Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part II
Abstract
:1. Introduction
2. Results
2.1. Fluoroquinolones
2.2. Aminoglycosides
Drugs | Gentamycin | Amikacin | Tobramycin | Clarithromycin | Azithromycin |
---|---|---|---|---|---|
Daily doses | −5 mg/kg i.v. −240 mg | −15 mg/kg i.v. −7.5 mg/kg q12h −20 mg/kg | −5 mg/kg i.v. −300 mg i.m. | −500 mg q12h | −500 mg/day × 3 days |
CSF | 0.1X | >50X A | |||
Lung | 0.4X | >60X | |||
ELF | 0.3–1.14X B | 0.09X | 0.12X–1.6X | >7X/>40X C | |
Bronchial secretion | 0.46–0.57X | ||||
Bone | 0.17–0.5X | 0.5X | 0.7X | ||
Synovial fluid | >1X | >1X | |||
Skin | >1X | ||||
References | [27,28,74] | [22,27,28,67,69,70] | [27,71] | [20] | [82,83,84,85,86] |
2.3. Macrolides and Azalides
2.4. Other Antibacterial Drugs
2.4.1. Linezolid
2.4.2. Tetracyclines and Glycilglycine
2.4.3. Clindamycin
2.4.4. Metronidazole
2.4.5. Rifampin, Isoniazid, and Chloramphenicol
2.4.6. Cotrimoxazole (Trimethoprim-Sulfamethoxazole, TMP-SMZ)
3. Discussion
4. Materials and Methods
4.1. PRISMA Selection of Literature
- Domain 1: patients and ward: critically ill patient(s) OR intensive care unit OR ICU;
- Domain 2: study type: (study OR trial) AND (clinical OR human OR case series OR case report);
- Domain 3: drug list: antimicrobial(s) AND [gentamycin OR amikacin OR tobramycin OR erythromycin OR clarithromycin OR azithromycin OR ciprofloxacin OR levofloxacin OR ofloxacin OR norfloxacin OR moxifloxacin OR doxycycline OR tigecycline OR linezolid OR clindamycin OR metronidazole OR rifampin OR isoniazid OR chloramphenicol OR clotrimoxazole (trimetoprim-sulfametoxazole)];
- Domain 4: tissue distribution: tissue AND [distribution OR penetration OR diffusion OR pharmacokinetic(s)] AND [brain OR cerebrospinal fluid OR (epithelial lining fluid OR ELF) OR lung OR bronchial secretion OR skin OR interstitial fluid OR abdomen OR (peritoneal OR peritoneum) OR urine OR kidney OR liver OR bile OR bone OR synovial OR spleen OR muscle OR (subcutaneous OR subcutis) OR fat OR adipose].
Author Contributions
Funding
Conflicts of Interest
References
- Li, G.; Cook, D.J.; Thabane, L.; Friedrich, J.O.; Crozier, T.M.; Muscedere, J.; Granton, J.; Mehta, S.; Reynolds, S.C.; Lopes, R.D.; et al. Risk factors for mortality in patients admitted to intensive care units with pneumonia. Respir. Res. 2016, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Torres, A.; Shorr, A.F.; Martin-Loeches, I.; Micek, S.T. Nosocomial Infection. Crit. Care Med. 2021, 49, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Markwart, R.; Saito, H.; Harder, T.; Tomczyk, S.; Cassini, A.; Fleischmann-Struzek, C.; Reichert, F.; Eckmanns, T.; Allegranzi, B. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: A systematic review and meta-analysis. Intensiv. Care Med. 2020, 46, 1536–1551. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Haider, M.H.; McHugh, T.D.; Roulston, K.; Arruda, L.B.; Sadouki, Z.; Riaz, S. Detection of carbapenemases blaOXA48-blaKPC-blaNDM-blaVIM and extended-spectrum-β-lactamase blaOXA1-blaSHV-blaTEM genes in Gram-negative bacterial isolates from ICU burns patients. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 18. [Google Scholar] [CrossRef]
- Zha, L.; Pan, L.; Guo, J.; French, N.; Villanueva, E.V.; Tefsen, B. Effectiveness and Safety of High Dose Tigecycline for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Adv. Ther. 2020, 37, 1049–1064. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, X. Adverse events of high-dose tigecycline in the treatment of ventilator-associated pneumonia due to multidrug-resistant pathogens. Medicine 2018, 97, e12467. [Google Scholar] [CrossRef]
- Richter, D.C.; Heininger, A.; Brenner, T.; Hochreiter, M.; Bernhard, M.; Briegel, J.; Dubler, S.; Grabein, B.; Hecker, A.; Kruger, W.A.; et al. Bacterial sepsis: Diagnostics and Calculated Antibiotic Therapy. Der Anaesthesist 2018, 68, 40–62. [Google Scholar] [CrossRef]
- Roberts, J.A.; Alobaid, A.S.; Wallis, S.C.; Perner, A.; Lipman, J.; Sjövall, F. Defining optimal dosing of ciprofloxacin in patients with septic shock. J. Antimicrob. Chemother. 2019, 74, 1662–1669. [Google Scholar] [CrossRef]
- Verhamme, K.M.C.; De Coster, W.; De Roo, L.; De Beenhouwer, H.; Nollet, G.; Verbeke, J.; Demeyer, I.; Jordens, P. Pathogens in Early-Onset and Late-Onset Intensive Care Unit–Acquired Pneumonia. Infect. Control Hosp. Epidemiology 2007, 28, 389–397. [Google Scholar] [CrossRef]
- Di Paolo, A.; Malacarne, P.; Guidotti, E.; Danesi, R.; Del Tacca, M. Pharmacological Issues of Linezolid: An Updated Critical Review. Clin. Pharmacokinet. 2010, 49, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Gous, A.; Lipman, J.; Scribante, J.; Tshukutsoane, S.; Hon, H.; Pinder, M.; Mathivha, R.; Verhoef, L.; Stass, H. Fluid shifts have no influence on ciprofloxacin pharmacokinetics in intensive care patients with intra-abdominal sepsis. Int. J. Antimicrob. Agents 2005, 26, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.-H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper#. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, D.; Corona, A.; DE Rosa, F.G.; Gervasoni, C.; Kocic, D.; Marriott, D.J. The management of anti-infective agents in intensive care units: The potential role of a ‘fast’ pharmacology. Expert Rev. Clin. Pharmacol. 2020, 13, 355–366. [Google Scholar] [CrossRef]
- Andes, D.; Craig, W. Animal model pharmacokinetics and pharmacodynamics: A critical review. Int. J. Antimicrob. Agents 2002, 19, 261–268. [Google Scholar] [CrossRef]
- Craig, W.A. Basic pharmacodynamics of antibacterials with clinical applications to the use of β-lactams, glycopeptides, and linezolid. Infect. Dis. Clin. North Am. 2003, 17, 479–501. [Google Scholar] [CrossRef]
- Leone, M.; Sampol-Manos, E.; Santelli, D.; Grabowski, S.; Alliez, B.; Durand, A.; Lacarelle, B.; Martin, C. Brain tissue penetration of ciprofloxacin following a single intravenous dose. J. Antimicrob. Chemother. 2002, 50, 607–609. [Google Scholar] [CrossRef]
- Breilh, D.; Saux, M.-C.; Maire, P.; Vergnaud, J.-M.; Jelliffe, R.W. Mixed pharmacokinetic population study and diffusion model to describe ciprofloxacin lung concentrations. Comput. Biol. Med. 2001, 31, 147–155. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Ennis, K.; Vercaigne, L.; Walkty, A.; Gin, A.S.; Embil, J.; Smith, H.; Hoban, D.J. A Critical Review of the Fluoroquinolones: Focus on Respiratory Infections. Drugs 2002, 62, 13–59. [Google Scholar] [CrossRef]
- Landersdorfer, C.B.; Bulitta, J.B.; Kinzig, M.; Holzgrabe, U.; Sörgel, F. Penetration of Antibacterials into Bone: Pharmaco-kinetic, Pharmacodynamic and Bioanalytical Considerations. Clin. Pharmacokinet. 2009, 48, 89–124. [Google Scholar] [CrossRef]
- Thwaites, G.E.; Bhavnani, S.M.; Chau, T.T.H.; Hammel, J.P.; Török, M.E.; Van Wart, S.A.; Mai, P.P.; Reynolds, D.K.; Caws, M.; Dung, N.T.; et al. Randomized Pharmacokinetic and Pharmacodynamic Comparison of Fluoroquinolones for Tuberculous Meningitis. Antimicrob. Agents Chemother. 2011, 55, 3244–3253. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, A.; Gori, G.; Tascini, C.; Danesi, R.; Del Tacca, M. Clinical Pharmacokinetics of Antibacterials in Cerebrospinal Fluid. Clin. Pharmacokinet. 2013, 52, 511–542. [Google Scholar] [CrossRef] [PubMed]
- Kontou, P.; Chatzika, K.; Pitsiou, G.; Stanopoulos, I.; Argyropoulou-Pataka, P.; Kioumis, I. Pharmacokinetics of Ciprofloxacin and Its Penetration into Bronchial Secretions of Mechanically Ventilated Patients with Chronic Obstructive Pulmonary Disease. Antimicrob. Agents Chemother. 2011, 55, 4149–4153. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Rimmelé, T.; Djabarouti, S.; Saux, M.-C.; Chassard, D.; Allaouchiche, B. Pharmacokinetics and intrapulmonary diffusion of levofloxacin in critically ill patients with severe community-acquired pneumonia. Crit. Care Med. 2005, 33, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Hutschala, D.; Kinstner, C.; Skhirtladze, K.; Mayer-Helm, B.-X.; Zeitlinger, M.; Wisser, W.; Müller, M.; Tschernko, E. The impact of perioperative atelectasis on antibiotic penetration into lung tissue: An in vivo microdialysis study. Intensiv. Care Med. 2008, 34, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Alonso, S.; Linares-Palomino, J.P.; Vera-Arroyo, B.; Bravo-Molina, A.; Hernández-Quero, J.; Ros-Díe, E. Evaluación de la capacidad de difusión tisular de antibióticos en isquemia de miembros inferiores. Enferm. Infecc. Microbiol. Clin. 2016, 34, 477–483. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Sime, F.B.; Lipman, J.; Dhanani, J.; Andrews, K.; Ellwood, D.; Grimwood, K.; Roberts, J.A. Intrapulmonary pharmacokinetics of antibiotics used to treat nosocomial pneumonia caused by Gram-negative bacilli: A systematic review. Int. J. Antimicrob. Agents 2019, 53, 234–245. [Google Scholar] [CrossRef]
- Torkington, M.S.; Davison, M.J.; Wheelwright, E.F.; Jenkins, P.J.; Anthony, I.; Lovering, A.M.; Blyth, M.; Jones, B. Bone penetration of intravenous flucloxacillin and gentamicin as antibiotic prophylaxis during total hip and knee arthroplasty. Bone Jt. J. 2017, 99, 358–364. [Google Scholar] [CrossRef]
- Sionidou, M.; Manika, K.; Pitsiou, G.; Kontou, P.; Chatzika, K.; Zarogoulidis, P.; Kioumis, I. Moxifloxacin in Chronic Obstructive Pulmonary Disease: Pharmacokinetics and Penetration into Bronchial Secretions in Ward and Intensive Care Unit Patients. Antimicrob. Agents Chemother. 2019, 63, e01974-18. [Google Scholar] [CrossRef]
- Leone, M.; Albanèse, J.; Sampol-Manos, E.; Simon, N.; Lacarelle, B.; Bruguerolle, B.; Martin, C. Moxifloxacin Penetration in Bronchial Secretions of Mechanically Ventilated Patients with Pneumonia. Antimicrob. Agents Chemother. 2004, 48, 638–640. [Google Scholar] [CrossRef] [Green Version]
- Pioget, J.C.; Wolff, M.; Singlas, E.; Laisne, M.J.; Clair, B.; Regnier, B.; Vachon, F. Diffusion of ofloxacin into cerebrospinal fluid of patients with purulent meningitis or ventriculitis. Antimicrob. Agents Chemother. 1989, 33, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Prange, H.W.; Martell, J.; Sharifi, S.; Kolenda, H.; Bircher, J. Penetration of ciprofloxacin into the cerebrospinal fluid of patients with uninflamed meninges. J. Antimicrob. Chemother. 1990, 25, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.; Boutron, L.; Singlas, E.; Clair, B.; Decazes, J.M.; Regnier, B. Penetration of ciprofloxacin into cerebrospinal fluid of patients with bacterial meningitis. Antimicrob. Agents Chemother. 1987, 31, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Gogos, C.A.; Maraziotis, T.G.; Papadakis, N.; Beermann, D.; Siamplis, D.K.; Bassaris, H.P. Penetration of ciprofloxacin into human cerebrospinal fluid in patients with inflamed and non-inflamed meninges. Eur. J. Clin. Microbiol. 1991, 10, 511–514. [Google Scholar] [CrossRef]
- Lipman, J.; Allworth, A.; Wallis, S. Cerebrospinal Fluid Penetration of High Doses of Intravenous Ciprofloxacin in Meningitis. Clin. Infect. Dis. 2000, 31, 1131–1133. [Google Scholar] [CrossRef] [PubMed]
- Bitar, N.; Claes, R.; Van der Auwera, P. Concentrations of ofloxacin in serum and cerebrospinal fluid of patients without meningitis receiving the drug intravenously and orally. Antimicrob. Agents Chemother. 1989, 33, 1686–1690. [Google Scholar] [CrossRef]
- Nau, R.; Kinzig, M.; Dreyhaupt, T.; Kolenda, H.; Sörgel, F.; Prange, H.W. Kinetics of ofloxacin and its metabolites in cerebrospinal fluid after a single intravenous infusion of 400 milligrams of ofloxacin. Antimicrob. Agents Chemother. 1994, 38, 1849–1853. [Google Scholar] [CrossRef]
- Pea, F.; Pavan, F.; Nascimben, E.; Benetton, C.; Scotton, P.G.; Vaglia, A.; Furlanut, M. Levofloxacin Disposition in Cerebrospinal Fluid in Patients with External Ventriculostomy. Antimicrob. Agents Chemother. 2003, 47, 3104–3108. [Google Scholar] [CrossRef]
- Kanellakopoulou, K.; Pagoulatou, A.; Stroumpoulis, K.; Vafiadou, M.; Kranidioti, H.; Giamarellou, H.; Giamarellos-Bourboulis, E.J. Pharmacokinetics of moxifloxacin in non-inflamed cerebrospinal fluid of humans: Implication for a bactericidal effect. J. Antimicrob. Chemother. 2008, 61, 1328–1331. [Google Scholar] [CrossRef]
- Alffenaar, J.W.C.; Van Altena, R.; Bökkerink, H.J.; Luijckx, G.J.; Van Soolingen, D.; Aarnoutse, R.E.; van der Werf, T. Pharmacokinetics of Moxifloxacin in Cerebrospinal Fluid and Plasma in Patients with Tuberculous Meningitis. Clin. Infect. Dis. 2009, 49, 1080–1082. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Uria, G.; Midde, M.; Pakam, R.; Naik, P.K. Initial Antituberculous Regimen with Better Drug Penetration into Cerebrospinal Fluid Reduces Mortality in HIV Infected Patients with Tuberculous Meningitis: Data from an HIV Observational Cohort Study. Tuberc. Res. Treat. 2013, 2013, 242604. [Google Scholar] [CrossRef]
- Dan, M.; Torossian, K.; Weissberg, D.; Kitzes, R. The penetration of ciprofloxacin into bronchial mucosa, lung parenchyma, and pleural tissue after intravenous administration. Eur. J. Clin. Pharmacol. 1993, 44, 101–102. [Google Scholar] [CrossRef]
- Schüler, P.; Zemper, K.; Borner, K.; Koeppe, P.; Schaberg, T.; Lode, H. Penetration of sparfloxacin and ciprofloxacin into alveolar macrophages, epithelial lining fluid, and polymorphonuclear leucocytes. Eur. Respir. J. 1997, 10, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M.; Honeybourne, D.; Jevons, G.; Brenwald, N.P.; Cunningham, B.; Wise, R. Concentrations of levofloxacin (HR 355) in the respiratory tract following a single oral dose in patients undergoing fibre-optic bronchoscopy. J. Antimicrob. Chemother. 1997, 40, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Gotfried, M.H.; Danziger, L.H.; Rodvold, K.A. Steady-State Plasma and Intrapulmonary Concentrations of Levofloxacin and Ciprofloxacin in Healthy Adult Subjects. Chest 2001, 119, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.; Labro, M.-T.; Cars, O.; Mendes, P.; Shah, P.; Sörgel, F.; Weber, W. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin. Microbiol. Infect. 1998, 4, 2S27–2S41. [Google Scholar] [CrossRef]
- Kuti, J.L.; Nicolau, D.P. Presence of infection influences the epithelial lining fluid penetration of oral levofloxacin in adult patients. Int. J. Antimicrob. Agents 2015, 45, 512–518. [Google Scholar] [CrossRef]
- Soman, A.; Honeybourne, D.; Andrews, J.; Jevons, G.; Wise, R. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibre-optic bronchoscopy. J. Antimicrob. Chemother. 1999, 44, 835–838. [Google Scholar] [CrossRef]
- Ballow, C.; Lettieri, J.; Agarwal, V.; Liu, P.; Stass, H.; Sullivan, J.T. Absolute bioavailability of moxifloxacin. Clin. Ther. 1999, 21, 513–522. [Google Scholar] [CrossRef]
- Davey, P.G.; Precious, E.; Winter, J. Bronchial penetration of ofloxacin after single and multiple oral dosage. J. Antimicrob. Chemother. 1991, 27, 335–341. [Google Scholar] [CrossRef]
- Perea, E.J. Ofloxacin concentrations in tissues involved in respiratory tract infections. J. Antimicrob. Chemother. 1990, 26, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Mertes, P.M.; Voiriot, P.; Dopff, C.; Scholl, H.; Clavey, M.; Villemot, J.P.; Canton, P.; Dureux, J.B. Penetration of ciprofloxacin into heart valves, myocardium, mediastinal fat, and sternal bone marrow in humans. Antimicrob. Agents Chemother. 1990, 34, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Rimmelé, T.; Boselli, E.; Breilh, D.; Djabarouti, S.; Bel, J.C.; Guyot, R.; Saux, M.C.; Allaouchiche, B. Diffusion of levofloxacin into bone and synovial tissues. J. Antimicrob. Chemother. 2004, 53, 533–535. [Google Scholar] [CrossRef]
- Mertes, P.M.; Jehl, F.; Burtin, P.; Dopff, C.; Pinelli, G.; Villemot, J.P.; Monteil, H.; Dureux, J.B. Penetration of ofloxacin into heart valves, myocardium, mediastinal fat, and sternal bone marrow in humans. Antimicrob. Agents Chemother. 1992, 36, 2493–2496. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Staβ, H.; Möller, J.-G.; Schrolnberger, C.; Erovic, B.; Hollenstein, U.; Zeitlinger, M.; Eichler, H.G.; Müller, M. Target Site Concentrations of Ciprofloxacin after Single Intravenous and Oral Doses. Antimicrob. Agents Chemother. 2002, 46, 3724–3730. [Google Scholar] [CrossRef]
- Bielecka-Grzela, S.; Klimowicz, A. Penetration of ciprofloxacin and its desethylenemetabolite into skin in humans after a single oral dose of the parent drug assessed by cutaneous microdialysis. J. Clin. Pharm. Ther. 2005, 30, 383–390. [Google Scholar] [CrossRef]
- Baum, H.; Böttcher, S.; Abel, R.; Gerner, H.; Sonntag, H.-G. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int. J. Antimicrob. Agents 2001, 18, 335–340. [Google Scholar] [CrossRef]
- Chow, A.T.; Chen, A.; Lattime, H.; Morgan, N.; Wong, F.; Fowler, C.; Williams, R.R. Penetration of levofloxacin into skin tissue after oral administration of multiple 750 mg once-daily doses. J. Clin. Pharm. Ther. 2002, 27, 143–150. [Google Scholar] [CrossRef]
- Oberdorfer, K.; Swoboda, S.; Hamann, A.; Baertsch, U.; Kusterer, K.; Born, B.; Hoppe-Tichy, T.; Geiss, H.K.; von Baum, H. Tissue and serum levofloxacin concentrations in diabetic foot infection patients. J. Antimicrob. Chemother. 2004, 54, 836–839. [Google Scholar] [CrossRef]
- Müller, M.; Staß, H.; Brunner, M.; Möller, J.G.; Lackner, E.; Eichler, H.G. Penetration of Moxifloxacin into Peripheral Compartments in Humans. Antimicrob. Agents Chemother. 1999, 43, 2345–2349. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.; Andrews, J.M.; Marshall, G.; Hartman, G. Pharmacokinetics and Inflammatory-Fluid Penetration of Moxifloxacin following Oral or Intravenous Administration. Antimicrob. Agents Chemother. 1999, 43, 1508–1510. [Google Scholar] [CrossRef] [PubMed]
- Kalager, T.; Digranes, A.; Bergan, T.; Rolstad, T. Ofloxacin: Serum and skin blister fluid pharmacokinetics in the fasting and non-fasting state. J. Antimicrob. Chemother. 1986, 17, 795–800. [Google Scholar] [CrossRef]
- Joukhadar, C.; Dehghanyar, P.; Traunmüller, F.; Sauermann, R.; Mayer-Helm, B.; Georgopoulos, A.; Müller, M. Increase of Microcirculatory Blood Flow Enhances Penetration of Ciprofloxacin into Soft Tissue. Antimicrob. Agents Chemother. 2005, 49, 4149–4153. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.S.; Gandarillas, C.-I.C.; Lerma, F.A.; Menacho, Y.A.; Domínguez-Gil, A. Pharmacokinetics and Pharmacodynamics of Levofloxacin in Intensive Care Patients. Clin. Pharmacokinet. 2005, 44, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Khachman, D.; Conil, J.-M.; Georges, B.; Saivin, S.; Houin, G.; Toutain, P.-L.; Laffont, C.M. Optimizing ciprofloxacin dosing in intensive care unit patients through the use of population pharmacokinetic-pharmacodynamic analysis and Monte Carlo simulations. J. Antimicrob. Chemother. 2011, 66, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Bland, C.M.; Pai, M.P.; Lodise, T.P. Reappraisal of Contemporary Pharmacokinetic and Pharmacodynamic Principles for Informing Aminoglycoside Dosing. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 1229–1238. [Google Scholar] [CrossRef]
- Allegaert, K.; Scheers, I.; Adams, E.; Brajanoski, G.; Cossey, V.; Anderson, B.J. Cerebrospinal Fluid Compartmental Pharmacokinetics of Amikacin in Neonates. Antimicrob. Agents Chemother. 2008, 52, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, J.L.; Silly, C.; Le Masne, A.; Mahut, B.; Lacaille, F.; Cheron, G.; Abadie, V.; Hubert, P.; Matha, V.; Coustere, C. Cerebrospinal fluid penetration of amikacin in children with community-acquired bacterial meningitis. Antimicrob. Agents Chemother. 1995, 39, 253–255. [Google Scholar] [CrossRef]
- Santré, C.; Georges, H.; Jacquier, J.M.; Leroy, O.; Beuscart, C.; Buguin, D.; Beaucaire, G. Amikacin levels in bronchial secretions of 10 pneumonia patients with respiratory support treated once daily versus twice daily. Antimicrob. Agents Chemother. 1995, 39, 264–267. [Google Scholar] [CrossRef]
- Najmeddin, F.; Shahrami, B.; Azadbakht, S.; Dianatkhah, M.; Rouini, M.R.; Najafi, A.; Ahmadi, A.; Sharifnia, H.; Mojtahedzadeh, M. Evaluation of Epithelial Lining Fluid Concentration of Amikacin in Critically Ill Patients With Ventilator-Associated Pneumonia. J. Intensiv. Care Med. 2018, 35, 400–404. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Djabarouti, S.; Guillaume, C.; Rimmelé, T.; Gordien, J.-B.; Xuereb, F.; Saux, M.-C.; Allaouchiche, B. Reliability of mini-bronchoalveolar lavage for the measurement of epithelial lining fluid concentrations of tobramycin in critically ill patients. Intensiv. Care Med. 2007, 33, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Carcas, A.J.; García-Satué, J.L.; Zapater, P.; Frías-Iniesta, J. Tobramycin penetration into epithelial lining fluid of patients with pneumonia. Clin. Pharmacol. Ther. 1999, 65, 245–250. [Google Scholar] [CrossRef]
- Mazzei, T.; Novelli, A.; De Lalla, F.; Mini, E.; Periti, P. Tissue Penetration and Pulmonary Disposition of Tobramycin. J. Chemother. 1995, 7, 363–370. [Google Scholar] [CrossRef]
- Panidis, D.; Markantonis, S.L.; Boutzouka, E.; Karatzas, S.; Baltopoulos, G. Penetration of Gentamicin Into the Alveolar Lining Fluid of Critically Ill Patients With Ventilator-Associated Pneumonia. Chest 2005, 128, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Triginer, C.; Izquierdo, I.; Fernandez, R.; Rello, J.; Torrent, J.; Benito, S.; Net, A.; Benito, S. Gentamicin volume of distribution in critically ill septic patients. Intensiv. Care Med. 1990, 16, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Smits, A.; Wang, Y.; Renard, M.; Wead, S.; Kagan, R.J.; Healy, D.P.; De Cock, P.; Allegaert, K.; Sherwin, C.M. Impact of Disease on Amikacin Pharmacokinetics and Dosing in Children. Ther. Drug Monit. 2019, 41, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Vella, D.; Walker, S.A.; Walker, S.E.; Daneman, N.; Simor, A. Determination of Tobramycin Pharmacokinetics in Burn Patients to Evaluate the Potential Utility of Once-Daily Dosing in this Population. J. Burn Care Res. 2014, 35, e240–e249. [Google Scholar] [CrossRef]
- Dorman, T.; Swoboda, S.; Zarfeshenfard, F.; Trentler, B.; Lipsett, P.A. Impact of Altered Aminoglycoside Volume of Distribution on the Adequacy of a Three Milligram per Kilogram Loading Dose. Critical Care Research Group. Surgery 1998, 124, 73–78. [Google Scholar] [CrossRef]
- Mahmoudi, L.; Mohammadpour, A.H.; Ahmadi, A.; Niknam, R.; Mojtahedzadeh, M. Influence of sepsis on higher daily dose of amikacin pharmacokinetics in critically ill patients. Eur. Rev. Med Pharmacol. Sci. 2013, 17, 285–291. [Google Scholar]
- Hodiamont, C.J.; Juffermans, N.P.; Bouman, C.S.; de Jong, M.D.; Mathôt, R.A.; van Hest, R. Determinants of gentamicin concentrations in critically ill patients: A population pharmacokinetic analysis. Int. J. Antimicrob. Agents 2016, 49, 204–211. [Google Scholar] [CrossRef]
- Grucz, T.M.; Kruer, R.M.; Bernice, F.; Lipsett, P.A.; Dorman, T.; Sugrue, D.; Jarrell, A.S. Aminoglycoside Dosing and Volume of Distribution in Critically Ill Surgery Patients. Surg. Infect. 2020, 21, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Jaruratanasirikul, S.; Hortiwakul, R.; Tantisarasart, T.; Phuenpathom, N.; Tussanasunthornwong, S. Distribution of azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob. Agents Chemother. 1996, 40, 825–826. [Google Scholar] [CrossRef] [PubMed]
- Blandizzi, C.; Malizia, T.; Batoni, G.; Ghelardi, E.; Baschiera, F.; Bruschini, P.; Senesi, S.; Campa, M.; Del Tacca, M. Distribution of Azithromycin in Plasma and Tonsil Tissue after Repeated Oral Administration of 10 or 20 Milligrams per Kilogram in Pediatric Patients. Antimicrob. Agents Chemother. 2002, 46, 1594–1596. [Google Scholar] [CrossRef]
- DI Paolo, A.; Barbara, C.; Chella, A.; Angeletti, C.A.; DEL Tacca, M. Pharmacokinetics of azithromycin in lung tissue, bronchial washing, and plasma in patients given multiple oral doses of 500 and 1000 mg daily. Pharmacol. Res. 2002, 46, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Danesi, R.; Lupetti, A.; Barbara, C.; Ghelardi, E.; Chella, A.; Malizia, T.; Senesi, S.; Angeletti, C.A.; Del Tacca, M.; Campa, M. Comparative distribution of azithromycin in lung tissue of patients given oral daily doses of 500 and 1000 mg. J. Antimicrob. Chemother. 2003, 51, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Matzneller, P.; Krasniqi, S.; Kinzig, M.; Sörgel, F.; Hüttner, S.; Lackner, E.; Müller, M.; Zeitlinger, M. Blood, Tissue, and Intracellular Concentrations of Azithromycin during and after End of Therapy. Antimicrob. Agents Chemother. 2013, 57, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, M.; Damle, B.; Fang, A.; De Caprariis, P.J.; Mussi, A.; Sanchez, S.P.; Pasqualetti, G.; Del Tacca, M. Pharmacokinetics of azithromycin in serum, bronchial washings, alveolar macrophages and lung tissue following a single oral dose of extended or immediate release formulations of azithromycin. J. Antimicrob. Chemother. 2008, 61, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.E.; Cimochowski, C.R.; Faiella, J.A. Correlation of increased azithromycin concentrations with phagocyte infiltration into sites of localized infection. J. Antimicrob. Chemother. 1996, 37, 9–19. [Google Scholar] [CrossRef]
- Conte, J.E.; Golden, J.; Duncan, S.; McKenna, E.; Lin, E.; Zurlinden, E. Single-dose intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime in volunteer subjects. Antimicrob. Agents Chemother. 1996, 40, 1617–1622. [Google Scholar] [CrossRef]
- Patel, K.B.; Xuan, D.; Tessier, P.R.; Russomanno, J.H.; Quintiliani, R.; Nightingale, C.H. Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. Antimicrob. Agents Chemother. 1996, 40, 2375–2379. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Danziger, L.H.; Servi, R.J. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. Antimicrob. Agents Chemother. 1997, 41, 1399–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honeybourne, D.; Kees, F.; Andrews, J.; Baldwin, D.; Wise, R. The levels of clarithromycin and its 14-hydroxy metabolite in the lung. Eur. Respir. J. 1994, 7, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Conte, J.E.; Golden, J.A.; Duncan, S.; McKenna, E.; Zurlinden, E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob. Agents Chemother. 1995, 39, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, E.; Yamazaki, K.; Kikuchi, J.; Hasegawa, N.; Hashimoto, S.; Ishizaka, A.; Nishimura, M. Pharmacokinetics of clarithromycin in bronchial epithelial lining fluid. Respirology 2007, 13, 221–226. [Google Scholar] [CrossRef]
- Hasegawa, N.; Nishimura, T.; Watabnabe, M.; Tasaka, S.; Nakano, Y.; Yamazaki, K.; Hashimoto, S.; Nishimura, M.; Ishizaka, A. Concentrations of clarithromycin and active metabolite in the epithelial lining fluid of patients with Mycobacterium avium complex pulmonary disease. Pulm. Pharmacol. Ther. 2009, 22, 190–193. [Google Scholar] [CrossRef]
- Zheng, S.; Matzneller, P.; Zeitlinger, M.; Schmidt, S. Development of a Population Pharmacokinetic Model Characterizing the Tissue Distribution of Azithromycin in Healthy Subjects. Antimicrob. Agents Chemother. 2014, 58, 6675–6684. [Google Scholar] [CrossRef]
- Foulds, G.; Shepard, R.M.; Johnson, R.B. The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother. 1990, 25, 73–82. [Google Scholar] [CrossRef]
- MacGowan, A.P. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J. Antimicrob. Chemother. 2003, 51, 17ii–25ii. [Google Scholar] [CrossRef]
- Dong, H.; Wang, X.; Dong, Y.; Lei, J.; Li, H.; You, H.; Wang, M.; Xing, J.; Sun, J.; Zhu, H. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill Intensive Care Unit patients. Int. J. Antimicrob. Agents 2011, 38, 296–300. [Google Scholar] [CrossRef]
- Villani, P.; Regazzi, M.B.; Marubbi, F.; Viale, P.; Pagani, L.; Cristini, F.; Cadeo, B.; Carosi, G.; Bergomi, R. Cerebrospinal Fluid Linezolid Concentrations in Postneurosurgical Central Nervous System Infections. Antimicrob. Agents Chemother. 2002, 46, 936–937. [Google Scholar] [CrossRef]
- Myrianthefs, P.; Markantonis, S.L.; Vlachos, K.; Anagnostaki, M.; Boutzouka, E.; Panidis, D.; Baltopoulos, G. Serum and Cerebrospinal Fluid Concentrations of Linezolid in Neurosurgical Patients. Antimicrob. Agents Chemother. 2006, 50, 3971–3976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, R.; Engelhardt, K.W.; Pfausler, B.; Broessner, G.; Helbok, R.; Lackner, P.; Brenneis, C.; Kaehler, S.T.; Georgopoulos, A.; Schmutzhard, E. Pharmacokinetics of Intravenous Linezolid in Cerebrospinal Fluid and Plasma in Neurointensive Care Patients with Staphylococcal Ventriculitis Associated with External Ventricular Drains. Antimicrob. Agents Chemother. 2007, 51, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Viaggi, B.; Di Paolo, A.; Danesi, R.; Polillo, M.; Ciofi, L.; Del Tacca, M.; Malacarne, P. Linezolid in the central nervous system: Comparison between cerebrospinal fluid and plasma pharmacokinetics. Scand. J. Infect. Dis. 2011, 43, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Rayner, C.R.; Forrest, A.; Meagher, A.K.; Birmingham, M.C.; Schentag, J.J. Clinical Pharmacodynamics of Linezolid in Seriously Ill Patients Treated in a Compassionate Use Programme. Clin. Pharmacokinet. 2003, 42, 1411–1423. [Google Scholar] [CrossRef]
- Luque, S.; Grau, S.; Alvarez-Lerma, F.; Ferrández, O.; Campillo, N.; Horcajada, J.P.; Basas, M.; Lipman, J.; Roberts, J. Plasma and cerebrospinal fluid concentrations of linezolid in neurosurgical critically ill patients with proven or suspected central nervous system infections. Int. J. Antimicrob. Agents 2014, 44, 409–415. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Rimmelé, T.; Djabarouti, S.; Toutain, J.; Chassard, D.; Saux, M.-C.; Allaouchiche, B. Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia*. Crit. Care Med. 2005, 33, 1529–1533. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Caillault-Sergent, A.; Djabarouti, S.; Guillaume, C.; Xuereb, F.; Bouvet, L.; Rimmelé, T.; Saux, M.-C.; Allaouchiche, B. Alveolar diffusion and pharmacokinetics of linezolid administered in continuous infusion to critically ill patients with ventilator-associated pneumonia. J. Antimicrob. Chemother. 2012, 67, 1207–1210. [Google Scholar] [CrossRef]
- De Pascale, G.; Fortuna, S.; Tumbarello, M.; Cutuli, S.L.; Vallecoccia, M.; Spanu, T.; Bello, G.; Montini, L.; Pennisi, M.A.; Navarra, P.; et al. Linezolid plasma and intrapulmonary concentrations in critically ill obese patients with ventilator-associated pneumonia: Intermittent vs continuous administration. Intensiv. Care Med. 2014, 41, 103–110. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Dong, W.; Lan, T.; Fan, J.; Wen, S.; Zhang, T.; Qin, S.; Guo, A. Penetration of linezolid into bone tissue 24 h after administration in patients with multidrug-resistant spinal tuberculosis. PLoS ONE 2019, 14, e0223391. [Google Scholar] [CrossRef]
- Stein, G.E.; Throckmorton, J.K.; Scharmen, A.E.; Weiss, W.J.; Prokai, L.; Smith, C.L.; Havlichek, D.H. Tissue penetration and antimicrobial activity of standard- and high-dose trimethoprim/sulfamethoxazole and linezolid in patients with diabetic foot infection. J. Antimicrob. Chemother. 2013, 68, 2852–2858. [Google Scholar] [CrossRef]
- Thompson, S.; Townsend, R. Pharmacological agents for soft tissue and bone infected with MRSA: Which agent and for how long? Injury 2011, 42 (Suppl. S5), S7–S10. [Google Scholar] [CrossRef]
- Buerger, C.; Plock, N.; Dehghanyar, P.; Joukhadar, C.; Kloft, C. Pharmacokinetics of Unbound Linezolid in Plasma and Tissue Interstitium of Critically Ill Patients after Multiple Dosing Using Microdialysis. Antimicrob. Agents Chemother. 2006, 50, 2455–2463. [Google Scholar] [CrossRef]
- Thallinger, C.; Buerger, C.; Plock, N.; Kljucar, S.; Wuenscher, S.; Sauermann, R.; Kloft, C.; Joukhadar, C. Effect of severity of sepsis on tissue concentrations of linezolid. J. Antimicrob. Chemother. 2007, 61, 173–176. [Google Scholar] [CrossRef]
- Andersson, H.; Alestig, K. The penetration of doxycycline into CSF. Scand. J. Infect. Dis. Suppl. 1976, 9, 17–19. [Google Scholar]
- Agwuh, K.N. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Cwik, M.; Korth-Bradley, J.M.; Dukart, G.; Ellis-Grosse, E.J. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J. Antimicrob. Chemother. 2006, 58, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Allegra, S.; Di Paolo, A.; Cusato, J.; Fatiguso, G.; Arrigoni, E.; Danesi, R.; Corcione, S.; D’Avolio, A. A Common mdr1 Gene Polymorphism is Associated With Changes in Linezolid Clearance. Ther. Drug Monit. 2018, 40, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Töpper, C.; Steinbach, C.L.; Dorn, C.; Kratzer, A.; Wicha, S.G.; Schleibinger, M.; Liebchen, U.; Kees, F.; Salzberger, B.; Kees, M.G. Variable Linezolid Exposure in Intensive Care Unit Patients—Possible Role of Drug–Drug Interactions. Ther. Drug Monit. 2016, 38, 573–578. [Google Scholar] [CrossRef]
- Leng, B.; Yan, G.; Wang, C.; Shen, C.; Zhang, W.; Wang, W. Dose optimisation based on pharmacokinetic/pharmacodynamic target of tigecycline. J. Glob. Antimicrob. Resist. 2021, 25, 315–322. [Google Scholar] [CrossRef]
- Gotfried, M.H.; Horn, K.; Garrity-Ryan, L.; Villano, S.; Tzanis, E.; Chitra, S.; Manley, A.; Tanaka, S.K.; Rodvold, K.A. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61, e01135-17. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. Summary of the international clinical guidelines for the management of hospital-acquired and ventilator-acquired pneumonia. ERJ Open Res. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Montini, L.; Pennisi, M.A.; Bernini, V.; Maviglia, R.; Bello, G.; Spanu, T.; Tumbarello, M.; Antonelli, M. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit. Care 2014, 18, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moor, A.B.-D.; Rypulak, E.; Potręć, B.; Piwowarczyk, P.; Borys, M.; Sysiak, J.; Onichimowski, D.; Raszewski, G.; Czuczwar, M.; Wiczling, P. Population Pharmacokinetics of High-Dose Tigecycline in Patients with Sepsis or Septic Shock. Antimicrob. Agents Chemother. 2018, 62, e02273-17. [Google Scholar] [CrossRef] [PubMed]
- Estes, K.S.; Derendorf, H. Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin, and daptomycin. Eur. J. Med Res. 2010, 15, 533–543. [Google Scholar] [CrossRef]
- Van Wart, S.A.; Owen, J.S.; Ludwig, E.A.; Meagher, A.K.; Korth-Bradley, J.M.; Cirincione, B.B. Population Pharmacokinetics of Tigecycline in Patients with Complicated Intra-Abdominal or Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2006, 50, 3701–3707. [Google Scholar] [CrossRef] [PubMed]
- Bulik, C.C.; Wiskirchen, D.E.; Shepard, A.; Sutherland, C.A.; Kuti, J.L.; Nicolau, D.P. Tissue Penetration and Pharmacokinetics of Tigecycline in Diabetic Patients with Chronic Wound Infections Described by Using In Vivo Microdialysis. Antimicrob. Agents Chemother. 2010, 54, 5209–5213. [Google Scholar] [CrossRef]
- Álvarez, L.A.; Van de Sijpe, G.; Desmet, S.; Metsemakers, W.-J.; Spriet, I.; Allegaert, K.; Rozenski, J. Ways to Improve Insights into Clindamycin Pharmacology and Pharmacokinetics Tailored to Practice. Antibiotics 2022, 11, 701. [Google Scholar] [CrossRef]
- Gatti, G.; Malena, M.; Casazza, R.; Borin, M.; Bassetti, M.; Cruciani, M. Penetration of Clindamycin and Its Metabolite N -Demethylclindamycin into Cerebrospinal Fluid following Intravenous Infusion of Clindamycin Phosphate in Patients with AIDS. Antimicrob. Agents Chemother. 1998, 42, 3014–3017. [Google Scholar] [CrossRef]
- Mueller, S.C.; Henkel, K.-O.; Neumann, J.; Hehl, E.M.; Gundlach, K.K.; Drewelow, B. Perioperative antibiotic prophylaxis in maxillofacial surgery: Penetration of clindamycin into various tissues. J. Cranio-Maxillofacial Surg. 1999, 27, 172–176. [Google Scholar] [CrossRef]
- Berger, S.A.; Barza, M.; Haher, J.; McFarland, J.J.; Louie, S.; Kane, A. Penetration of Clindamycin into Decubitus Ulcers. Antimicrob. Agents Chemother. 1978, 14, 498–499. [Google Scholar] [CrossRef]
- Nagar, H.; Berger, S.A.; Hammar, B.; Gorea, A. Penetration of clindamycin and metronidazole into the appendix and peritoneal fluid in children. Eur. J. Clin. Pharmacol. 1989, 37, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Sprandel, K.A.; Drusano, G.L.; Hecht, D.W.; Rotschafer, J.C.; Danziger, L.H.; Rodvold, K.A. Population pharmacokinetic modeling and Monte Carlo simulation of varying doses of intravenous metronidazole. Diagn. Microbiol. Infect. Dis. 2006, 55, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Child, J.; Chen, X.; Mistry, R.D.; Somme, S.; MacBrayne, C.; Anderson, P.L.; Jones, R.N.; Parker, S.K. Pharmacokinetic and Pharmacodynamic Properties of Metronidazole in Pediatric Patients With Acute Appendicitis: A Prospective Study. J. Pediatr. Infect. Dis. Soc. 2018, 8, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef]
- Frasca, D.; Dahyot-Fizelier, C.; Adier, C.; Mimoz, O.; Debaene, B.; Couet, W.; Marchand, S. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 2. Cerebrospinal Fluid Concentration Measurements in Patients with External Ventricular Drain. Antimicrob. Agents Chemother. 2014, 58, 1024–1027. [Google Scholar] [CrossRef]
- Frasca, D.; Dahyot-Fizelier, C.; Adier, C.; Mimoz, O.; Debaene, B.; Couet, W.; Marchand, S. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 1. Microdialysis Assessment of Brain Extracellular Fluid Concentrations in Patients with Acute Brain Injury. Antimicrob. Agents Chemother. 2014, 58, 1019–1023. [Google Scholar] [CrossRef]
- Rodríguez-Gascón, A.; Gutiérrez-Aragón, G.; Hernández, R.; Errasti, J.; Pedraz, J. Pharmacokinetics and tissue penetration of pefloxacin plus metronidazole after administration as surgical prophylaxis in colorectal surgery. Int. J. Clin. Pharmacol. Ther. 2003, 41, 267–274. [Google Scholar] [CrossRef]
- Karjagin, J.; Pähkla, R.; Karki, T.; Starkopf, J. Distribution of metronidazole in muscle tissue of patients with septic shock and its efficacy against Bacteroides fragilis in vitro. J. Antimicrob. Chemother. 2005, 55, 341–346. [Google Scholar] [CrossRef]
- Bielecka-Grzela, S.; Klimowicz, A. Application of cutaneous microdialysis to evaluate metronidazole and its main metabolite concentrations in the skin after a single oral dose. J. Clin. Pharm. Ther. 2003, 28, 465–469. [Google Scholar] [CrossRef]
- Sattar, M.A.; Sankey, M.G.; Cawley, M.I.; Kaye, C.M.; Holt, J.E. The penetration of metronidazole into synovial fluid. Postgrad. Med. J. 1982, 58, 20–24. [Google Scholar] [CrossRef]
- Hirai, J.; Hagihara, M.; Kato, H.; Sakanashi, D.; Nishiyama, N.; Koizumi, Y.; Yamagishi, Y.; Suematsu, H.; Hanaki, H.; Mikamo, H. Investigation on rifampicin administration from the standpoint of pharmacokinetics/pharmacodynamics in a neutropenic murine thigh infection model. J. Infect. Chemother. 2016, 22, 387–394. [Google Scholar] [CrossRef]
- Zheng, X.; Bao, Z.; Forsman, L.D.; Hu, Y.; Ren, W.; Gao, Y.; Li, X.; Hoffner, S.; Bruchfeld, J.; Alffenaar, J.-W. Drug Exposure and Minimum Inhibitory Concentration Predict Pulmonary Tuberculosis Treatment Response. Clin. Infect. Dis. 2020, 73, e3520–e3528. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.S.; Frei, C.R.; Lewis, J.; Fiebelkorn, K.R.; Jorgensen, J.H. The contribution of pharmacokinetic–pharmacodynamic modelling with Monte Carlo simulation to the development of susceptibility breakpoints for Neisseria meningitidis. Clin. Microbiol. Infect. 2007, 13, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Thuong, N.T.T.; VAN, T.P.; Heemskerk, D.; Pouplin, T.; Tran, C.T.H.; Nguyen, M.T.H.; Nguyen, P.H.; Phan, L.P.; Nguyen, C.V.V.; et al. Pharmacokinetics and Pharmacodynamics of Intensive Antituberculosis Treatment of Tuberculous Meningitis. Clin. Pharmacol. Ther. 2020, 107, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Mezochow, A.; Thakur, K.T.; Zentner, I.; Subbian, S.; Kagan, L.; Vinnard, C. Attainment of target rifampicin concentrations in cerebrospinal fluid during treatment of tuberculous meningitis. Int. J. Infect. Dis. 2019, 84, 15–21. [Google Scholar] [CrossRef]
- Yunivita, V.; Dian, S.; Ganiem, A.R.; Hayati, E.; Achmad, T.H.; Dewi, A.P.; Teulen, M.; Meijerhof-Jager, P.; van Crevel, R.; Aarnoutse, R.; et al. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients. Int. J. Antimicrob. Agents 2016, 48, 415–421. [Google Scholar] [CrossRef]
- Pouplin, T.; Bang, N.D.; VAN, T.P.; Phuong, P.N.; Dung, N.H.; Duong, T.N.; Caws, M.; Thwaites, G.E.; Tarning, J.; Day, J.N. Naïve-pooled pharmacokinetic analysis of pyrazinamide, isoniazid and rifampicin in plasma and cerebrospinal fluid of Vietnamese children with tuberculous meningitis. BMC Infect. Dis. 2016, 16, 144. [Google Scholar] [CrossRef]
- Friedman, C.A.; Lovejoy, F.C.; Smith, A.L. Chloramphenicol disposition in infants and children. J. Pediatr. 1979, 95, 1071–1077. [Google Scholar] [CrossRef]
- Ziglam, H.M.; Baldwin, D.R.; Daniels, I.; Andrews, J.M.; Finch, R.G. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J. Antimicrob. Chemother. 2002, 50, 1011–1015. [Google Scholar] [CrossRef]
- Conte, J.E.; Golden, J.A.; Kipps, J.E.; Lin, E.T.; Zurlinden, E. Effect of Sex and AIDS Status on the Plasma and Intrapulmonary Pharmacokinetics of Rifampicin. Clin. Pharmacokinet. 2004, 43, 395–404. [Google Scholar] [CrossRef]
- Goutelle, S.; Bourguignon, L.; Maire, P.H.; Van Guilder, M.; Conte, J.E.; Jelliffe, R.W. Population Modeling and Monte Carlo Simulation Study of the Pharmacokinetics and Antituberculosis Pharmacodynamics of Rifampin in Lungs. Antimicrob. Agents Chemother. 2009, 53, 2974–2981. [Google Scholar] [CrossRef] [PubMed]
- Conte, J.E.; Golden, J.A.; McQuitty, M.; Kipps, J.; Duncan, S.; McKenna, E.; Zurlinden, E. Effects of Gender, AIDS, and Acetylator Status on Intrapulmonary Concentrations of Isoniazid. Antimicrob. Agents Chemother. 2002, 46, 2358–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.; Wang, Z.; Wei, M. Measurement of the concentration of three antituberculosis drugs in the focus of spinal tuberculosis. Eur. Spine J. 2008, 17, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Vouloumanou, E.K.; Karageorgopoulos, D.; Rafailidis, P.I.; Michalopoulos, A.; Falagas, M.E. Trimethoprim/sulfametrole: Evaluation of the available clinical and pharmacokinetic/pharmacodynamic evidence. Int. J. Antimicrob. Agents 2011, 38, 197–216. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Hellerman, M.; Yahav, D.; Cohen, J.; Margalit, I.; Fisher, S.; Zusman, O.; Shaked, H.; Bishara, J. Trimethoprim/sulfamethoxazole versus vancomycin in the treatment of healthcare/ventilator-associated MRSA pneumonia: A case–control study. J. Antimicrob. Chemother. 2016, 72, 882–887. [Google Scholar] [CrossRef]
- Dudley, M.N.; Levitz, R.E.; Quintiliani, R.; Hickingbotham, J.M.; Nightingale, C.H. Pharmacokinetics of trimethoprim and sulfamethoxazole in serum and cerebrospinal fluid of adult patients with normal meninges. Antimicrob. Agents Chemother. 1984, 26, 811–814. [Google Scholar] [CrossRef]
- Cheng, A.C.; McBryde, E.S.; Wuthiekanun, V.; Chierakul, W.; Amornchai, P.; Day, N.P.J.; White, N.J.; Peacock, S.J. Dosing Regimens of Cotrimoxazole (Trimethoprim-Sulfamethoxazole) for Melioidosis. Antimicrob. Agents Chemother. 2009, 53, 4193–4199. [Google Scholar] [CrossRef]
- Sattar, M.A.; Cawley, M.I.D.; Holt, J.E.; Sankey, M.G.; Kaye, C.M.; Holtt, J.E. The penetration of trimethoprim and sulphamethoxazole into synovial fluid. J. Antimicrob. Chemother. 1983, 12, 229–233. [Google Scholar] [CrossRef]
- Bruun, J.N.; Ostby, N.; Bredesen, J.E.; Kierulf, P.; Lunde, P.K. Sulfonamide and trimethoprim concentrations in human serum and skin blister fluid. Antimicrob. Agents Chemother. 1981, 19, 82–85. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.-E. Ventilator-associated pneumonia in adults: A narrative review. Intensiv. Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Xie, J.; Roberts, J.A.; Alobaid, A.S.; Roger, C.; Wang, Y.; Yang, Q.; Sun, J.; Dong, H.; Wang, X.; Xing, J.; et al. Population Pharmacokinetics of Tigecycline in Critically Ill Patients with Severe Infections. Antimicrob. Agents Chemother. 2017, 61, e00345-17. [Google Scholar] [CrossRef] [PubMed]
- Mimoz, O.; Dahyot-Fizelier, C. Mini-broncho-alveolar lavage: A simple and promising method for assessment of antibiotic concentration in epithelial lining fluid. Intensiv. Care Med. 2007, 33, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- de la Peña, A.; Liu, P.; Derendorf, H. Microdialysis in peripheral tissues. Adv. Drug Deliv. Rev. 2000, 45, 189–216. [Google Scholar] [CrossRef]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharmacother. 2019, 54, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Stalker, D.J.; Jungbluth, G.L. Clinical Pharmacokinetics of Linezolid, a Novel Oxazolidinone Antibacterial. Clin. Pharmacokinet. 2003, 42, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Fiaccadori, E.; Maggiore, U.; Rotelli, C.; Giacosa, R.; Parenti, E.; Picetti, E.; Sagripanti, S.; Manini, P.; Andreoli, R.; Cabassi, A. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit. Care Med. 2004, 32, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.G.; Konicki, R.; Cattaneo, D.; Alffenaar, J.-W.; Marriott, D.J.E.; Neely, M.; IATDMCT Antimicrobial Scientific Committee. Therapeutic Drug Monitoring Can Improve Linezolid Dosing Regimens in Current Clinical Practice: A Review of Linezolid Pharmacokinetics and Pharmacodynamics. Ther. Drug Monit. 2020, 42, 83–92. [Google Scholar] [CrossRef]
- Wicha, S.G.; Mair, A.; Chiriac, U.; Frey, O.R.; Fuchs, T.; Gaasch, M.; Hagel, S.; Richter, D.C.; Roberts, J.A.; Röhr, A.C.; et al. Population pharmacokinetics and toxicodynamics of continuously infused linezolid in critically ill patients. Int. J. Antimicrob. Agents 2022, 59, 106572. [Google Scholar] [CrossRef]
- Jamal, J.-A.; Economou, C.J.; Lipman, J.; Roberts, J.A. Improving antibiotic dosing in special situations in the ICU: Burns, Renal Replacement Therapy and Extracorporeal Membrane Oxygenation. Curr. Opin. Crit. Care 2012, 18, 460–471. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Levkovich, B.J.; Pellegrino, V.; Reynolds, C.; Rudham, S.; et al. Population pharmacokinetics of ciprofloxacin in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Anaesth. Crit. Care Pain Med. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Cohen, P.; Collart, L.; Prober, C.G.; Fischer, A.F.; Blaschke, T.F. Gentamicin pharmacokinetics in neonates undergoing extracorporal membrane oxygenation. Pediatr. Infect. Dis. J. 1990, 9, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Bouglé, A.; Dujardin, O.; Lepere, V.; Hamou, N.A.; Vidal, C.; Lebreton, G.; Salem, J.-E.; El-Helali, N.; Petijean, G.; Amour, J. PHARMECMO: Therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on Extracorporeal Life Support. Anaesth. Crit. Care Pain Med. 2019, 38, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Cota, J.M.; FakhriRavari, A.; Rowan, M.P.; Chung, K.K.; Murray, C.K.; Akers, K.S. Intravenous Antibiotic and Antifungal Agent Pharmacokinetic-Pharmacodynamic Dosing in Adults with Severe Burn Injury. Clin. Ther. 2016, 38, 2016–2031. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef]
- Baptista, J.P.; Martins, P.J.; Marques, M.; Pimentel, J.M. Prevalence and Risk Factors for Augmented Renal Clearance in a Population of Critically Ill Patients. J. Intensiv. Care Med. 2018, 35, 1044–1052. [Google Scholar] [CrossRef]
- Chen, I.H.; Nicolau, D.P. Augmented Renal Clearance and How to Augment Antibiotic Dosing. Antibiotics 2020, 9, 393. [Google Scholar] [CrossRef]
- Pai, M.P.; Cojutti, P.G.; Pea, F. Levofloxacin Dosing Regimen in Severely Morbidly Obese Patients (BMI ≥ 40 kg/m2) Should Be Guided by Creatinine Clearance Estimates Based on Ideal Body Weight and Optimized by Therapeutic Drug Monitoring. Clin. Pharmacokinet. 2014, 53, 753–762. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Lim, S.M.S.; Lipman, J.; Roberts, J.A. A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth. Crit. Care Pain Med. 2021, 40, 100970. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Drugs | Ciprofloxacin | Levofloxacin | Moxifloxacin | Ofloxacin |
---|---|---|---|---|
Daily doses | −400 mg q8h | −500 mg q8h −500 mg q12h −500 mg | −400 mg | −400 mg q12h |
CNS | 1.9X 0.88 ± 0.99X A (1 h) | 0.5X | ||
CSF | <0.1X | 0.71X 0.16–0.71X B | 0.5–0.8X | 0.73–0.76X |
Lung | 3.1X | 0.3–0.7X 0.1–0.8X | ||
ELF | 1.9X | 1.12–2X | 0.88–6.95X | |
Alveolar cells | >10X | 18.5X | 24.5X | |
Bronchial secretions | 1.16X | 1.55X C | 0.80–0.89X 2.07X C | |
Bone | 0.68–0.75X | 0.35X D–0.7X E (1.5 h) 0.4X | 0.4–0.6X 1X F | 0.7X |
Skin | 1.44X | |||
Fat | 1.40X | |||
References | [17,18,19,20,21,22,23] | [19,20,22,24,25,26,27] | [19,22,27,28,29,30] | [31] |
Drugs | Linezolid | Doxycycline | Tigecycline |
---|---|---|---|
Daily doses | −0.6 g q12h | −0.1 g q12h | −0.1 g LD, 0.05 g q12h −100 mg |
CNS | 0.5X (24 h) | ||
CSF | 0.5–0.9X A | 0.26X | 0.2X |
ELF | 0.97X (IQR 0.8–1.08X) | 1.7X | |
Bone | 0.3–0.7X | 0.7X | 0.41–2X |
Skin | 0.75X | 0.47X (2 h) | |
References | [100,101,102,103,104,105,106,107,108,109,110,111,112,113] | [114] | [115,116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viaggi, B.; Cangialosi, A.; Langer, M.; Olivieri, C.; Gori, A.; Corona, A.; Finazzi, S.; Di Paolo, A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part II. Antibiotics 2022, 11, 1193. https://doi.org/10.3390/antibiotics11091193
Viaggi B, Cangialosi A, Langer M, Olivieri C, Gori A, Corona A, Finazzi S, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part II. Antibiotics. 2022; 11(9):1193. https://doi.org/10.3390/antibiotics11091193
Chicago/Turabian StyleViaggi, Bruno, Alice Cangialosi, Martin Langer, Carlo Olivieri, Andrea Gori, Alberto Corona, Stefano Finazzi, and Antonello Di Paolo. 2022. "Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part II" Antibiotics 11, no. 9: 1193. https://doi.org/10.3390/antibiotics11091193
APA StyleViaggi, B., Cangialosi, A., Langer, M., Olivieri, C., Gori, A., Corona, A., Finazzi, S., & Di Paolo, A. (2022). Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part II. Antibiotics, 11(9), 1193. https://doi.org/10.3390/antibiotics11091193