Healthcare-Associated Ventriculitis in Children during COVID-19 Pandemic: Clinical Characteristics and Outcome of a First Infection
Abstract
:1. Introduction
2. Results
2.1. Clinical Presentation
2.2. Time of Infection and Management
Relapse and Superinfections
2.3. Associated Factors for Initial Healthcare-Associated Ventriculitis
2.4. Outcome
3. Discussion
4. Materials and Methods
Statistical Analysis
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsermoulas, G.; Zisakis, A.; Flint, G.; Belli, A. Challenges to Neurosurgery During the Coronavirus Disease 2019 (COVID-19) Pandemic. World Neurosurg. 2020, 139, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.M.; de Andrada Pereira, B.; Mamaril-Davis, J.; Hurlbert, R.J. Consultations during COVID: Effects of a Pandemic on Neurosurgical Care. World Neurosurg. 2023, 177, e259–e267. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.K.; Bollam, P.; Caldito, G. Long-Term Outcomes of Ventriculoperitoneal Shunt Surgery in Patients with Hydrocephalus. World Neurosurg. 2014, 81, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Paff, M.; Alexandru-Abrams, D.; Muhonen, M.; Loudon, W. Ventriculoperitoneal shunt complications: A review. Interdiscip. Neurosurg. 2018, 13, 66–70. [Google Scholar] [CrossRef]
- National Healthcare Safety Network, Centers for Disease Control and Prevention. Surgical Site Infection (SSI) Event. Available online: http://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf (accessed on 3 May 2023).
- Simon, T.D.; Schaffzin, J.K.; Stevenson, C.B.; Willebrand, K.; Parsek, M.; Hoffman, L.R. Cerebrospinal Fluid Shunt Infection: Emerging Paradigms in Pathogenesis that Affect Prevention and Treatment. J. Pediatr. 2019, 206, 13–19. [Google Scholar] [CrossRef]
- Lewis, A.; Wahlster, S.; Karinja, S.; Czeisler, B.M.; Kimberly, W.T.; Lord, A.S. Ventriculostomy-related infections: The performance of different definitions for diagnosing infection. Br. J. Neurosurg. 2016, 30, 49–56. [Google Scholar] [CrossRef]
- Tunkel, A.R.; Hasbun, R.; Bhimraj, A.; Byers, K.; Kaplan, S.L.; Scheld, W.M.; van de Beek, D.; Bleck TP; et al. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis. Clin. Infect Dis. 2017, 64, e34–e65. [Google Scholar] [CrossRef]
- Erps, A.; Roth, J.; Constantini, S.; Lerner-Geva, L.; Grisaru-Soen, G. Risk factors and epidemiology of pediatric ventriculoperitoneal shunt infection. Pediatr. Int. 2018, 60, 1056–1061. [Google Scholar] [CrossRef]
- Yılmaz, K. Ventriculoperitoneal shunt infections in children; 10 years of experience in a single center. Dicle Tıp Dergisi 2020, 47, 806–811. [Google Scholar] [CrossRef]
- Martin, R.M.; Zimmermann, L.L.; Huynh, M.; Polage, C.R. Diagnostic Approach to Health Care- and Device-Associated Central Nervous System Infections. J. Clin. Microbiol. 2018, 56, e00861-18. [Google Scholar] [CrossRef]
- Livesay, S.; Fried, H.; Gagnon, D.; Karanja, N.; Lele, A.; Moheet, A.; Olm-Shipman, C.; Taccone, F.; Tirschwell, D.; Wright, W.; et al. Clinical Performance Measures for Neurocritical Care: A Statement for Healthcare Professionals from the Neurocritical Care Society. Neurocrit Care. 2020, 32, 5–79. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.P.; Acosta, G.N.; Goycoolea, A.; Koller, C.O. Infecciones del sistema nervioso central asociadas a dispositivos de derivación de LCR en niños, en un centro neuro-quirúrgico de referencia nacional. Rev. Chil. Infectol. 2021, 38, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Lares, J.J.; Andrade-Aguilera, A.R.; Díaz-Peña, R.; Barrera de, L.J.C. Factores de Riesgo Asociados a Crecimiento Bacteriano en Sistemas Derivativos de Líquido Cefalorraquídeo en Pacientes Pediátricos. Gac. Med. Mex. 2015, 151, 749–756. Available online: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=63494 (accessed on 13 July 2023).
- Kusumowardani, A.R.; Gunawan, P.I.; Kusumaningrum, D.; Suryaningtya, W. Cerebrospinal fluid culture and analysis in paediatric patients with shunt infection. Sri Lanka J. Child. Health 2021, 50, 436–441. [Google Scholar] [CrossRef]
- Kalangu, K.K.N.; Esene, I.N.; Dzowa, M.; Musara, A.; Ntalaja, J.; Badra, A.K. Towards zero infection for ventriculoperitoneal shunt insertion in resource-limited settings: A multicenter prospective cohort study. Childs Nerv. Syst. 2020, 36, 401–409. [Google Scholar] [CrossRef]
- Sarmey, N.; Kshettry, V.R.; Shriver, M.F.; Habboub, G.; Machado, A.G.; Weil, R.J. Evidence-based interventions to reduce shunt infections: A systematic review. Childs Nerv. Syst. 2015, 31, 541–549. [Google Scholar] [CrossRef]
- Martínez, R.M. Risk, COVID-19 and hospital care in Mexico City: Are we moving toward a new medical practice? Nóesis. Rev. de Cienc. Sociales 2022, 31, 26–46. [Google Scholar] [CrossRef]
- Poon, Y.-S.R.; Lin, Y.P.; Griffiths, P.; Yong, K.K.; Seah, B.; Liaw, S.Y. A global overview of healthcare workers’ turnover intention amid COVID-19 pandemic: A systematic review with future directions. Hum. Resour. Heal. 2022, 20, 1–18. [Google Scholar] [CrossRef]
- Park, P.; Garton, H.J.; Kocan, M.J.; Thompson, B.G. Risk of infection with prolonged ventricular catheterization. Neurosurgery. 2004, 55, 594–599; discussion 599–601. [Google Scholar] [CrossRef]
- Topjian, A.A.; Stuart, A.; Pabalan, A.A.; Clair, A.; Kilbaugh, T.J.; Abend, N.S.; Berg, R.A.; Heuer, G.G.; Storm, P.B., Jr.; Huh, J.W.; et al. Risk factors associated with infections and need for permanent cerebrospinal fluid diversion in pediatric intensive care patients with externalized ventricular drains. Neurocrit Care. 2014, 21, 294–299. [Google Scholar] [CrossRef]
- Lang, S.S.; Zhang, B.; Yver, H.; Palma, J.; Kirschen, M.P.; Topjian, A.A.; Kennedy, B.; Storm, P.B.; Heuer, G.G.; Mensinger, J.L.; et al. Reduction of ventriculostomy-associated CSF infection with antibiotic-impregnated catheters in pediatric patients: A single-institution study. Neurosurg. Focus. 2019, 47, E4. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.K.; Liu, C.L. Antibiotic-impregnated external ventricular drainage for the management of post-hemorrhagic hydrocephalus in low-birth-weight premature infants following intraventricular hemorrhage. Childs Nerv. Syst. 2022, 38, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Schade, R.P.; Schinkel, J.; Roelandse, F.W.; Geskus, R.B.; Visser, L.G.; van Dijk, J.M.; Voormolen, J.H.; Van Pelt, H.; Kuijper, E.J. Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis. J. Neurosurg. 2006, 104, 101–108, Erratum in J. Neurosurg. 2007, 106, 941. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, L.; Linné, T.; Hansson, L.O.; Kalin, M.; Axelsson, G. Value of cerebrospinal fluid analysis in the differential diagnosis of meningitis: A study in 710 patients with suspected central nervous system infection. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 374–380. [Google Scholar] [CrossRef]
- Lotfi, R.; Ines, B.; Aziz, D.M.; Mohamed, B. Cerebrospinal Fluid Lactate as an Indicator for Post-neurosurgical Bacterial Meningitis. Indian J. Crit. Care Med. 2019, 23, 127–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Zhang, J.; Gao, Z.; Ji, N.; Zhang, L. Diagnostic accuracy of routine blood examinations and CSF lactate level for post-neurosurgical bacterial meningitis. Int. J. Infect. Dis. 2017, 59, 50–54. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Y.; Zhang, L.; Kang, P.; Ji, N. The diagnostic value of cerebrospinal fluid lactate for post-neurosurgical bacterial meningitis: A meta-analysis. BMC Infect. Dis. 2016, 16, 483. [Google Scholar] [CrossRef]
- Shibamura-Fujiogi, M.; Ormsby, J.; Breibart, M.; Warf, B.; Priebe, G.P.; Soriano, S.G.; Sandora, T.J.; Yuki, K. Risk factors for pediatric surgical site infection following neurosurgical procedures for hydrocephalus: A retrospective single-center cohort study. BMC Anesthesiol. 2021, 21, 124. [Google Scholar] [CrossRef]
- Lee, J.K.; Seok, J.Y.; Lee, J.H.; Choi, E.H.; Phi, J.H.; Kim, S.K.; Wang, K.C.; Lee, H.J. Incidence and risk factors of ventriculoperitoneal shunt infections in children: A study of 333 consecutive shunts in 6 years. J. Korean Med. Sci. 2012, 27, 1563–1568. [Google Scholar] [CrossRef]
- Xu, H.; Hu, F.; Hu, H.; Sun, W.; Jiao, W.; Li, R.; Lei, T. Antibiotic prophylaxis for shunt surgery of children: A systematic review. Childs Nerv. Syst. 2016, 32, 253–258. [Google Scholar] [CrossRef]
- Arts, S.H.; Boogaarts, H.D.; van Lindert, E.J. Route of antibiotic prophylaxis for prevention of cerebrospinal fluid-shunt infection. Cochrane Database Syst. Rev. 2019, 6, CD012902. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.; Dalgic, N.; Kilic, M.; Kirgiz, P.; Kanik, M.K.; Oz, E.; Yilmaz, A. The role of intraventricular antibiotic therapy in the treatment of ventriculo-peritoneal shunt infection in children. Childs Nerv. Syst. 2021, 37, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Ziai, W.C.; Lewin JJ 3rd. Improving the role of intraventricular antimicrobial agents in the management of meningitis. Curr. Opin. Neurol. 2009, 22, 277–282. [Google Scholar] [CrossRef]
- Alnaami, I.; Alahmari, Z. Intrathecal/Intraventricular Colistin for Antibiotic-Resistant Bacterial CNS Infections in Pediatric Population: A Systematic Review. Trop. Med. Infect. Dis. 2022, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Karvouniaris, M.; Brotis, A.; Tsiakos, K.; Palli, E.; Koulenti, D. Current Perspectives on the Diagnosis and Management of Healthcare-Associated Ventriculitis and Meningitis. Infect. Drug Resist. 2022, 15, 697–721. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Carbonaro, M.; Fedullo, A.G.; Sormani, M.I.; Seinos, M.C.; González, R.; Rosanova, M.T. Cerebrospinal fluid shunt-associated infections in pediatrics: Analysis of the epidemiology and mortality risk factors. Arch. Argent. Pediatr. 2018, 116, 198–203. [Google Scholar]
- Srihawan, C.; Castelblanco, R.L.; Salazar, L.; Wootton, S.H.; Aguilera, E.; Ostrosky-Zeichner, L.; Sandberg, D.I.; Choi, H.A.; Lee, K.; Kitigawa, R.; et al. Clinical Characteristics and Predictors of Adverse Outcome in Adult and Pediatric Patients with Healthcare-Associated Ventriculitis and Meningitis. Open Forum Infect. Dis. 2016, 3, ofw077. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/table (accessed on 28 August 2023).
- Dave, P.; Pakhchanian, H.; Tarawneh, O.H.; Kazim, S.F.; Garay, S.; Raiker, R.; Liu, I.Z.; Vellek, J.; Dicpinigaitis, A.J.; Cole, K.L.; et al. Trends in United States pediatric neurosurgical practice during the COVID-19 pandemic. J. Clin. Neurosci. 2022, 97, 21–24. [Google Scholar] [CrossRef]
- Soto Hernández, J.L.; González, L.E.R.; Ramírez, G.R.; Hernández, C.H.; Torreblanca, N.R.; Morales, V.Á.; Moreno, K.F.; Peek, M.R.; Jiménez, S.M. The Impact of the COVID-19 Pandemic in Postoperative Neurosurgical Infections at a Reference Center in México. Antibiotics 2023, 12, 1055. [Google Scholar] [CrossRef]
- Ballestero, M.F.M.; Furlanetti, L.; de Oliveira, R.S. Pediatric neurosurgery during the COVID-19 pandemic: Update and recommendations from the Brazilian Society of Pediatric Neurosurgery. Neurosurg. Focus. 2020, 49, E2. [Google Scholar] [CrossRef]
- Noris, A.; Peraio, S.; Di Rita, A.; Ricci, Z.; Spezzani, C.; Lenge, M.; Giordano, F. Pediatric neurosurgery AC-after COVID-19: What has really changed? A review of the literature. Front. Pediatr. 2022, 10, 928276. [Google Scholar] [CrossRef] [PubMed]
- Reiter, L.A.; Taylor, O.L.; Jatta, M.; Plaster, S.E.; Cannon, J.D.; McDaniel, B.L.; Anglin, M.; Lockhart, E.R.; Harvey, E.M. Reducing external ventricular drain associated ventriculitis: An improvement project in a level 1 trauma center. Am. J. Infect. Control. 2023, 51, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Walek, K.W.; Leary, O.P.; Sastry, R.; Asaad, W.F.; Walsh, J.M.; Mermel, L. Decreasing External Ventricular Drain Infection Rates in the Neurocritical Care Unit: 12-Year Longitudinal Experience at a Single Institution. World Neurosurg. 2021, 150, e89–e101. [Google Scholar] [CrossRef] [PubMed]
- Montaño-Luna, V.E.; Pacheco-Rosas, D.O.; Vázquez-Rosales, J.G.; Labra-Zamora, M.G.; Fuentes-Pacheco, Y.; Sámano-Aviña, M.; Miranda-Novales, M.G. Manejo clínico de casos pediátricos de COVID-19 [Clinical management of COVID-19 paediatric cases]. Rev. Med. Inst. Mex. Seguro. Soc. 2020, 58 (Suppl. 2), S246–S259. [Google Scholar] [PubMed]
- CDC/NHSN Surveillance Definitions for Specific Types of Infections. January 2015. Available online: www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf (accessed on 11 April 2023).
Year | Cases of HAV (% Rate of Infection) | Total Number of CSF Diversion Procedures | Odds Ratio * |
---|---|---|---|
2017 | 9 (8.6) | 108 | 1.0 (reference value) |
2018 | 9 (11.5) | 78 | 1.43 |
2019 | 13 (14) | 94 | 1.76 |
2020 | 15 (20.2) | 74 | 2.79 |
2021 | 25 (26.5)) | 94 | 3.98 |
2022 | 22 (20.9) | 105 | 2.91 |
Variable | Total N = 17 |
---|---|
n (%) | |
Male | 13 (76.5) |
Age (months) median (IQR) | 9 (1, 60) |
Malnutrition | 4 (23.5) |
Cause of hydrocephalus | |
-Neural tube defect | 7 (41.1) |
-Other congenital causes | 4 (23.5) |
-Brain tumor | 4 (23.5) |
-Intraventricular hemorrhage | 2 (11.7) |
CSF drain procedure | |
-External ventricular drain | 10 (58.8) |
-Ventriculo-peritoneal shunt | 6 (35.3) |
-Ventriculo-atrial shunt | 1 (5.9) |
Surgical prophylaxis (adequate timing) | 5 (29.4) |
Prophylactic antibiotics | |
-Cephalothin | 12 (70.5) |
-Cefotaxime | 2 (11.7) |
-Vancomycin | 2 (11.7) |
-Ampicillin | 1 (5.8) |
Duration of surgery (min) median (IQR) | 63 (60, 131) |
Patients with signs or symptoms * | 11 (68.8) |
-Fever | 8 (66.7) |
-Altered mental status | 3 (25) |
-Seizures | 2 (16.7) |
-Emesis | 2 (16.7) |
-Diarrhea | 1 (8.3) |
Bacteria in CSF culture | |
-Gram-positive cocci | 12 (70.6) |
-Staphylococcus epidermidis | 9 (75) |
-Staphylococcus aureus | 2 (16.7) |
-Staphylococcus saprophyticus | 1 (8.3) |
-Gram-negative bacilli | 5 (29.4) |
-Escherichia coli | 3 (60.0) |
-Pseudomonas aeruginosa | 1 (20.0) |
-Enterobacter cloacae | 1 (20.0) |
Outcome | |
-Cured | 6 (35.3) |
-Relapse | 4 (23.5) |
-Superinfection | 4 (23.5) |
-Palliative care | 3 (17.6) |
Parameter | Median | Minimum–Maximum | Interquartile Range |
---|---|---|---|
CSF | |||
Leukocytes/mm3 | 150 | 3–11,194 | 36.25–562 |
PMNs, % | 83 | 8.3–90.3 | 24.2–83.8 |
Glucose, mg/dL | 56 | 0.1–73.2 | 30–59.5 |
Protein, mg/dL | 93.5 | 4.5–287 | 57.8–410.5 |
Lactate, mmol/L | 3.4 | 0.06–10.8 | 1.99–5.63 |
Blood | |||
White blood cell count/mm3 | 15,175 | 5420–33,000 | 10,150–20,547 |
Neutrophils/mm3 | 8295 | 2040–24,380 | 4342–17,700 |
Lymphocytes/mm3 | 3535 | 670–8870 | 2005–6407 |
C-reactive protein, mg/L | 63 | 0.59–442 | 7.7–250 |
Glucose, mg/dL | 101.5 | 45.6–189 | 89.75–136 |
Variable | N = 8 |
---|---|
n (%) | |
Male Sex | 6 (75) |
Age (months) median (IQR) | 7 (2, 15) |
Cause of hydrocephalus | |
-Neural tube defect | 5 (62.5) |
-Intraventricular hemorrhage | 2 (25) |
-Brain tumor | 1 (12.5) |
Initial diversion procedure | |
-External ventricular drain (EVD) | 4 (50) |
-Ventriculo-peritoneal shunt | 4 (50) |
Relapse | |
-S. epidermidis | 2 (25) |
-S. aureus | 1 (12.5) |
-E. cloacae | 1 (12.5) |
Superinfections | 4 (50) |
Cured | 8 (100) |
Variable | Ventriculitis Patients (n = 17) | Control Patients (n = 20) | Total (N = 37) | p 1 |
---|---|---|---|---|
n (%) | ||||
Male sex | 13 (76.5) | 12 (60.0) | 25 (67.6) | 0.31 |
Age (months) median (IQR) | 9 (1, 60) | 102 (30, 144) | 60 (9, 132) | <0.01 2 |
Nutritional status | ||||
-Normal | 13 (76.5) | 20 (100) | 33 (89.1) | 0.03 3 |
-Malnutrition | 4 (23.5) | 0 | 4 (10.8) | |
Hydrocephalus etiology | ||||
-Neural tube defect | 7 (41.1) | 1 (20) | 8 (21.6) | 0.015 |
-Other causes * | 4 (23.5) | 8 (10) | 12 (10.8) | |
-Brain tumor | 4 (23.5) | 10 (50) | 14 (37.8) | |
-Intraventricular hemorrhage | 2 (11.8) | 1 (20) | 3 (8.1) | |
CSF drain procedure | ||||
-External ventricular drain (EVD) | 10 (58.8) | 2 (10) | 12 (32.4) | 0.03 |
-Ventriculo-peritoneal shunt | 6 (35.3) | 18 (90) | 24 (64.9) | |
-Ventriculo-atrial shunt | 1 (5.9) | 0 | 1 (2.7) | - |
Surgery performed during morning shift | 11 (64.7) | 10 (50) | 21 (56.7) | 0.28 |
Evening shift | 3 (17.6) | 5 (25) | 8 (21.6) | |
Night shift | 3 (17.6) | 5 (25) | 8 (21.6) | |
Emergency surgery | 11 (64.7) | 14 (70) | 25 (67.5) | 0.71 |
Adequate surgical prophylaxis (timing) | 5 (29.4) | 9 (45) | 14 (37.8) | 0.49 3 |
Duration of surgery (min) median (IQR) | 63 (60, 131) | 98 (71, 144) | 85 (63, 143) | 0.28 2 |
Personnel in operating room median (IQR) | 7 (6, 7) | 7 (6, 7) | 7 (6, 7) | 0.45 2 |
Median surgical bleeding in mL (IQR) | 5 (5, 15) | 13 (5, 35) | 5 (5, 20) | 0.05 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licona-Enríquez, J.D.; Labra-Zamora, M.G.; Ramírez-Reyes, A.G.; Miranda-Novales, M.G. Healthcare-Associated Ventriculitis in Children during COVID-19 Pandemic: Clinical Characteristics and Outcome of a First Infection. Antibiotics 2023, 12, 1501. https://doi.org/10.3390/antibiotics12101501
Licona-Enríquez JD, Labra-Zamora MG, Ramírez-Reyes AG, Miranda-Novales MG. Healthcare-Associated Ventriculitis in Children during COVID-19 Pandemic: Clinical Characteristics and Outcome of a First Infection. Antibiotics. 2023; 12(10):1501. https://doi.org/10.3390/antibiotics12101501
Chicago/Turabian StyleLicona-Enríquez, Jesús David, María Guadalupe Labra-Zamora, Alma Griselda Ramírez-Reyes, and María Guadalupe Miranda-Novales. 2023. "Healthcare-Associated Ventriculitis in Children during COVID-19 Pandemic: Clinical Characteristics and Outcome of a First Infection" Antibiotics 12, no. 10: 1501. https://doi.org/10.3390/antibiotics12101501
APA StyleLicona-Enríquez, J. D., Labra-Zamora, M. G., Ramírez-Reyes, A. G., & Miranda-Novales, M. G. (2023). Healthcare-Associated Ventriculitis in Children during COVID-19 Pandemic: Clinical Characteristics and Outcome of a First Infection. Antibiotics, 12(10), 1501. https://doi.org/10.3390/antibiotics12101501