlam, T.F.; Al Mohajer, M.; Al-Tawfiq, J.A.; Auguste, A.J.; Cunha, C.B.; Forrest, G.N.; Gross, A.E.; Lee, R.A.; Seo, S.K.; Suh, K.N.; et al. SHEA statement on antibiotic stewardship in hospitals during public health emergencies. Infect. Control Hosp. Epidemiol. 2022, 43, 1541. [Google Scholar] [CrossRef]
- Dellit, T.H.; Owens, R.C.; McGowan, J.E., Jr.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Core Elements of Hospital Antibiotic Stewardship Programs. 2019. Available online: http://www.cdc.gov/antibiotic-use/healthcare/implementation/core-elements.html (accessed on 12 September 2023).
- Stenehjem, E.; Hyun, D.Y.; Septimus, E.; Yu, K.C.; Meyer, M.; Raj, D.; Srinivasan, A. Antibiotic Stewardship in Small Hospitals: Barriers and Potential Solutions. Clin. Infect. Dis. 2017, 65, 691–696. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antimicrobial Stewardship Programmes in Health-Care Facilities in Low-and Middle-Income Countries: A WHO Practical Toolkit. 2019. Available online: https://www.who.int/publications/i/item/9789241515481 (accessed on 12 September 2023).
- Echevarria, K.; Groppi, J.; Kelly, A.A.; Morreale, A.P.; Neuhauser, M.M.; Roselle, G.A. Development and application of an objective staffing calculator for antimicrobial stewardship programs in the Veterans Health Administration. Am. J. Health. Syst. Pharm. 2017, 74, 1785–1790. [Google Scholar] [CrossRef]
- Doernberg, S.B.; Abbo, L.M.; Burdette, S.D.; Fishman, N.O.; Goodman, E.L.; Kravitz, G.R.; Leggett, J.E.; Moehring, R.W.; Newland, J.G.; Robinson, P.A.; et al. Essential Resources and Strategies for Antibiotic Stewardship Programs in the Acute Care Setting. Clin. Infect. Dis. 2018, 67, 1168–1174. [Google Scholar] [CrossRef]
- Reed, E.E.; Stevenson, K.B.; West, J.E.; Bauer, K.A.; Goff, D.A. Impact of formulary restriction with prior authorization by an antimicrobial stewardship program. Virulence 2013, 4, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.A.; Kullar, R.; Bauer, K.A.; File, T.M., Jr. Eight Habits of Highly Effective Antimicrobial Stewardship Programs to Meet the Joint Commission Standards for Hospitals. Clin. Infect. Dis. 2017, 64, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Seemungal, I.A.; Bruno, C.J. Attitudes of housestaff toward a prior-authorization-based antibiotic stewardship program. Infect. Control Hosp. Epidemiol. 2012, 33, 429. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.P. Antibiotic resistance—squeezing the balloon? JAMA 1998, 280, 1270–1271. [Google Scholar] [CrossRef] [PubMed]
- Linkin, D.R.; Fishman, N.O.; Landis, J.R.; Barton, T.D.; Gluckman, S.; Kostman, J.; Metlay, J.P. Effect of communication errors during calls to an antimicrobial stewardship program. Infect. Control Hosp. Epidemiol. 2007, 28, 1374–1381. [Google Scholar] [CrossRef]
- Cosgrove, S.E.; Seo, S.K.; Bolon, M.K.; Sepkowitz, K.A.; Climo, M.W.; Diekema, D.J.; Speck, K.; Gunaseelan, V.; Noskin, G.A.; Herwaldt, L.A.; et al. Evaluation of post-prescription review and feedback as a method of promoting rational antimicrobial use: A multicenter intervention. Infect. Control Hosp. Epidemiol. 2012, 33, 374–380. [Google Scholar] [CrossRef]
- LaRocco, A., Jr. Concurrent antibiotic review programs—a role for infectious diseases specialists at small community hospitals. Clin. Infect. Dis. 2003, 37, 742. [Google Scholar] [CrossRef] [PubMed]
- Vettese, N.; Hendershot, J.; Irvine, M.; Wimer, S.; Chamberlain, D.; Massoud, N. Outcomes associated with a thrice-weekly antimicrobial stewardship programme in a 253-bed community hospital. J. Clin. Pharm. Ther. 2013, 38, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, P.J.; Rohailla, S.; Taggart, L.R.; Lightfoot, D.; Havey, T.; Daneman, N.; Lowe, C.; Muller, M.P. Antimicrobial Stewardship and Intensive Care Unit Mortality: A Systematic Review. Clin. Infect. Dis. 2019, 68, 748. [Google Scholar] [CrossRef] [PubMed]
- MacBrayne, C.E.; Williams, M.C.; Levek, C.; Child, J.; Pearce, K.; Birkholz, M.; Todd, J.K.; Hurst, A.L.; Parker, S.K. Sustainability of Handshake Stewardship: Extending a Hand Is Effective Years Later. Clin. Infect. Dis. 2020, 70, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Moghnieh, R.; Awad, L.; Abdallah, D.; Jadayel, M.; Sinno, L.; Tamim, H.; Jisr, T.; El-Hassan, S.; Lakkis, R.; Dabbagh, R.; et al. Effect of a “handshake” stewardship program versus a formulary restriction policy on High-End antibiotic use, expenditure, antibiotic resistance, and patient outcome. J. Chemother. 2020, 32, 368–384. [Google Scholar] [CrossRef]
- Tamma, P.D.; Avdic, E.; Keenan, J.F.; Zhao, Y.; Anand, G.; Cooper, J.; Dezube, R.; Hsu, S.; Cosgrove, S.E. What Is the More Effective Antibiotic Stewardship Intervention: Pre-prescription Authorization or Post-prescription Review With Feedback? Clin. Infect. Dis. 2017, 64, 537–543. [Google Scholar] [CrossRef]
- Mehta, J.M.; Haynes, K.; Wileyto, E.P.; Gerber, J.S.; Timko, D.R.; Morgan, S.C.; Binkley, S.; Fishman, N.O.; Lautenbach, E.; Zaoutis, T.; et al. Comparison of prior authorization and prospective audit with feedback for antimicrobial stewardship. Infect. Control Hosp. Epidemiol. 2014, 35, 1092–1099. [Google Scholar] [CrossRef]
- White, A.C., Jr.; Atmar, R.L.; Wilson, J.; Cate, T.R.; Stager, C.E.; Greenberg, S.B. Effects of requiring prior authorization for selected antimicrobials: Expenditures, susceptibilities, and clinical outcomes. Clin. Infect. Dis. 1997, 25, 230–239. [Google Scholar] [CrossRef]
- Rahal, J.J.; Urban, C.; Horn, D.; Freeman, K.; Segal-Maurer, S.; Maurer, J.; Mariano, N.; Marks, S.; Burns, J.M.; Dominick, D.; et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 1998, 280, 1233–1237. [Google Scholar] [CrossRef]
- Linkin, D.R.; Paris, S.; Fishman, N.O.; Metlay, J.P.; Lautenbach, E. Inaccurate communications in telephone calls to an antimicrobial stewardship program. Infect. Control Hosp. Epidemiol. 2006, 27, 688–694. [Google Scholar] [CrossRef]
- Buising, K.L.; Thursky, K.A.; Robertson, M.B.; Black, J.F.; Street, A.C.; Richards, M.J.; Brown, G.V. Electronic antibiotic stewardship—reduced consumption of broad-spectrum antibiotics using a computerized antimicrobial approval system in a hospital setting. J. Antimicrob. Chemother. 2008, 62, 608–616. [Google Scholar] [CrossRef]
- Pakyz, A.L.; Oinonen, M.; Polk, R.E. Relationship of carbapenem restriction in 22 university teaching hospitals to carbapenem use and carbapenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 1983–1986. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.A.; Armitstead, J.A.; Mynatt, R.P.; Hoven, A.D. Moving antimicrobial stewardship from restriction to facilitation. Am. J. Health. Syst. Pharm. 2011, 68, 109–110. [Google Scholar] [CrossRef]
- Carling, P.; Fung, T.; Killion, A.; Terrin, N.; Barza, M. Favorable impact of a multidisciplinary antibiotic management program conducted during 7 years. Infect. Control Hosp. Epidemiol. 2003, 24, 699–706. [Google Scholar] [CrossRef] [PubMed]
- DiazGranados, C.A. Prospective audit for antimicrobial stewardship in intensive care: Impact on resistance and clinical outcomes. Am. J. Infect. Control 2012, 40, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Elligsen, M.; Walker, S.A.; Pinto, R.; Simor, A.; Mubareka, S.; Rachlis, A.; Allen, V.; Daneman, N. Audit and feedback to reduce broad-spectrum antibiotic use among intensive care unit patients: A controlled interrupted time series analysis. Infect. Control Hosp. Epidemiol. 2012, 33, 354–361. [Google Scholar] [CrossRef]
- Yeo, C.L.; Chan, D.S.G.; Earnest, A.; Wu, T.S.; Yeoh, S.F.; Lim, R.; Jureen, R.; Fisher, D.; Hsuet, L.Y. Prospective audit and feedback on antibiotic prescription in an adult hematology-oncology unit in Singapore. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 583–590. [Google Scholar] [CrossRef]
- Davey, P.; Brown, E.; Charani, E.; Fenelon, L.; Gould, I.M.; Holmes, A.; Ramsay, C.R.; Wiffen, P.J.; Wilcox, M. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane. Database. Syst. Rev. 2013, 4, CD003543. [Google Scholar]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Antoniadou, A.; Kanellakopoulou, K.; Kanellopoulou, M.; Polemis, M.; Koratzanis, G.; Papademetriou, E.; Poulakou, G.; Giannitsioti, E.; Souli, M.; Vatopoulos, A.; et al. Impact of a hospital-wide antibiotic restriction policy program on the resistance rates of nosocomial Gram-negative bacteria. Scand. J. Infect. Dis. 2013, 45, 438–445. [Google Scholar] [CrossRef]
- Chrysou, K.; Zarkotou, O.; Kalofolia, S.; Papagiannakopoulou, P.; Mamali, V.; Chrysos, G.; Themeli-Digalaki, K.; Sypsas, N.; Tsakris, A.; Pournaras, S. Impact of a 4-year antimicrobial stewardship program implemented in a Greek tertiary hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 127–132. [Google Scholar] [CrossRef]
- Ntagiopoulos, P.G.; Paramythiotou, E.; Antoniadou, A.; Giamarellou, H.; Karabinis, A. Impact of an antibiotic restriction policy on the antibiotic resistance patterns of Gram-negative microorganisms in an Intensive Care Unit in Greece. Int. J. Antimicrob. Agents 2007, 30, 360–365. [Google Scholar] [CrossRef]
- Tamma, P.D.; Miller, M.A.; Cosgrove, S.E. Rethinking How Antibiotics Are Prescribed: Incorporating the 4 Moments of Antibiotic Decision Making Into Clinical Practice. JAMA 2019, 321, 139–140. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Akova, M.; Antonelli, M.; Canton, R.; Carlet, J.; De Backer, D.; Dimopoulos, G.; Garnacho-Montero, J.; Kesecioglu, J.; Lipman, J.; et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: Insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive. Care. Med. 2018, 44, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Srinivasan, A.; Barie, P.S.; Chastre, J.; Dela Cruz, C.S.; Douglas, I.S.; Ecklund, M.; Evans, S.E.; Evans, S.R.; Gerlach, A.T.; et al. Antibiotic Stewardship in the Intensive Care Unit. An Official American Thoracic Society Workshop Report in Collaboration with the AACN, CHEST, CDC, and SCCM. Ann. Am. Thorac. Soc. 2020, 17, 531–540. [Google Scholar] [CrossRef]
- Padigos, J.; Reid, S.; Kirby, E.; Anstey, C.; Broom, J. Nursing experiences in antimicrobial optimisation in the intensive care unit: A convergent analysis of a national survey. Aust. Crit. Care. 2023, 36, 769–781. [Google Scholar] [CrossRef]
- Tabah, A.; Buetti, N.; Staiquly, Q.; Ruckly, S.; Akova, M.; Aslan, A.T.; Leone, M.; Conway Morris, A.; Bassetti, M.; Timsit, J.F.; et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: The EUROBACT-2 international cohort study. Intensive. Care. Med. 2023, 49, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.E.; Bréchot, N.; Trouillet, J.L.; Chastre, J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014, 18, 480. [Google Scholar] [CrossRef]
- Lanckohr, C.; Boeing, C.; De Waele, J.J.; de Lange, D.W.; Schouten, J.; Prins, M.; Nijsten, M.; Povoa, P.; Morris, A.C.; Bracht, H. Antimicrobial stewardship, therapeutic drug monitoring and infection management in the ICU: Results from the international A- TEAMICU survey. Ann. Intensive. Care. 2021, 11, 131. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Stewardship Interventions: A Practical Guide; Institutional Repository for Information Sharing. Available online: https://apps.who.int/iris/handle/10665/340709 (accessed on 12 September 2023).
- Rimawi, R.H.; Mazer, M.A.; Siraj, D.S.; Gooch, M.; Cook, P.P. Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome. Crit. Care. Med. 2013, 41, 2099–2107. [Google Scholar] [CrossRef]
- Álvarez-Lerma, F.; Grau, S.; Echeverría-Esnal, D.; Martínez-Alonso, M.; Gracia-Arnillas, M.P.; Horcajada, J.P.; Masclans, J.R. A Before-and-After Study of the Effectiveness of an Antimicrobial Stewardship Program in Critical Care. Antimicrob. Agents Chemother. 2018, 62, e01825-17. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Chiotos, K.; Cosgrove, S.E.; Heil, E.L.; Kadri, S.S.; Kalil, A.C.; Gilbert, D.N.; Masur, H.; Septimus, E.J.; Sweeney, D.A.; et al. Infectious Diseases Society of America Position Paper: Recommended Revisions to the National Severe Sepsis and Septic Shock Early Management Bundle (SEP-1) Sepsis Quality Measure. Clin. Infect. Dis. 2021, 72, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Klein Klouwenberg, P.M.; Cremer, O.L.; van Vught, L.A.; Ong, D.S.; Frencken, J.F.; Schultz, M.J.; Bonten, M.J.; van der Poll, T. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: A cohort study. Crit. Care. 2015, 19, 319. [Google Scholar] [CrossRef] [PubMed]
- Douglas, I.S. New diagnostic methods for pneumonia in the ICU. Curr. Opin. Infect. Dis. 2016, 29, 197–204. [Google Scholar] [CrossRef]
- De Corte, T.; Van Hoecke, S.; De Waele, J. Artificial Intelligence in Infection Management in the ICU. Crit. Care. 2022, 26, 79. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Cotta, M.O.; Garnacho-Montero, J.; Schouten, J.; Roberts, J.A.; Lipman, J.; Tacey, M.; Timsit, J.F.; Leone, M.; Zahar, J.R.; et al. A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin. Infect. Dis. 2016, 62, 1009–1017. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive. Care. Med. 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Heenen, S.; Jacobs, F.; Vincent, J.L. Antibiotic strategies in severe nosocomial sepsis: Why do we not de-escalate more often? Crit. Care. Med. 2012, 40, 1404–1409. [Google Scholar] [CrossRef]
- Routsi, C.; Gkoufa, A.; Arvaniti, K.; Kokkoris, S.; Tourtoglou, A.; Theodorou, V.; Vemvetsou, A.; Kassianidis, G.; Amerikanou, A.; Paramythiotou, E.; et al. De-escalation of antimicrobial therapy in ICU settings with high prevalence of multidrug-resistant bacteria: A multicentre prospective observational cohort study in patients with sepsis or septic shock. J. Antimicrob. Chemother. 2020, 75, 3665–3674. [Google Scholar] [CrossRef]
- De Bus, L.; Depuydt, P.; Steen, J.; Dhaese, S.; De Smet, K.; Tabah, A.; Akova, M.; Cotta, M.O.; De Pascale, G.; Dimopoulos, G.; et al. Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: The DIANA study. Intensive. Care. Med. 2020, 46, 1404–1417. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Procedure-Associated Module. Surgical Site Infection (SSI) Event. 2023. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf (accessed on 12 September 2023).
- Leeds, I.L.; Fabrizio, A.; Cosgrove, S.E.; Wick, E.C. Treating Wisely: The Surgeon’s Role in Antibiotic Stewardship. Ann. Surg. 2017, 265, 871–873. [Google Scholar] [CrossRef]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA. Surg. 2017, 152, 784. [Google Scholar] [CrossRef]
- World Health Organization. Global Guidelines for the Prevention of Surgical Site Infection. 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK401132/pdf/Bookshelf_NBK401132.pdf (accessed on 12 September 2023).
- Lewis, S.S.; Moehring, R.W.; Chen, L.F.; Sexton, D.J.; Anderson, D.J. Assessing the relative burden of hospital-acquired infections in a network of community hospitals. Infect. Control Hosp. Epidemiol. 2013, 34, 1229. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg. Infect. (Larchmt) 2013, 14, 73. [Google Scholar] [CrossRef]
- Gaynes, R.; Edwards, J.R. National Nosocomial Infections Surveillance System Overview of nosocomial infections caused by gram-negative bacilli. Clin. Infect. Dis. 2005, 41, 848–854. [Google Scholar]
- Weigelt, J.A.; Lipsky, B.A.; Tabak, Y.P.; Derby, K.G.; Kim, M.; Gupta, V. Surgical site infections: Causative pathogens and associated outcomes. Am. J. Infect. Control 2010, 38, 112. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky-Pertzov, B.; Temkin, E.; Harbarth, S.; Fankhauser-Rodriguez, C.; Carevic, B.; Radovanovic, I.; Ris, F.; Kariv, Y.; Buchs, N.C.; Schiffer, E.; et al. R-GNOSIS WP4 Study Group. Carriage of Extended-spectrum Beta-lactamase-producing Enterobacteriaceae and the Risk of Surgical Site Infection After Colorectal Surgery: A Prospective Cohort Study. Clin. Infect. Dis. 2019, 68, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- No author listed. Antimicrobial prophylaxis for surgery. Treat. Guidel. Med. Lett. 2012, 10, 73. [Google Scholar]
- Reineke, S.; Carrel, T.P.; Eigenmann, V.; Gahl, B.; Fuehrer, U.; Seidl, C.; Reineke, D.; Roost, E.; Bächli, M.; Marschall, J.; et al. Adding vancomycin to perioperative prophylaxis decreases deep sternal wound infections in high-risk cardiac surgery patients. Eur. J. Cardiothorac. Surg. 2018, 53, 428. [Google Scholar] [CrossRef]
- Anderson, D.J.; Podgorny, K.; Berríos-Torres, S.I.; Bratzler, D.W.; Dellinger, E.P.; Greene, L.; Nyquist, A.C.; Saiman, L.; Yokoe, D.S.; Maragakis, L.L.; et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 2014, 35, 605. [Google Scholar] [CrossRef] [PubMed]
- Classen, D.C.; Evans, R.S.; Pestotnik, S.L.; Horn, S.D.; Menlove, R.L.; Burke, J.P. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N. Engl. J. Med. 1992, 326, 281. [Google Scholar] [CrossRef]
- Weber, W.P.; Marti, W.R.; Zwahlen, M.; Misteli, H.; Rosenthal, R.; Reck, S.; Widmer, A.F. The timing of surgical antimicrobial prophylaxis. Ann. Surg. 2008, 247, 918. [Google Scholar] [CrossRef] [PubMed]
- Zelenitsky, S.A.; Silverman, R.E.; Duckworth, H.; Harding, G.K. A prospective, randomized, double-blind study of single high dose versus multiple standard dose gentamicin both in combination with metronidazole for colorectal surgical prophylaxis. J. Hosp. Infect. 2000, 46, 135. [Google Scholar] [CrossRef] [PubMed]
- Sharara, S.L.; Maragakis, L.L.; Cosgrove, S.E. Decolonization of Staphylococcus aureus. Infect. Dis. Clin. N. Am. 2021, 35, 107–133. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Houck, P.M.; Richards, C.; Steele, L.; Dellinger, E.P.; Fry, D.E.; Wright, C.; Ma, A.; Carr, K.; Red, L. Use of antimicrobial prophylaxis for major surgery: Baseline results from the National Surgical Infection Prevention Project. Arch. Surg. 2005, 140, 174. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, S.W.; Gans, S.L.; Atema, J.J.; Solomkin, J.S.; Dellinger, P.E.; Boermeester, M.A. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection: A systematic review and meta-analysis. Medicine 2017, 96, e6903. [Google Scholar] [CrossRef] [PubMed]
- Global Alliance for Infections in Surgery. Global Alliance for Infections in Surgery Bundle for the Prevention of Surgical Site Infections Worldwide. Available online: https://infectionsinsurgery.org/global-alliance-for-infections-in-surgery-bundles-for-the-prevention-of-surgical-site-infections-worldwide/ (accessed on 12 September 2023).
- Chen, Y.H.; Hsueh, P.R. Changing bacteriology of abdominal and surgical sepsis. Curr. Opin. Infect. Dis. 2012, 25, 590–595. [Google Scholar] [CrossRef]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef]
- Avdic, E.; Carroll, K.C. The role of the microbiology laboratory in antimicrobial stewardship programs. Infect. Dis. Clin. N. Am. 2014, 28, 215. [Google Scholar] [CrossRef]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Mandrekar, J.N.; Patel, R. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction-Based Blood Culture Identification and Susceptibility Testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef]
- Fabre, V.; Klein, E.; Salinas, A.B.; Jones, G.; Carroll, K.C.; Milstone, A.M.; Amoah, J.; Hsu, Y.J.; Gadala, A.; Desai, S.; et al. A Diagnostic Stewardship Intervention To Improve Blood Culture Use among Adult Nonneutropenic Inpatients: The DISTRIBUTE Study. J. Clin. Microbiol. 2020, 58, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.M.; Newton, D.; Kunapuli, A.; Gandhi, T.N.; Washer, L.L.; Isip, J.; Collins, C.D.; Nagel, J.L. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin. Infect. Dis. 2013, 57, 1237–1245. [Google Scholar] [CrossRef]
- Pancholi, P.; Carroll, K.C.; Buchan, B.W.; Chan, R.C.; Dhiman, N.; Ford, B.; Granato, P.A.; Harrington, A.T.; Hernandez, D.R.; Humphries, R.M.; et al. Multicenter Evaluation of the Accelerate PhenoTest BC Kit for Rapid Identification and Phenotypic Antimicrobial Susceptibility Testing Using Morphokinetic Cellular Analysis. J. Clin. Microbiol. 2018, 56, e01329-17. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, R.; George, S.; Burwell, R.; Rajeev, L.; Rhodes, P.A.; Singh, P.; Samuel, L. Performance of the Reveal Rapid Antibiotic Susceptibility Testing System on Gram-Negative Blood Cultures at a Large Urban Hospital. J. Clin. Microbiol. 2022, 60, e000982. [Google Scholar] [CrossRef] [PubMed]
- Couchot, J.; Fournier, D.; Bour, M.; Rajeev, L.; Rhodes, P.; Singh, P.; Jeannot, K.; Plésiat, P. Evaluation of the Reveal® rapid AST system to assess the susceptibility of Pseudomonas aeruginosa from blood cultures. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 359–363. [Google Scholar] [CrossRef]
- Pulcini, C.; Tebano, G.; Mutters, N.T.; Tacconelli, E.; Cambau, E.; Kahlmeter, G.; Jarlier, V.; EUCIC-ESGAP-EUCAST Selective Reporting Working Group. Selective reporting of antibiotic susceptibility test results in European countries: An ESCMID cross-sectional survey. Int. J. Antimicrob. Agents 2017, 49, 162–166. [Google Scholar] [CrossRef]
- Langford, B.J.; Seah, J.; Chan, A.; Downing, M.; Johnstone, J.; Matukas, L.M. Antimicrobial Stewardship in the Microbiology Laboratory: Impact of Selective Susceptibility Reporting on Ciprofloxacin Utilization and Susceptibility of Gram-Negative Isolates to Ciprofloxacin in a Hospital Setting. J. Clin. Microbiol. 2016, 54, 2343. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. CLSI Publishes New Guideline M39—Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data. 2022. Available online: https://clsi.org/about/press-releases/clsi-publishes-new-guideline-m39-analysis-and-presentation-of-cumulative-antimicrobial-susceptibility-test-data/ (accessed on 12 September 2023).
- Bouadma, L.; Luyt, C.E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef]
- Hilt, E.E.; Ferrieri, P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes 2022, 13, 1566. [Google Scholar] [CrossRef]
- Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome. Med. 2022, 14, 15. [Google Scholar] [CrossRef]
- Redefining the antibiotic stewardship team: Recommendations from the American Nurses Association/Centers for Disease Control and Prevention Workgroup on the role of registered nurses in hospital antibiotic stewardship practices. JAC. Antimicrob. Resist. 2019, 1, dlz037. [CrossRef]
- Olans, R.N.; Olans, R.D.; DeMaria, A., Jr. The Critical Role of the Staff Nurse in Antimicrobial Stewardship—Unrecognized, but Already There. Clin. Infect. Dis. 2016, 62, 84–89. [Google Scholar]
- Manning, M.L.; Giannuzzi, D. Keeping patients safe: Antibiotic resistance and the role of nurse executives in antibiotic stewardship. J. Nurs. Adm. 2015, 45, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Olans, R.D.; Nicholas, P.K.; Hanley, D.; DeMaria, A., Jr. Defining a Role for Nursing Education in Staff Nurse Participation in Antimicrobial Stewardship. J. Contin. Educ. Nurs. 2015, 46, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Olans, R.D.; Olans, R.N.; Witt, D.J. Good Nursing Is Good Antibiotic Stewardship. Am. J. Nurs. 2017, 117, 58–63. [Google Scholar] [CrossRef]
- Macy, E.; Contreras, R. Health care use and serious infection prevalence associated with penicillin “allergy” in hospitalized patients: A cohort study. J. Allergy. Clin. Immunol. 2014, 133, 790–796. [Google Scholar] [CrossRef]
- Unger, N.R.; Gauthier, T.P.; Cheung, L.W. Penicillin skin testing: Potential implications for antimicrobial stewardship. Pharmacotherapy. 2013, 33, 856–867. [Google Scholar] [CrossRef]
- Rimawi, R.H.; Cook, P.P.; Gooch, M.; Kabchi, B.; Ashraf, M.S.; Rimawi, B.H.; Gebregziabher, M.; Siraj, D.S. The impact of penicillin skin testing on clinical practice and antimicrobial stewardship. J. Hosp. Med. 2013, 8, 341–345. [Google Scholar] [CrossRef]
- Trubiano, J.; Phillips, E. Antimicrobial stewardship’s new weapon? A review of antibiotic allergy and pathways to ‘de-labeling.’ Curr. Opin. Infect. Dis. 2013, 26, 526–537. [Google Scholar]
- Lee, C.R.; Lee, J.H.; Kang, L.W.; Jeong, B.C.; Lee, S.H. Educational effectiveness, target, and content for prudent antibiotic use. Biomed. Res. Int. 2015, 2015, 214021. [Google Scholar] [CrossRef] [PubMed]
- Future Learn. Antimicrobial Stewardship: Managing Antibiotic Resistance-Free Online Course. Available online: https://www.futurelearn.com/courses/antimicrobial-stewardship (accessed on 12 September 2023).
- Standford Center for Continuing Medical Education. Optimizing Antimicrobial Therapy with Timeouts: Online CME/CPE Course. 2015. Available online: https://med.stanford.edu/cme/courses/online/optimizing-antimicrobial-therapy.html (accessed on 12 September 2023).
- Livorsi, D.J.; Nair, R.; Lund, B.C.; Alexander, B.; Beck, B.F.; Goto, M.; Ohl, M.; Vaughan-Sarrazin, M.S.; Goetz, M.B.; Perencevich, E.N. Antibiotic Stewardship Implementation and Antibiotic Use at Hospitals with and without On-site Infectious Disease Specialists. Clin. Infect. Dis. 2021, 72, 1810. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.M. Antimicrobial Stewardship Programs: Appropriate Measures and Metrics to Study their Impact. Curr. Treat. Options. Infect. Dis. 2014, 6, 101. [Google Scholar] [CrossRef] [PubMed]
|
Protected Antibiotics |
---|
|
Pseudomonas aeruginosa, resistance rates (%) | Klebsiella Pneumoniae, resistance rates (%) | |||
---|---|---|---|---|
Before | After | Before | After | |
Number of Strains | 694 | 372 | 213 | 99 |
Gentamicin | 52 | 37 a | 24 | 13 a |
Amikacin | 49 | 31 a | 17 | 11 |
Ciprofloxacin | 55 | 35 a | 17 | 16 |
Ceftriaxone | NA | NA | 29 | 15 a |
Cefepime | 56 | 31 a | 37 | 12 a |
Ceftazidime | 42 | 24 a | 31 | 15 a |
Piperacillin/Tazobactam | 50 | 30 a | 34 | 20 a |
Aztreonam | 62 | 39 a | 29 | 16 a |
Imipenem | 10 | 3 a | 0 | 0 |
Antibiotic | Year | |||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | p value | |
n = 210 | n = 219 | n = 322 | n = 312 | n = 309 | ||
Amikacin | 45.9 | 51.2 | 34.4 | 33.2 | 15.6 | <0.0001 |
Ciprofloxacin | 53.3 | 59.1 | 41.3 | 51 | 24.9 | 0.0003 |
Cefotaxime | 55.0 | 61.2 | 23.4 | 28.9 | 13.2 | <0.0001 |
Cefepime | 49.2 | 54.0 | 30.7 | 28.8 | 13.4 | <0.0001 |
Piperacillin/Tazobactam | 52.1 | 48.9 | 23.3 | 20.3 | 9.8 | <0.0001 |
Meropenem | 57.3 | 63.1 | 37.2 | 42.7 | 22.6 | <0.0001 |
Imipenem | 61.1 | 71.2 | 38.8 | 47.2 | 25.2 | <0.0001 |
Antibiotic | Year | |||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | p value | |
n = 467 | n = 346 | n = 431 | n = 512 | n = 622 | ||
Amikacin | 55.4 | 31.5 | 31.3 | 44.9 | 27.2 | <0.0001 |
Ciprofloxacin | 81.1 | 82.3 | 73.8 | 68.1 | 70.1 | 0.518 |
Cefotaxime | 81.8 | 84.0 | 71.6 | 67.9 | 67.7 | 0.0665 |
Cefepime | 83.5 | 75.5 | 68.0 | 64.0 | 62.7 | 0.0061 |
Piperacillin/Tazobactam | 81.8 | 86.2 | 69.3 | 62.1 | 65.8 | 0.0332 |
Meropenem | 81.2 | 85.6 | 66.3 | 59.7 | 61.8 | 0.0087 |
Imipenem | 76.5 | 81.8 | 65.1 | 59.6 | 62.2 | 0.0519 |
Tigecycline | 26.4 | 16.2 | 3.9 | 8.3 | 19.2 | 0.1855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giamarellou, H.; Galani, L.; Karavasilis, T.; Ioannidis, K.; Karaiskos, I. Antimicrobial Stewardship in the Hospital Setting: A Narrative Review. Antibiotics 2023, 12, 1557. https://doi.org/10.3390/antibiotics12101557
Giamarellou H, Galani L, Karavasilis T, Ioannidis K, Karaiskos I. Antimicrobial Stewardship in the Hospital Setting: A Narrative Review. Antibiotics. 2023; 12(10):1557. https://doi.org/10.3390/antibiotics12101557
Chicago/Turabian StyleGiamarellou, Helen, Lamprini Galani, Theodoros Karavasilis, Konstantinos Ioannidis, and Ilias Karaiskos. 2023. "Antimicrobial Stewardship in the Hospital Setting: A Narrative Review" Antibiotics 12, no. 10: 1557. https://doi.org/10.3390/antibiotics12101557
APA StyleGiamarellou, H., Galani, L., Karavasilis, T., Ioannidis, K., & Karaiskos, I. (2023). Antimicrobial Stewardship in the Hospital Setting: A Narrative Review. Antibiotics, 12(10), 1557. https://doi.org/10.3390/antibiotics12101557