Antibiotics in Chronic Liver Disease and Their Effects on Gut Microbiota
Abstract
:1. Introduction
2. Overview of Gut Microbiome Functions and Alterations in Liver Disease
3. Reevaluating the Therapeutic Use of Antibiotics in Liver Cirrhosis
3.1. Antibiotic Effects on Portal Hypertension
3.2. Prophylactic Antibiotic Use for Cirrhosis
3.3. Multidrug-Resistant Bacterial Infections in Patients with Cirrhosis and the Role of Gut Microbiota
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.G.; Nuzzi, G.; Trambusti, I.; Di Cicco, M.E.; Comberiati, P. Microbiome Composition and Its Impact on the Development of Allergic Diseases. Front. Immunol. 2020, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
- Huo, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal. Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tang, R.; Li, B.; Ma, X.; Schnabl, B.; Tilg, H. Gut microbiome, liver immunology, and liver diseases. Cell. Mol. Immunol. 2021, 18, 4–17. [Google Scholar] [CrossRef]
- Zoratti, C.; Moretti, R.; Rebuzzi, L.; Albergati, I.V.; Di Somma, A.; Decorti, G.; Di Bella, S.; Crocè, L.S.; Giuffrè, M. Antibiotics and Liver Cirrhosis: What the Physicians Need to Know. Antibiotics 2022, 11, 31. [Google Scholar] [CrossRef]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; Quintero-Lira, A.; Contreras-López, E.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Añorve-Morga, J.; Calderón-Ramos, Z.G.; Arias-Rico, J.; González-Olivares, L.G. Impact of the Gut Microbiota Balance on the Health–Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods 2021, 10, 1261. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.L.; Stine, J.G.; Bisanz, J.E.; Okafor, C.D.; Patterson, A.D. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 2023, 21, 236–247. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Maintenance of gut homeostasis by the mucosal immune system. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2016, 92, 423–435. [Google Scholar] [CrossRef]
- Wong-Chew, R.M.; De Castro, J.A.; Morelli, L.; Perez, M.; Ozen, M. Gut immune homeostasis: The immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert. Rev. Clin. Immunol. 2022, 18, 717–729. [Google Scholar] [CrossRef]
- Donaldson, D.S.; Else, K.J.; Mabbott, N.A. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis. J. Virol. 2015, 89, 9532–9547. [Google Scholar] [CrossRef]
- Pollard, M.; Sharon, N. Responses of the Peyer’s Patches in Germ-Free Mice to Antigenic Stimulation. Infect. Immun. 1970, 2, 96–100. [Google Scholar] [CrossRef]
- Ruuskanen, M.O.; Åberg, F.; Männistö, V.; Havulinna, A.S.; Méric, G.; Liu, Y.; Loomba, R.; Vázquez-Baeza, Y.; Tripathi, A.; Valsta, L.M.; et al. Links between gut microbiome composition and fatty liver disease in a large population sample. Gut Microbes 2021, 13, 1–22. [Google Scholar] [CrossRef]
- Cong, J.; Zhou, P.; Zhang, R. Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022, 14, 1977. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front. Immunol. 2021, 12, 775526. [Google Scholar] [CrossRef]
- Schwenger, K.J.; Clermont-Dejean, N.; Allard, J.P. The role of the gut microbiome in chronic liver disease: The clinical evidence revised. JHEP Rep. 2019, 1, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.W.; Ge, T.T.; Chen, S.Z.; Wang, G.; Yang, Q.; Huang, C.H.; Xu, L.C.; Chen, Z. Role of bile acids in liver diseases mediated by the gut microbiome. World J. Gastroenterol. 2021, 27, 3010–3021. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yin, X.M. Gut microbiome in liver pathophysiology and cholestatic liver disease. Liver Res. 2021, 5, 151–163. [Google Scholar] [CrossRef]
- Solé, C.; Guilly, S.; Da Silva, K.; Llopis, M.; Le-Chatelier, E.; Huelin, P.; Carol, M.; Moreira, R.; Fabrellas, N.; De Prada, G.; et al. Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology 2021, 160, 206–218.e13. [Google Scholar] [CrossRef] [PubMed]
- Trebicka, J.; Macnaughtan, J.; Schnabl, B.; Shawcross, D.L.; Bajaj, J.S. The microbiota in cirrhosis and its role in hepatic decompensation. J. Hepatol. 2021, 75, S67–S81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Li, Z.J.; Gou, H.Z.; Song, X.J.; Zhang, L. The gut microbiota-bile acid axis: A potential therapeutic target for liver fibrosis. Front. Cell. Infect. Microbiol. 2022, 12, 945368. [Google Scholar] [CrossRef]
- Reuter, B.; Bajaj, J.S. Microbiome: Emerging Concepts in Patients with Chronic Liver Disease. Clin. Liver Dis. 2020, 24, 493–520. [Google Scholar] [CrossRef]
- Prado, V.; Hernández-Tejero, M.; Mücke, M.M.; Marco, F.; Gu, W.; Amoros, A.; Toapanta, D.; Reverter, E.; Peña-Ramirez, C.; Altenpeter, L. Rectal colonization by resistant bacteria increases the risk of infection by the colonizing strain in critically ill patients with cirrhosis. J. Hepatol. 2022, 76, 1079–1089. [Google Scholar] [CrossRef]
- Pande, C.; Kumar, A.; Sarin, S.K. Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease. Aliment. Pharmacol. Ther. 2009, 29, 1273–1281. [Google Scholar] [CrossRef]
- Dalbeni, A.; Mantovani, A.; Zoncapè, M.; Cattazzo, F.; Bevilacqua, M.; De Marco, L.; Paon, V.; Ieluzzi, D.; Azzini, A.M.; Carrara, E.; et al. The multi-drug resistant organisms infections decrease during the antimicrobial stewardship era in cirrhotic patients: An Italian cohort study. PLoS ONE 2023, 18, e0281813. [Google Scholar] [CrossRef] [PubMed]
- Piano, S.; Singh, V.; Caraceni, P.; Maiwall, R.; Alessandria, C.; Fernandez, J.; Soares, E.C.; Kim, D.J.; Kim, S.E.; Mariano, M.; et al. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide. Gastroenterology 2019, 156, 1368–1380.e10. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Rodriguez, M.P.; Fagan, A.; McGeorge, S.; Sterling, R.K.; Lee, H.; Luketic, V.; Fuchs, M.; Davis, B.C.; Sikaroodi, M.; et al. Impact of bacterial infections and spontaneous bacterial peritonitis prophylaxis on phage-bacterial dynamics in cirrhosis. Hepatology 2022, 76, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Kutmutia, R.; Tittanegro, T.; China, L.; Forrest, E.; Kallis, Y.; Ryder, S.D.; Wright, G.; Freemantle, N.; O’Brien, A. Evaluating the Role of Antibiotics in Patients Admitted to Hospital with Decompensated Cirrhosis: Lessons from the ATTIRE Trial. Am. J. Gastroenterol. 2023, 118, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Patidar, K.R.; Bajaj, J.S. Antibiotics for the Treatment of Hepatic Encephalopathy. Metab. Brain Dis. 2013, 28, 307–312. [Google Scholar] [CrossRef]
- Betts, J.W.; Phee, L.M.; Wareham, D.W. Rifaximin combined with polymyxins: A potential regimen for selective decontamination of multidrug-resistant bacteria in the digestive tract? J. Glob. Antimicrob. Resist. 2016, 4, 11–15. [Google Scholar] [CrossRef]
- Kothary, V.; Scherl, E.J.; Bosworth, B.; Jiang, Z.D.; DuPont, H.L.; Harel, J.; Simpson, K.W.; Dogan, B. Rifaximin Resistance in Escherichia coli Associated with Inflammatory Bowel Disease Correlates with Prior Rifaximin Use, Mutations in rpoB, and Activity of Phe-Arg-β-Naphthylamide-Inhibitable Efflux Pumps. Antimicrob. Agents Chemother. 2013, 57, 811–817. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Sikaroodi, M.; Shamsaddini, A.; Henseler, Z.; Santiago-Rodriguez, T.; Acharya, C.; Fagan, A.; Hylemon, P.B.; Fuchs, M.; Gavis, E.; et al. Interaction of bacterial metagenome and virome in patients with cirrhosis and hepatic encephalopathy. Gut 2021, 70, 1162–1173. [Google Scholar] [CrossRef]
- Yu, X.; Jin, Y.; Zhou, W.; Xiao, T.; Wu, Z.; Su, J.; Gao, H.; Shen, P.; Zheng, B.; Luo, Q. Rifaximin Modulates the Gut Microbiota to Prevent Hepatic Encephalopathy in Liver Cirrhosis Without Impacting the Resistome. Front. Cell. Infect. Microbiol. 2021, 11, 761192. [Google Scholar] [CrossRef]
- Arab, J.P.; Martin-Mateos, R.M.; Shah, V.H. Gut-liver axis, cirrhosis and portal hypertension: The chicken and the egg. Hepatol. Int. 2018, 12 (Suppl. 1), 24–33. [Google Scholar] [CrossRef]
- Di Tommaso, N.; Santopaolo, F.; Gasbarrini, A.; Ponziani, F.R. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int. J. Mol. Sci. 2023, 24, 1470. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M. Gut Dysbiosis–Induced Hypertension Is Ameliorated by Intermittent Fasting. Circ. Res. 2021, 128, 1255–1257. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, K.; Tang, S.; Lv, Y.; Wang, Q.; Wang, Z.; Luo, B.; Niu, J.; Zhu, Y.; Guo, W. Restoration of the gut microbiota is associated with a decreased risk of hepatic encephalopathy after TIPS. JHEP Rep. 2022, 4, 100448. [Google Scholar] [CrossRef]
- Lata, J.; Juránková, J.; Husová, L.; Senkyrík, M.; Díte, P.; Dastych, M.; Príbramská, V.; Kroupa, R. Variceal bleeding in portal hypertension: Bacterial infection and comparison of efficacy of intravenous and per-oral application of antibiotics–a randomized trial. Eur. J. Gastroenterol. Hepatol. 2005, 17, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Tapia, N.C.; Barrientos-Gutierrez, T.; Tellez-Avila, F.; Soares-Weiser, K.; Mendez-Sanchez; Gluud, C.; Uribe, M.N. Meta-analysis: Antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding–An updated Cochrane review. Aliment. Pharmacol. Ther. 2011, 34, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, J. Antibiotics and probiotics on hepatic venous pressure gradient in cirrhosis: A systematic review and a meta-analysis. PLoS ONE 2022, 17, e0273231. [Google Scholar] [CrossRef]
- Gedgaudas, R.; Bajaj, J.S.; Skieceviciene, J.; Varkalaite, G.; Jurkeviciute, G.; Gelman, S.; Valantiene, I.; Zykus, R.; Pranculis, A.; Bang, C. Circulating microbiome in patients with portal hypertension. Gut Microbes 2022, 14, 2029674. [Google Scholar] [CrossRef]
- Mendoza, Y.P.; Rodrigues, S.G.; Bosch, J.; Berzigotti, A. Effect of poorly absorbable antibiotics on hepatic venous pressure gradient in cirrhosis: A systematic review and meta-analysis. Dig. Liver Dis. 2020, 52, 958–965. [Google Scholar] [CrossRef]
- Lim, Y.L.; Kim, M.Y.; Jang, Y.O.; Baik, S.K.; Kwon, S.O. Rifaximin and Propranolol Combination Therapy Is More Effective than Propranolol Monotherapy for the Reduction of Portal Pressure: An Open Randomized Controlled Pilot Study. Gut Liver. 2017, 11, 702–710. [Google Scholar] [CrossRef]
- Kemp, W.; Colman, J.; Thompson, K.; Madan, A.; Vincent, M.; Chin-Dusting, J.; Kompa, A.; Krum, H.; Roberts, S. Norfloxacin treatment for clinically significant portal hypertension: Results of a randomised double-blind placebo-controlled crossover trial. Liver Int. 2009, 29, 427–433. [Google Scholar] [CrossRef]
- Gupta, N.; Kumar, A.; Sharma, P.; Garg, V.; Sharma, B.C.; Sarin, S.K. Effects of the adjunctive probiotic VSL#3 on portal haemodynamics in patients with cirrhosis and large varices: A randomized trial. Liver Int. 2013, 33, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Ferrarese, A.; Passigato, N.; Cusumano, C.; Gemini, S.; Tonon, A.; Dajti, E.; Marasco, G.; Ravaioli, F.; Colecchia, A. Antibiotic prophylaxis in patients with cirrhosis: Current evidence for clinical practice. World J. Hepatol. 2021, 13, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Qian, B.; Zhang, X.; Liu, H.; Han, T. Prophylactic antibiotics on patients with cirrhosis and upper gastrointestinal bleeding: A meta-analysis. PLoS ONE 2022, 17, e0279496. [Google Scholar] [CrossRef] [PubMed]
- Tay, P.W.L.; Xiao, J.; Tan, D.J.H.; Ng, C.; Lye, Y.N.; Lim, W.H.; Teo, V.X.Y.; Heng, R.R.Y.; Heng, R.R.Y.; Lum, L.H.W.; et al. An Epidemiological Meta-Analysis on the Worldwide Prevalence, Resistance, and Outcomes of Spontaneous Bacterial Peritonitis in Cirrhosis. Front. Med. 2021, 8, 693652. [Google Scholar] [CrossRef] [PubMed]
- Biggins, S.W.; Angeli, P.; Garcia-Tsao, G.; Gines, P.; Ling, S.C.; Nadim, M.K.; Wong, F.; Kim, W.R. Diagnosis, Evaluation and Management of Ascites, Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome. Hepatology 2021, 74, 1014–1048. [Google Scholar] [CrossRef] [PubMed]
- Yim, H.J.; Kim, T.H.; Suh, S.J.; Yim, S.Y.; Jung, Y.K.; Seo, Y.S.; Kang, S.H.; Kim, M.Y.; Baik, S.K.; Kim, H.S. Response-Guided Therapy with Cefotaxime, Ceftriaxone, or Ciprofloxacin for Spontaneous Bacterial Peritonitis: A Randomized Trial: A Validation Study of 2021 AASLD Practice Guidance for SBP. Am. J. Gastroenterol. 2023, 118, 654–663. [Google Scholar] [CrossRef]
- Facciorusso, A.; Papagiouvanni, I.; Cela, M.; Buccino, V.R.; Sacco, R. Comparative efficacy of long-term antibiotic treatments in the primary prophylaxis of spontaneous bacterial peritonitis. Liver Int. 2019, 39, 1448–1458. [Google Scholar] [CrossRef]
- Feuerstadt, P.; Hong, S.J.; Brandt, L.J. Chronic Rifaximin Use in Cirrhotic Patients Is Associated with Decreased Rate of C. difficile Infection. Dig. Dis. Sci. 2020, 65, 632–638. [Google Scholar] [CrossRef]
- Pérez-Cameo, C.; Oriol, I.; Lung, M.; Lladó, L.; Dopazo, C.; Nuvials, X.; Los-Arcos, I.; Sabé, N.; Castells, L.; Len, O. Impact of Prophylactic Norfloxacin in Multidrug Resistant Bacterial Infections in the Early Liver Posttransplant Period. Exp. Clin. Transplant. 2023, 21, 236–244. [Google Scholar] [CrossRef]
- Hurley, J.C. Selective digestive decontamination, a seemingly effective regimen with individual benefit or a flawed concept with population harm? Crit. Care 2021, 25, 323. [Google Scholar] [CrossRef]
- Myburgh, J.; Seppelt, I.M.; Goodman, F.; Billot, L.; Correa, M.; Davis, J.S.; Gordon, A.C.; Hammond, N.E.; Iredell, J.; Li, Q. Effect of Selective Decontamination of the Digestive Tract on Hospital Mortality in Critically Ill Patients Receiving Mechanical Ventilation. JAMA 2022, 328, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Tsao, G. Prophylactic Antibiotics in Cirrhosis: Are They Promoting or Preventing Infections? Clin. Liver Dis. 2019, 14, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Lutz, P.; Parcina, M.; Bekeredjian-Ding, I.; Nischalke, H.D.; Nattermann, J.; Sauerbruch, T.; Hoerauf, A.; Strassburg, C.P.; Spengler, U. Impact of Rifaximin on the Frequency and Characteristics of Spontaneous Bacterial Peritonitis in Patients with Liver Cirrhosis and Ascites. PLoS ONE 2014, 9, e93909. [Google Scholar] [CrossRef]
- Higuera-de-la-Tijera, F.; Servín-Caamaño, A.I.; Salas-Gordillo, F.; Pérez-Hernández, J.L.; Abdo-Francis, J.M.; Camacho-Aguilera, J.; Alla, S.N.; Jiménez-Ponce, F. Primary Prophylaxis to Prevent the Development of Hepatic Encephalopathy in Cirrhotic Patients with Acute Variceal Bleeding. Can. J. Gastroenterol. Hepatol. 2018, 2018, 3015891. [Google Scholar] [CrossRef]
- Coronel-Castillo, C.E.; Contreras-Carmona, J.; Frati-Munari, A.C.; Uribe, M.; Méndez-Sánchez, N. Eficacia de la rifaximina en los diferentes escenarios clínicos de la encefalopatía hepáticaEfficacy of rifaximin in the different clinical scenarios of hepatic encephalopathy. Rev. Gastroenterol. Mex. (Engl. Ed.) 2020, 85, 56–68. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Zocco, M.A.; D’Aversa, F.; Pompili, M.; Gasbarrini, A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J. Gastroenterol. 2017, 23, 4491–4499. [Google Scholar] [CrossRef]
- Patel, V.C.; Lee, S.; McPhail, M.J.W.; Da Silva, K.; Guilly, S.; Zamalloa, A.; Witherden, E.; Støy, S.; Manakkat Vijay, G.K.; Pons, N.; et al. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial. J. Hepatol. 2022, 76, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Louvet, A.; Labreuche, J.; Dao, T.; Thévenot, T.; Oberti, F.; Bureau, C.; Paupard, T.; Nguyen-Khac, E.; Minello, A.; Bernard-Chabert, B.; et al. Effect of Prophylactic Antibiotics on Mortality in Severe Alcohol-Related Hepatitis: A Randomized Clinical Trial. JAMA 2023, 329, 1558–1566. [Google Scholar] [CrossRef]
- Marciano, S.; Gutierrez-Acevedo, M.N.; Barbero, S.; Del, C.; Notar, L.; Agozino, M.; Fernandez, J.L.; Anders, M.M.; Grigera, N.; Antinucci, F.; et al. Norfloxacin prophylaxis effect on multidrug resistance in patients with cirrhosis and bacterial infections. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 481–491. [Google Scholar] [CrossRef]
- B Hadi, Y.; Khan, R.S.; Lakhani, D.A.; Khan, A.Y.; Jannat, R.U.; Khan, A.A.; Naqvi, S.F.; Obeng, G.; Kupec, J.T.; Singal, A.K. Antibiotic Prophylaxis for Upper Gastrointestinal Bleed in Liver Cirrhosis; Less May Be More. Dig. Dis. Sci. 2023, 68, 284–290. [Google Scholar] [CrossRef]
- Mücke, M.M.; Mücke, V.T.; Graf, C.; Schwarzkopf, K.M.; Ferstl, P.G.; Fernandez, J.; Zeuzem, S.; Trebicka, J.; Lange, C.M.; Herrmann, E. Efficacy of Norfloxacin Prophylaxis to Prevent Spontaneous Bacterial Peritonitis: A Systematic Review and Meta-Analysis. Clin. Transl. Gastroenterol. 2020, 11, e00223. [Google Scholar] [CrossRef] [PubMed]
- Assem, M.; Elsabaawy, M.; Abdelrashed, M.; Elemam, S.; Khodeer, S.; Hamed, W.; Abdelaziz, A.; El-Azab, G. Efficacy and safety of alternating norfloxacin and rifaximin as primary prophylaxis for spontaneous bacterial peritonitis in cirrhotic ascites: A prospective randomized open-label comparative multicenter study. Hepatol. Int. 2016, 10, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Elfert, A.; Abo Ali, L.; Soliman, S.; Ibrahim, S.; Abd-Elsalam, S. Randomized-controlled trial of rifaximin versus norfloxacin for secondary prophylaxis of spontaneous bacterial peritonitis. Eur. J. Gastroenterol. Hepatol. 2016, 28, 1450–1454. [Google Scholar] [CrossRef]
- Hanouneh, M.A.; Hanouneh, I.A.; Hashash, J.G.; Law, R.; Esfeh, J.M.; Lopez, R.; Hazratjee, N.; Smith, T.; Zein, N.N. The role of rifaximin in the primary prophylaxis of spontaneous bacterial peritonitis in patients with liver cirrhosis. J. Clin. Gastroenterol. 2012, 46, 709–715. [Google Scholar] [CrossRef]
- Pande, C.; Kumar, A.; Sarin, S.K. Addition of probiotics to norfloxacin does not improve efficacy in the prevention of spontaneous bacterial peritonitis: A double-blind placebo-controlled randomized-controlled trial. Eur. J. Gastroenterol. Hepatol. 2012, 24, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Navasa, M.; Planas, R.; Montoliu, S.; Monfort, D.; Soriano, G.; Vila, C.; Pardo, A.; Quintero, E.; Vargas, V.; et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 2007, 133, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Komolafe, O.; Roberts, D.; Freeman, S.C.; Wilson, P.; Sutton, A.J.; Cooper, N.J.; Pavlov, C.S.; Milne, E.J.; Hawkins, N.; Cowlin, M.; et al. Antibiotic prophylaxis to prevent spontaneous bacterial peritonitis in people with liver cirrhosis: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 1, CD013125. [Google Scholar] [CrossRef]
- Fernández, J.; Prado, V.; Trebicka, J.; Amoros, A.; Gustot, T.; Wiest, R.; Deulofeu, C.; Garcia, E.; Acevedo, J.; Fuhrmann, V.; et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J. Hepatol. 2019, 70, 398–411. [Google Scholar] [CrossRef]
- Fernández, J.; Acevedo, J.; Castro, M.; Garcia, O.; de Lope, C.R.; Roca, D.; Pavesi, M.; Sola, E.; Moreira, L.; Silva, A.; et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: A prospective study. Hepatology 2012, 55, 1551–1561. [Google Scholar] [CrossRef]
- Kremer, W.M.; Gairing, S.J.; Kaps, L.; Ismail, E.; Kalampoka, V.; Hilscher, M.; Michel, M.; Siegel, E.; Schattenberg, J.M.; Galle, P.R.; et al. Characteristics of bacterial infections and prevalence of multidrug-resistant bacteria in hospitalized patients with liver cirrhosis in Germany. Ann. Hepatol. 2022, 27, 100719. [Google Scholar] [CrossRef]
- Fernandez, J.; Piano, S.; Bartoletti, M.; Wey, E.Q. Management of bacterial and fungal infections in cirrhosis: The MDRO challenge. J. Hepatol. 2021, 75 (Suppl. 1), S101–S117. [Google Scholar] [CrossRef] [PubMed]
- Delavy, M.; Burdet, C.; Sertour, N.; Devente, S.; Docquier, J.D.; Grall, N.; Volant, S.; Ghozlane, A.; Duval, X.; Ghozlane, A.; et al. A Clinical Study Provides the First Direct Evidence That Interindividual Variations in Fecal β-Lactamase Activity Affect the Gut Mycobiota Dynamics in Response to β-Lactam Antibiotics. mBio 2022, 13, e0288022. [Google Scholar] [CrossRef] [PubMed]
- Shamsaddini, A.; Gillevet, P.M.; Acharya, C.; Fagan, A.; Gavis, E.; Sikaroodi, M.; McGeorge, S.; Khoruts, A.; Albhaisi, S.; Fuchs, M.; et al. Impact of Antibiotic Resistance Genes in Gut Microbiome of Patients with Cirrhosis. Gastroenterology 2021, 161, 508–521.e7. [Google Scholar] [CrossRef] [PubMed]
Study | Type of Study | Drug | Number of Patients | Outcomes | Conclusion |
---|---|---|---|---|---|
Effect of Prophylactic Antibiotics on Mortality in Severe Alcohol-Related Hepatitis: A Randomized Clinical Trial [68] | multicenter, randomized, double-blind clinical trial | amoxicillin-clavulanate, compared with placebo | 145 amoxicillin-clavulanate, 147 placebo | no significant difference in 60-, 90- or 180-day mortality, infection rate lower in amoxicillin-clavulanate group | amoxicillin-clavulanate combined with prednisolone did not improve survival compared with prednisolone alone |
Impact of Prophylactic Norfloxacin in Multidrug Resistant Bacterial Infections in the Early Liver Posttransplant Period [59] | prospective cohort study | norfloxacin | 157 liver recipients: 54 received norfloxacin and 103 did not | incidence of multidrug-resistant bacterial infection was higher in the norfloxacin group | higher risk of MDROs infections during the first month after liver trasplant in patients who received prophylactic norfloxacin |
Response-Guided Therapy With Cefotaxime, Ceftriaxone, or Ciprofloxacin for Spontaneous Bacterial Peritonitis: A Randomized Trial: A Validation Study of 2021 AASLD Practice Guidance for SBP [56] | multicenter, prospective, randomized–controlled trial | cefotaxime, ceftriaxone and ciprofloxacin | 261 patients | resolution rates at 120 h were similar among the groups, as was the 1-month mortality | the efficacy of empirical antibiotics was similar, based on response-guided therapy, and should be insured |
Chronic Rifaximin Use in Cirrhotic Patients Is Associated with Decreased Rate of C. difficile Infection (CDI) [58] | retrospective | rifaximin | 701 patients | rifaximin use in cirrhotic patients reduced CDI infection | patients with cirrhosis that were chronically receiving rifaximin have lower rates of CDI |
Norfloxacin Prophylaxis Effect on Multidrug Resistance in Patients with Cirrhosis and Bacterial Infections [69] | cross-sectional study | norfloxacin | 472 patients | 13 (24.5%) patients with norfloxacin and 90 (21.5%) of those not receiving it presented MDROs infections | norfloxacin prophylactic use was not associated with multidrug-resistant bacterial infections |
Evaluating the Role of Antibiotics in Patients Admitted to Hospital With Decompensated Cirrhosis: Lessons From the ATTIRE Trial [34] | clinical trial (ATTIRE patients without infection at baseline grouped by antibiotic prescription or not) | antibiotics use vs. non-antibiotics | 408 patients | long-term antibiotic prophylaxis at discharge showed no differences in 6-month mortality | prompt antibiotic de-escalation or discontinuation is recommended guided by culture sensitivities at 24–48 h after commencement if no infection is confirmed |
Meta-analysis: Antibiotic Prophylaxis for Cirrhotic Patients with Upper Gastrointestinal Bleeding—an Updated Cochrane Review [45] | meta-analysis of randomized clinical trials | antibiotic vs. no antibiotic prophylaxis | 1241 patients | antibiotic prophylaxis was associated with beneficial effects on mortality, bacterial infections, rebleeding and hospitalization length, with no adverse events | in cirrhotic patients with upper gastrointestinal bleeding, prophylactic antibiotic use significantly reduced bacterial infections, all-cause mortality, events, and hospitalization length |
Antibiotic Prophylaxis for Upper Gastrointestinal Bleed in Liver Cirrhosis; Less May Be More [70] | retrospective cohort study | antibiotic prophylaxis for upper gastrointestinal bleeding | 243 patients (77 received antibiotics for <3 days, 69 patients 4–6 days, and 97 >6 days) | rates of infection were not statistically different among the groups; 11 patients developed pneumonia, 8 developed UTI, 4 developed SBP, and 3 developed bacteremia within the 30 days following GI bleeding | if there is no active infection, a short course of prophylactic antibiotics (3 days) is preferred in patients with upper GI bleeding |
Efficacy of Norfloxacin Prophylaxis to Prevent Spontaneous Bacterial Peritonitis: A Systematic Review and Meta-Analysis [71] | meta-analysis of randomized controlled clinical trials | antibiotic prophylaxis for SBP | 1626 patients | norfloxacin capacity to prevent SBP, but not death, was superior to placebo but decreased over time, and was not superior to other antibiotics | norfloxacin remained superior to placebo in preventing SBP |
Efficacy and Safety of Alternating Norfloxacin and Rifaximin as Primary Prophylaxis for Spontaneous Bacterial Peritonitis in Cirrhotic Ascites: a Prospective Randomized Open-Label Comparative Multicenter Study [72] | randomized open-label comparative multicenter study | norfloxacin + rifaximin vs. norfloxacin or rifaximin alone | 334 patients | alternating norfloxacin and rifaximin was the superior prophylactic treatment in reducing the probability of SBP | alternating the primary prophylaxis for SBP showed higher efficacy comparedwith monotherapy of norfloxacin |
Randomized-Controlled Trial of Rifaximin ersus Norfloxacin for Secondary Prophylaxis of Spontaneous Bacterial Peritonitis [73] | randomized–controlled clinical trial | rifaximin vs. norfloxacin | 262 patients | recurrence of SBP was significantly lower in the rifaximin group as well as mortality rate | rifaximin was more effective than norfloxacin in the secondary prevention of SBP |
The Role of Rifaximin in the Primary Prophylaxis of Spontaneous Bacterial Peritonitis in Patients with Liver Cirrhosis [74] | retrospective clinical trial | rifaximin vs. non rifaximin | 404 patients | reduction in SBP rate in rifaximin-treated patients | rifaximin may prevent SBP infections |
Addition of Probiotics to Norfloxacin Does Not Improve Efficacy in the Prevention of Spontaneous Bacterial Peritonitis: a Double-Blind Placebo-Controlled Randomized-Controlled Trial [75] | double-blind placebo-controlled randomized–controlled trial | norfloxacin+ probiotics vs. norfloxacin + placebo | 110 patients | rate of SBP, treatment failures, cumulative probability of mortality and side effects were similar among the groups | probiotics addition to norfloxacin prophylactic (primary or secondary) treatment did not reduce SBP frequency or mortality |
Primary Prophylaxis of Spontaneous Bacterial Peritonitis Delays Hepatorenal Syndrome and Improves Survival in Cirrhosis [76] | randomized–controlled trial | norfloxacin | 35 norfloxacin vs. 33 placebo | norfloxacin prophylactic treatment reduced 1-year probability of SBP and hepatorenal syndrome, as well as survival at 3 and 12 months. | norfloxacin primary prophylaxis reduces SBP and HRS incidence, as well as survival. |
Effects of the Adjunctive Probiotic VSL#3 on Portal Hemodynamics in Patients with Cirrhosis and Large Varices: a Randomized Trial [51] | randomized double-blind placebo-controlled trial | probiotics VSL#3, norfloxacin | 94 patients (3 groups: propranolol+placebo, propranolol+norfloxacin, propranolol+VSL#3) | adding probiotics and antibiotics to propranolol treatment reduces the mean HVPG and TNF alpha levels | adding VSL#3 probiotics improved propranolol therapy response rate |
Norfloxacin Treatment for Clinically Significant Portal Hypertension: Results of a Randomized Double-Blind Placebo-Controlled Crossover Trial [51] | randomized double-blind placebo-controlled crossover trial | norfloxacin | 16 patients | norfloxacin therapy was not superior to placebo in reducing HVPG | norfloxacin therapy was not superior to placebo in reducing HVPG but seems to modulate l-arginine transporter function |
Rifaximin and Propranolol Combination Therapy Is More Effective than Propranolol Monotherapy for the Reduction of Portal Pressure: An Open Randomized Controlled Pilot Study [49] | randomized–controlledtrial | rifaximin | 64 patients (propranolol vs. rifaximin vs. propranolol + rifaximin) | propranolol plus rifaximin was associated with better reduction in HVPG compared to propranolol alone | rifaximin in combination with propranolol had an additive effect in reducing portal hypertension |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez-Sanchez, N.; Coronel-Castillo, C.E.; Cordova-Gallardo, J.; Qi, X. Antibiotics in Chronic Liver Disease and Their Effects on Gut Microbiota. Antibiotics 2023, 12, 1475. https://doi.org/10.3390/antibiotics12101475
Mendez-Sanchez N, Coronel-Castillo CE, Cordova-Gallardo J, Qi X. Antibiotics in Chronic Liver Disease and Their Effects on Gut Microbiota. Antibiotics. 2023; 12(10):1475. https://doi.org/10.3390/antibiotics12101475
Chicago/Turabian StyleMendez-Sanchez, Nahum, Carlos Esteban Coronel-Castillo, Jacqueline Cordova-Gallardo, and Xingshun Qi. 2023. "Antibiotics in Chronic Liver Disease and Their Effects on Gut Microbiota" Antibiotics 12, no. 10: 1475. https://doi.org/10.3390/antibiotics12101475
APA StyleMendez-Sanchez, N., Coronel-Castillo, C. E., Cordova-Gallardo, J., & Qi, X. (2023). Antibiotics in Chronic Liver Disease and Their Effects on Gut Microbiota. Antibiotics, 12(10), 1475. https://doi.org/10.3390/antibiotics12101475