Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance
Abstract
:1. Introduction
2. Results
2.1. Prevalence of C. difficile
2.2. Toxin Genes Profiling
2.3. Antimicrobial Susceptibility Testing
2.4. The Presence of Antimicrobial Resistance Determinants
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. C. difficile Isolation
4.3. Toxinotyping of Isolates
4.4. Antimicrobial Susceptibility Testing
4.5. Detection of Antibiotic Resistance Determinants
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rivas, L.; Dupont, P.Y.; Gilpin, B.J.; Cornelius, A.J. Isolation and characterization of Clostridium difficile from a small survey of wastewater, food and animals in New Zealand. Lett. Appl. Microbiol. 2020, 70, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.; Putsathit, P.; Elliott, B.; Riley, T.V. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin. Microbiol. Infect. 2016, 22, 266.e1–266.e7. [Google Scholar] [CrossRef]
- Stubbs, S.; Rupnik, M.; Gibert, M.; Brazier, J.; Duerden, B.; Popoff, M. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol. Lett. 2000, 186, 307–312. [Google Scholar] [CrossRef]
- Shen, A. Clostridium difficile toxins: Mediators of inflammation. J. Innate Immun. 2012, 4, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microbiol. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pérez, S.; Blanco, J.L.; Astorga, R.J.; Gómez-Laguna, J.; Barrero-Domínguez, B.; Galán-Relaño, A.; Harmanus, C.; Kuijper, E.; García, M.E. Distribution and tracking of Clostridium difficile and Clostridium perfringens in a free-range pig abattoir and processing plant. Food Res. Int. 2018, 113, 456–464. [Google Scholar] [CrossRef]
- Wu, Y.C.; Chen, C.M.; Kuo, C.J.; Lee, J.J.; Chen, P.C.; Chang, Y.C.; Chen, T.H. Prevalence and molecular characterization of Clostridium difficile isolates from a pig slaughterhouse, pork and humans in Taiwan. Int. J. Food Microbiol. 2017, 242, 37–44. [Google Scholar] [CrossRef]
- Wu, Y.C.; Lee, J.J.; Tsai, B.Y.; Liu, Y.F.; Chen, C.M.; Tien, N.; Tsai, P.J.; Chen, T.H. Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan. Int. J. Med. Microbiol. 2016, 306, 115–122. [Google Scholar] [CrossRef]
- Candel-Pérez, C.; Ros-Berruezo, G.; Martínez-Graciá, C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol. 2019, 77, 118–129. [Google Scholar] [CrossRef]
- Rodriguez Diaz, C.; Seyboldt, C.; Rupnik, M. Non-human C. difficile reservoirs and sources: Animals, food, environment. Adv. Exp. Med. Biol. 2018, 1050, 227–243. [Google Scholar]
- Rodriguez, C.; Taminiau, B.; Van Broeck, J.; Delmée, M.; Daube, G. Clostridium difficile in Food and Animals: A Comprehensive Review. Adv. Exp. Med. Biol. 2016, 932, 65–92. [Google Scholar]
- Knight, D.R.; Squire, M.M.; Riley, T.V. Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl. Environ. Microbiol. 2015, 81, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Moono, P.; Foster, N.F.; Hampson, D.J.; Knight, D.R.; Bloomfield, L.E.; Riley, T.V. Clostridium difficile Infection in Production Animals and Avian Species: A Review. Foodborne Pathog. Dis. 2016, 13, 647–655. [Google Scholar] [CrossRef]
- Knight, D.R.; Riley, T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front. Public Health 2019, 7, 164. [Google Scholar] [CrossRef]
- Hopman, N.E.M.; Keessen, E.C.; Harmanus, C.; Sanders, I.M.J.G.; van Leengoed, L.A.M.G.; Kuijper, E.J.; Lipman, L.J.A. Acquisition of Clostridium difficile by piglets. Vet. Microbiol. 2011, 149, 186–192. [Google Scholar] [CrossRef]
- Costa, M.C.; Reid-Smith, R.; Gow, S.; Hannon, S.J.; Booker, C.; Rousseau, J.; Benedict, K.B.; Morley, P.S.; Weese, J.S. Prevalence and molecular characterization of Clostridium difficile isolated from feedlot beef cattle upon arrival and mid-feeding period. BMC Vet. Res. 2012, 8, 38. [Google Scholar] [CrossRef]
- Dahms, C.; Hübner, N.O.; Wilke, F.; Kramer, A. Mini-review: Epidemiology and zoonotic potential of multiresistant bacteria and Clostridium difficile in livestock and food. GMS Hyg. Infect. Control 2014, 9, Doc21. [Google Scholar]
- Janezic, S.; Zidaric, V.; Pardon, B.; Indra, A.; Kokotovic, B.; Blanco, J.L.; Seyboldt, C.; Diaz, C.R.; Poxton, I.R.; Perreten, V. International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol. 2014, 14, 173. [Google Scholar] [CrossRef]
- Knetsch, C.W.; Connor, T.R.; Mutreja, A.; van Dorp, S.M.; Sanders, I.M.; Browne, H.P.; Harris, D.; Lipman, L.; Keessen, E.C.; Corver, J.; et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Eurosurveillance 2014, 19, 20954. [Google Scholar] [CrossRef]
- Warriner, K.; Xu, C.; Habash, M.; Sultan, S.; Weese, S.J. Dissemination of Clostridium difficile in food and the environment: Significant sources of C. difficile community-acquired infection? J. Appl. Microbiol. 2017, 122, 542–553. [Google Scholar] [CrossRef]
- Tsai, B.Y.; Ko, W.C.; Chen, T.H.; Wu, Y.C.; Lan, P.H.; Chen, Y.H.; Hung, Y.P.; Tsai, P.J. Zoonotic potential of the Clostridium difficile RT078 family in Taiwan. Anaerobe 2016, 4, 125–130. [Google Scholar] [CrossRef]
- Koene, M.G.J.; Mevius, D.; Wagenaar, J.A.; Harmanus, C.; Hensgens, M.P.M.; Meetsma, A.M.; Putirulan, F.F.; van Bergen, M.A.P.; Kuijper, E.J. Clostridium difficile in Dutch animals: Their presence, characteristics and similarities with human isolates. Clin. Microbiol. Infect. 2012, 18, 778–784. [Google Scholar] [CrossRef]
- Hofer, E.; Haechler, H.; Frei, R.; Stephan, R. Low occurrence of Clostridium difficile in fecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J. Food Prot. 2010, 73, 973–975. [Google Scholar] [CrossRef]
- Houser, B.A.; Soehnlen, M.K.; Wolfgang, D.R.; Lysczek, H.R.; Burns, C.M.; Jayarao, B.M. Prevalence of clostridium difficile toxin genes in the feces of veal calves and incidence of ground veal contamination. Foodborne Pathog. Dis. 2012, 9, 32–36. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Stämpfli, H.R.; Duffield, T.; Peregrine, A.S.; Trotz-Williams, L.A.; Arroyo, L.G.; Brazier, J.S.; Weese, J.S. Clostridium difficile PCR Ribotypes in Calves, Canada. Emerg. Infect. Dis. 2006, 12, 1730. [Google Scholar] [CrossRef]
- Spigaglia, P.; Mastrantonio, P. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J. Med. Microbiol. 2004, 53, 1129–1136. [Google Scholar] [CrossRef]
- Kim, H.Y.; Cho, A.; Kim, J.W.; Kim, H.; Kim, B. High prevalence of Clostridium difficile PCR ribotype 078 in pigs in Korea. Anaerobe 2018, 51, 42–46. [Google Scholar] [CrossRef]
- Hensgens, M.P.M.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.J.; De Boer, E.; Lipman, L.J.A.; Kuijper, E.J. Clostridium difficile infection in the community: A zoonotic disease? Clin. Microbiol. Infect. 2012, 18, 635–645. [Google Scholar] [CrossRef]
- Knight, D.R.; Squire, M.M.; Collins, D.A.; Riley, T.V. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Front. Microbiol. 2017, 7, 2138. [Google Scholar] [CrossRef]
- Janezic, S.; Mlakar, S.; Rupnik, M. Dissemination of Clostridium difficile spores between environment and households: Dog paws and shoes. Zoonoses Public Health 2018, 65, 669–674. [Google Scholar] [CrossRef]
- Doosti, A.; Mokhtari-Farsani, A. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Thitaram, S.N.; Frank, J.F.; Siragusa, G.R.; Bailey, J.S.; Dargatz, D.A.; Lombard, J.E.; Haley, C.A.; Lyon, S.A.; Fedorka-Cray, P.J. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms. Int. J. Food Microbiol. 2016, 227, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Norén, T.; Allerberger, F.; Coia, J.R.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 2021, 27, S1–S21. [Google Scholar] [CrossRef]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, 755–757. [Google Scholar] [CrossRef]
- Peláez, T.; Alcalá, L.; Blanco, J.L.; Álvarez-Pérez, S.; Marín, M.; Martín-López, A.; Catalán, P.; Reigadas, E.; García, M.E.; Bouza, E. Characterization of swine isolates of clostridium difficile in Spain: A potential source of epidemic multidrug resistant strains? Anaerobe 2013, 22, 45–49. [Google Scholar] [CrossRef]
- Thakur, S.; Putnam, M.; Fry, P.R.; Abley, M.; Gebreyes, W.A. Prevalence of antimicrobial resistance and association with toxin genes in Clostridium difficile in commercial swine. Am. J. Vet Res. 2010, 71, 1189–1194. [Google Scholar] [CrossRef]
- Ackermann, G.; Tang, Y.J.; Kueper, R.; Heisig, P.; Rodloff, A.C.; Silva, J.J.; Cohen, S.H. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob. Agents Chemother. 2001, 45, 2348–2353. [Google Scholar] [CrossRef]
- Kilic, A.; Alam, M.J.; Tisdel, N.L.; Shah, D.N.; Yapar, M.; Lasco, T.M.; Garey, K.W. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples. Ann. Lab. Med. 2015, 35, 306. [Google Scholar] [CrossRef]
- Drudy, D.; Harnedy, N.; Fanning, S.; Hannan, M.; Kyne, L. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect. Control Hosp. Epidemiol. 2007, 28, 932–940. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 9th ed.; Approved standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Spigaglia, P.; Barbanti, F.; Mastrantonio, P. New variants of the tet(M) gene in Clostridium difficile clinical isolates harbouring Tn916-like elements. J. Antimicrob. Chemother. 2006, 57, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P.; Barbanti, F.; Dionisi, A.M.; Mastrantonio, P. Clostridium difficile isolates resistant to fluoroquinolones in Italy: Emergence of PCR ribotype 018. J. Clin. Microbiol. 2010, 48, 2892–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sources | n | Sample Isolation Rates (%) | Toxigenic Isolates (%) | Non-Toxigenic Isolates (%) | |
---|---|---|---|---|---|
tcdA+, tcdB+, cdtA+/B+ | tcdA+, tcdB+ | ||||
Piglets | 100 | 20/100 (25) | 2/20 (10) | 17/20 (85) | 1/20 (5) |
Beef cattle | 24 | 1/24 (4.16) | 0/24 (0) | 0/24 (0) | 1/1 (100) |
Veal calves | 68 | 3/68 (4.41) | 0/3 (0) | 1/3 (33) | 2/3 (66) |
Antimicrobials 1 | ||||||
---|---|---|---|---|---|---|
TE | EM | CM | LE | VA | MZ | |
Piglet (n = 20) | 12 | 4 | 0 | 10 | 0 | 0 |
Resistance (%) | 60 | 20 | 0 | 50 | 0 | 0 |
Beef cattle (n = 1) | 0 | 0 | 0 | 1 | 0 | 1 |
Resistance (%) | 0 | 0 | 0 | 100 | 0 | 100 |
Veal calves (n = 3) | 1 | 0 | 0 | 1 | 0 | 0 |
Resistance (%) | 33.33 | 0 | 0 | 33.33 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beres, C.; Colobatiu, L.; Tabaran, A.; Mihaiu, R.; Iuhas, C.; Mihaiu, M. Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance. Antibiotics 2022, 11, 1194. https://doi.org/10.3390/antibiotics11091194
Beres C, Colobatiu L, Tabaran A, Mihaiu R, Iuhas C, Mihaiu M. Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance. Antibiotics. 2022; 11(9):1194. https://doi.org/10.3390/antibiotics11091194
Chicago/Turabian StyleBeres, Corina, Liora Colobatiu, Alexandra Tabaran, Romolica Mihaiu, Cristian Iuhas, and Marian Mihaiu. 2022. "Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance" Antibiotics 11, no. 9: 1194. https://doi.org/10.3390/antibiotics11091194
APA StyleBeres, C., Colobatiu, L., Tabaran, A., Mihaiu, R., Iuhas, C., & Mihaiu, M. (2022). Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance. Antibiotics, 11(9), 1194. https://doi.org/10.3390/antibiotics11091194