Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manoukian, S.; Stewart, S.; Graves, N.; Mason, H.; Robertson, C.; Kennedy, S.; Pan, J.; Kavanagh, K.; Haahr, L.; Adil, M.; et al. Bed-days and costs associated with the inpatient burden of healthcare-associated infection in the UK. J. Hosp. Infect. 2021, 114, 43–50. [Google Scholar] [CrossRef]
- Bahrami, S.; Shafiee, F.; Hakamifard, A.; Fazeli, H.; Soltani, R. Antimicrobial susceptibility pattern of carbapenemase-producing Gram-negative nosocomial bacteria at Al Zahra hospital, Isfahan, Iran. Iran. J. Microbiol. 2021, 13, 50–57. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Mirsaeidi, M.; Mousavi, S.M.J.; Arshadi, M.; Fardsanei, F.; Deihim, B.; Davoudabadi, S.; Zamani, S.; Hajikhani, B.; Goudarzi, H.; et al. Prevalence and Mechanisms of Carbapenem Resistance in Klebsiella pneumoniae and Escherichia coli: A Systematic Review and Meta-Analysis of Cross-Sectional Studies from Iran. Microb. Drug Resist. 2020, 26, 1491–1502. [Google Scholar] [CrossRef]
- Sivalingam, P.; Poté, J.; Prabakar, K. Environmental Prevalence of Carbapenem Resistance Enterobacteriaceae (CRE) in a Tropical Ecosystem in India: Human Health Perspectives and Future Directives. Pathogens 2019, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Q.; Shen, Y.; Zhang, Y.; Yang, J.; Shu, L.; Zhou, H.; Wang, Y.; Wang, B.; Zhang, R.; et al. Rapid Increase in Prevalence of Carbapenem-Resistant Enterobacteriaceae (CRE) and Emergence of Colistin Resistance Gene mcr-1 in CRE in a Hospital in Henan, China. J. Clin. Microbiol. 2018, 56, e01932-17. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; Karlowsky, J.A.; Jonge, B.L.M.d.; Stone, G.G.; Sahm, D.F. Epidemiology of Carbapenem Resistance Determinants Identified in Meropenem-Nonsusceptible Enterobacterales Collected as Part of a Global Surveillance Program, 2012 to 2017. Antimicrob. Agents Chemother. 2021, 65, e02000-20. [Google Scholar] [CrossRef]
- Garza-González, E.; Franco-Cendejas, R.; Morfín-Otero, R.; Echaniz-Aviles, G.; Rojas-Larios, F.; Bocanegra-Ibarias, P.; Flores-Treviño, S.; Ponce-de-León, A.; Rodríguez-Noriega, E.; Alavez-Ramírez, N.; et al. The Evolution of Antimicrobial Resistance in Mexico During the Last Decade: Results from the INVIFAR Group. Microb. Drug Resist. 2020, 26, 1372–1382. [Google Scholar] [CrossRef]
- Garza-González, E.; Morfín-Otero, R.; Mendoza-Olazarán, S.; Bocanegra-Ibarias, P.; Flores-Treviño, S.; Rodríguez-Noriega, E.; Ponce-de-León, A.; Sanchez-Francia, D.; Franco-Cendejas, R.; Arroyo-Escalante, S.; et al. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. PLoS ONE 2019, 14, e0209865. [Google Scholar] [CrossRef]
- Goldenberg, S.D.; Dodgson, A.R.; Barlow, G.; Parcell, B.J.; Jones, L.; Albur, M.; Wilson, A.P.R.; Enoch, D.A.; Marek, A.; Micallef, C.; et al. Epidemiology, Outcomes and Resource Utilisation in Patients with Carbapenem Non-susceptible Gram-Negative Bacteria in the UK: A Retrospective, Observational Study (CARBAR UK). Adv. Ther. 2022, 39, 3602–3615. [Google Scholar] [CrossRef]
- Humphries, R.M. CIM City: The Game Continues for a Better Carbapenemase Test. J. Clin. Microbiol. 2019, 57, e00353-19. [Google Scholar] [CrossRef]
- M100Ed32; Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2022.
- Zhong, H.; Wu, M.-L.; Feng, W.-J.; Huang, S.-F.; Yang, P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 21, 138–147. [Google Scholar] [CrossRef]
- Bogaerts, P.; Berger, A.-S.; Evrard, S.; Huang, T.-D. Comparison of two multiplex immunochromatographic assays for the rapid detection of major carbapenemases in Enterobacterales. J. Antimicrob. Chemother. 2020, 75, 1491–1494. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, S.; Ledeboer, N.A.; Westblade, L.F.; Burnham, C.-A.D.; Faron, M.L.; Bergman, Y.; Yee, R.; Mesich, B.; Gerstbrein, D.; Wallace, M.A.; et al. Evaluation of NG-Test Carba 5 for Rapid Phenotypic Detection and Differentiation of Five Common Carbapenemase Families: Results of a Multicenter Clinical Evaluation. J. Clin. Microbiol. 2020, 58, e00344-20. [Google Scholar] [CrossRef]
- Boutal, H.; Vogel, A.; Bernabeu, S.; Devilliers, K.; Creton, E.; Cotellon, G.; Plaisance, M.; Oueslati, S.; Dortet, L.; Jousset, A.; et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Potron, A.; Fournier, D.; Emeraud, C.; Triponney, P.; Plésiat, P.; Naas, T.; Dortet, L. Evaluation of the Immunochromatographic NG-Test Carba 5 for Rapid Identification of Carbapenemase in Nonfermenters. Antimicrob. Agents Chemother. 2019, 63, e00968-19. [Google Scholar] [CrossRef] [Green Version]
- Garza-González, E.; Bocanegra-Ibarias, P.; Bobadilla-del-Valle, M.; Ponce-de-León-Garduño, L.A.; Esteban-Kenel, V.; Silva-Sánchez, J.; Garza-Ramos, U.; Barrios-Camacho, H.; López-Jácome, L.E.; Colin-Castro, C.A.; et al. Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species: Results from the infivar network. PLoS ONE 2021, 16, e0248614. [Google Scholar] [CrossRef]
- M07; Dilution AST for Aerobically Grown Bacteria. Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2018.
- Dimitriu, T. Evolution of horizontal transmission in antimicrobial resistance plasmids. Microbiology 2022, 168, 001214. [Google Scholar] [CrossRef]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 27 February 2017).
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- García-Betancur, J.C.; Appel, T.M.; Esparza, G.; Gales, A.C.; Levy-Hara, G.; Cornistein, W.; Vega, S.; Nuñez, D.; Cuellar, L.; Bavestrello, L.; et al. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev. Anti-Infect. Ther. 2021, 19, 197–213. [Google Scholar] [CrossRef]
- Shanmugakani, R.K.; Srinivasan, B.; Glesby, M.J.; Westblade, L.F.; Cárdenas, W.B.; Raj, T.; Erickson, D.; Mehta, S. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab A Chip 2020, 20, 2607–2625. [Google Scholar] [CrossRef]
- Ben-Haim, O.; Azrad, M.; Saleh, N.; Tkhawkho, L.; Peretz, A. Evaluation of the NG-Test CARBA 5 Kit for Rapid Detection of Carbapenemase Resistant Enterobacteriaceae. Lab. Med. 2021, 52, 375–380. [Google Scholar] [CrossRef]
- Ratnayake, L.; Ang, H.Z.; Ong, C.H.; Chan, D.S.G. An optimized algorithm with improved turnaround time for detection of carbapenemase-producing Enterobacterales using the NG Test CARBA 5 in a routine laboratory. J. Med. Microbiol. 2020, 69, 228–232. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; van Asten, S.a.V.; Iannaccone, M.; Zanotto, E.; Zaccaria, T.; Bernards, A.T.; Cavallo, R.; Costa, C. RESIST-5 O.O.K.N.V. and NG-Test Carba 5 assays for the rapid detection of carbapenemase-producing Enterobacterales from positive blood cultures: A comparative study. J. Hosp. Infect. 2020, 105, 162–166. [Google Scholar] [CrossRef]
- Takissian, J.; Bonnin, R.A.; Naas, T.; Dortet, L. NG-Test Carba 5 for Rapid Detection of Carbapenemase-Producing Enterobacterales from Positive Blood Cultures. Antimicrob. Agents Chemother. 2019, 63, e00011-19. [Google Scholar] [CrossRef] [Green Version]
- Baer, D.; Azrad, M.; Saleh, N.; Peretz, A. Detection of Carbapenem-Resistant Enterobacterales in Simulated Blood Culture in 15 Minutes. Life 2021, 11, 145. [Google Scholar] [CrossRef]
- Kuchibiro, T.; Komatsu, M.; Yamasaki, K.; Nakamura, T.; Nishio, H.; Nishi, I.; Kimura, K.; Niki, M.; Ono, T.; Sueyoshi, N.; et al. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J. Infect. Chemother. 2018, 24, 262–266. [Google Scholar] [CrossRef]
- Stanton, R.A.; Campbell, D.; McAllister, G.A.; Breaker, E.; Adamczyk, M.; Daniels, J.B.; Lutgring, J.D.; Karlsson, M.; Schutz, K.; Jacob, J.T.; et al. Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC’s Emerging Infections Program, United States, 2016–2018. Antimicrob. Agents Chemother. 2022, 66, e0049622. [Google Scholar] [CrossRef]
- Nishida, S.; Ihashi, Y.; Yoshino, Y.; Ono, Y. Evaluation of an immunological assay for the identification of multiple carbapenemase-producing Gram-negative bacteria. Pathology 2022, 54, 917–921. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Li, Y.; Liu, Y.; Qin, X. Comparison of the Performance of Phenotypic Methods for the Detection of Carbapenem-Resistant Enterobacteriaceae (CRE) in Clinical Practice. Front. Cell. Infect. Microbiol. 2022, 12, 165. [Google Scholar] [CrossRef]
- Ding, L.; Shi, Q.; Han, R.; Yin, D.; Wu, S.; Yang, Y.; Guo, Y.; Zhu, D.; Hu, F. Comparison of Four Carbapenemase Detection Methods for blaKPC-2 Variants. Microbiol. Spectr. 2021, 9, e0095421. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, P.; Li, X.; Wang, T.; Zhang, J.; Zhang, G.; Duan, S.; Kang, W.; Xu, Y.; Yang, Q. Carbapenemase detection by NG-Test CARBA 5—A rapid immunochromatographic assay in carbapenem-resistant Enterobacterales diagnosis. Ann. Transl. Med. 2021, 9, 769. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Meunier, D.; Naas, T.; Volland, H.; Woodford, N. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J. Antimicrob. Chemother. 2018, 73, 3523–3526. [Google Scholar] [CrossRef]
- Volland, H.; Girlich, D.; Laguide, M.; Gonzalez, C.; Paris, V.; Laroche, M.; Oueslati, S.; Dortet, L.; Simon, S.; Naas, T. Improvement of the Immunochromatographic NG-Test Carba 5 Assay for the Detection of IMP Variants Previously Undetected. Antimicrob. Agents Chemother. 2019, 64, e01940-19. [Google Scholar] [CrossRef]
- Josa, M.D.; Leal, R.; Rojas, J.; Torres, M.I.; Cortés-Muñoz, F.; Esparza, G.; Reyes, L.F. Comparative Evaluation of Phenotypic Synergy Tests versus RESIST-4 O.K.N.V. and NG Test Carba 5 Lateral Flow Immunoassays for the Detection and Differentiation of Carbapenemases in Enterobacterales and Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10, e01080-21. [Google Scholar] [CrossRef]
- Giufrè, M.; Errico, G.; Monaco, M.; Del Grosso, M.; Sabbatucci, M.; Pantosti, A.; Cerquetti, M.; Pagnotta, M.; Marra, M.; Carollo, M.; et al. Whole Genome Sequencing and Molecular Analysis of Carbapenemase-Producing Escherichia coli from Intestinal Carriage in Elderly Inpatients. Microorganisms 2022, 10, 1561. [Google Scholar] [CrossRef]
- Karlsson, M.; Lutgring, J.D.; Ansari, U.; Lawsin, A.; Albrecht, V.; McAllister, G.; Daniels, J.; Lonsway, D.; McKay, S.; Beldavs, Z.; et al. Molecular Characterization of Carbapenem-Resistant Enterobacterales Collected in the United States. Microb. Drug Resist. 2022, 28, 389–397. [Google Scholar] [CrossRef]
- Martins, A.F.; Zavascki, A.P.; Gaspareto, P.B.; Barth, A.L. Dissemination of Pseudomonas aeruginosa Producing SPM-1-like and IMP-1-like Metallo-β-lactamases in Hospitals from Southern Brazil. Infection 2007, 35, 457–460. [Google Scholar] [CrossRef]
- Torres-González, P.; Bobadilla-del Valle, M.; Tovar-Calderón, E.; Leal-Vega, F.; Hernández-Cruz, A.; Martínez-Gamboa, A.; Niembro-Ortega, M.D.; Sifuentes-Osornio, J.; Ponce-de-León, A. Outbreak Caused by Enterobacteriaceae Harboring NDM-1 Metallo-β-Lactamase Carried in an IncFII Plasmid in a Tertiary Care Hospital in Mexico City. Antimicrob. Agents Chemother. 2015, 59, 7080–7083. [Google Scholar] [CrossRef] [Green Version]
- Gomez, S.A.; Rapoport, M.; Piergrossi, N.; Faccone, D.; Pasteran, F.; De Belder, D.; Re, L.G.; Petroni, A.; Corso, A. Performance of a PCR assay for the rapid identification of the Klebsiella pneumoniae ST258 epidemic clone in Latin American clinical isolates. Infect. Genet. Evol. 2016, 44, 145–146. [Google Scholar] [CrossRef] [PubMed]
- Atrissi, J.; Milan, A.; Bressan, R.; Lucafò, M.; Petix, V.; Busetti, M.; Dolzani, L.; Lagatolla, C. Interplay of OpdP Porin and Chromosomal Carbapenemases in the Determination of Carbapenem Resistance/Susceptibility in Pseudomonas aeruginosa. Microbiol. Spectr. 2021, 9, e0118621. [Google Scholar] [CrossRef]
Microorganisms | n | Test | Sensitivity | Specificity | PPV | NPV | Kappa (CI 95%) | |
---|---|---|---|---|---|---|---|---|
Enterobacterales | 58 | mCIM | 100 | 100 | 100 | 100 | 1 (1–1) | p < 0.001 |
mCIM/eCIM | 86 | 100 | 100 | 50 | 0.603 (0.27–0.85) | p < 0.001 | ||
CARBA NP | 67 | 100 | 100 | 30 | 0.347 (0.15–0.55) | p < 0.001 | ||
CARBA NP +EDTA | 63 | 100 | 100 | 27 | 0.29 (0.1–0.48) | p < 0.001 | ||
CARBA 5 | 98 | 100 | 100 | 87 | 0.923 (0.661–1) | p < 0.001 | ||
P. aeruginosa | 26 | mCIM | 100 | 100 | 100 | 100 | 1 (1–1) | p < 0.001 |
mCIM/eCIM | 83 | 100 | 100 | 43 | 0.523 (0.001–0.9) | p = 0.002 | ||
CARBA NP | 61 | 100 | 100 | 25 | 0.264 (0.001–0.58) | p = 0.047 | ||
CARBA 5 | 82.6 | 100 | 100 | 42.9 | 0.523 (0.14–0.9) | p = 0.002 |
Microorganisms | Genomic Sequencing | mCIM/eCIM | Carba NP/EDTA * | PCR | Carba 5® | |||||
---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | N | Detected | Non Detected | Detected | Non Detected | Detected | Non Detected | Detected | Non Detected | |
KPC (10) | 8 | KPC-2 | 8 | 0 | 8 | 0 | 8 | 0 | 8 | 0 |
1 | KPC-82 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | |
1 | KPC-3 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | |
NDM (17) | 16 | NDM-1 | 12 | 4 | 16 | 0 | 16 | 0 | 16 | 0 |
1 | NDM-5 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | |
VIM (3) | 2 | VIM-2 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 1 |
1 | VIM-67 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | |
OXA-48 like (19) | 14 | OXA-232 | 14 | 0 | 3 | 11 | 14 | 0 | 14 | 0 |
3 | OXA-48 | 3 | 0 | 1 | 2 | 3 | 0 | 3 | 0 | |
2 | OXA-181 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | |
Co-producers | 2 | NDM-1 KPC-2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 |
No-carbapenemases producers | 7 | - | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 |
Total | 58 | 44 | 14 | 32 | 26 | 51 | 7 | 50 | 8 | |
P. aeruginosa | N | Detected | Non detected | Detected | Non detected | Detected | Non detected | Detected | Non detected | |
IMP (8) | 4 | IMP-75 | 2 | 2 | 4 | 0 | 4 | 0 | 1 | 3 |
3 | IMP-62 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | |
1 | IMP-15 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | |
VIM | 13 | VIM-2 | 11 | 2 | 5 | 8 | 13 | 0 | 13 | 0 |
NDM | 1 | NDM-1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
Co-producers | 1 | IMP-75 + NDM-1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
No-carbapenemases producers | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | |
Total | 26 | 19 | 7 | 14 | 12 | 23 | 3 | 19 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez-Sotelo, B.J.; López-Jácome, L.E.; Colín-Castro, C.A.; Hernández-Durán, M.; Martínez-Zavaleta, M.G.; Rivera-Buendía, F.; Velázquez-Acosta, C.; Rodríguez-Zulueta, A.P.; Morfín-Otero, M.d.R.; Franco-Cendejas, R. Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico. Antibiotics 2023, 12, 96. https://doi.org/10.3390/antibiotics12010096
Mendez-Sotelo BJ, López-Jácome LE, Colín-Castro CA, Hernández-Durán M, Martínez-Zavaleta MG, Rivera-Buendía F, Velázquez-Acosta C, Rodríguez-Zulueta AP, Morfín-Otero MdR, Franco-Cendejas R. Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico. Antibiotics. 2023; 12(1):96. https://doi.org/10.3390/antibiotics12010096
Chicago/Turabian StyleMendez-Sotelo, Braulio Josue, Luis Esaú López-Jácome, Claudia A. Colín-Castro, Melissa Hernández-Durán, Maria Guadalupe Martínez-Zavaleta, Frida Rivera-Buendía, Consuelo Velázquez-Acosta, Ana Patricia Rodríguez-Zulueta, Maria del Rayo Morfín-Otero, and Rafael Franco-Cendejas. 2023. "Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico" Antibiotics 12, no. 1: 96. https://doi.org/10.3390/antibiotics12010096
APA StyleMendez-Sotelo, B. J., López-Jácome, L. E., Colín-Castro, C. A., Hernández-Durán, M., Martínez-Zavaleta, M. G., Rivera-Buendía, F., Velázquez-Acosta, C., Rodríguez-Zulueta, A. P., Morfín-Otero, M. d. R., & Franco-Cendejas, R. (2023). Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico. Antibiotics, 12(1), 96. https://doi.org/10.3390/antibiotics12010096