Halogenated Pyrrolopyrimidines with Low MIC on Staphylococcus aureus and Synergistic Effects with an Antimicrobial Peptide
Abstract
:1. Introduction
2. Results
2.1. Study Design
2.2. Synthesis of Fused Pyrimidines
2.3. Evaluation of Antibiotic Activity
2.3.1. Variation of the 4-Amino Group
2.3.2. Variation of the 6-Aryl Group and the 7-Heteroatom
2.3.3. Combination Studies with the Antimicrobial Peptide Betatide
2.3.4. Structure-Activity Relationship
2.4. Kinase Off-Targets and Mechanistic Studies
3. Experimental Section
3.1. Chemicals and Materials
3.2. Analysis and Characterization
3.3. Synthetic Protocols
3.3.1. Amination of Fused Pyrimidines (General Procedure A)
3.3.2. Regioselective Suzuki Cross-Coupling (General Procedure B)
3.3.3. SEM-Deprotection (General Procedure C)
3.4. Preparation of Compounds 1–21
3.4.1. (R)-4-(4-((1-Phenylethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (1)
3.4.2. (R)-4-(4-((1-(p-Tolyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (2)
3.4.3. (R)-4-(4-((1-(4-Chlorophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (4)
3.4.4. (R)-4-(4-((1-(4-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (5) from 28
3.4.5. (R)-4-(4-((1-(4-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (5) from 35
3.4.6. (R)-4-(4-((1-(4-Iodophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (6)
3.4.7. (R)-4-(4-((1-(3-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (7)
3.4.8. 4-(4-((4-Bromobenzyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (8)
3.4.9. (S)-4-(4-((1-(4-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (9)
3.4.10. (R)-4-(4-((1-(4-Bromophenyl)ethyl)(methyl)amino)-7H-pyrrolo [2,3-d]pyrimidin-6-yl)phenol (10)
3.4.11. (S)-N-(1-(4-Bromophenyl)ethyl)-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (11)
3.4.12. (R)-N-(1-(4-Bromophenyl)ethyl)-6-phenyl-7H-pyrrolo[2,3-d] pyrimidin-4-amine (12)
3.4.13. (R)-N-(1-(4-Bromophenyl)ethyl)-6-(4-fluorophenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-amine (13)
3.4.14. (R)-N-(1-(4-Bromophenyl)ethyl)-6-(4-nitrophenyl)-7H-pyrrolo [2,3-d] pyrimidin-4-amine (14)
3.4.15. (R)-6-(4-Aminophenyl)-N-(1-(4-bromophenyl)ethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (15)
3.4.16. Methyl (R)-4-(4-((1-(4-bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d] pyrimidin-6-yl)be-nzoate (16)
3.4.17. (R)-4-(4-((1-(4-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)benzene-sulfonamide (17)
3.4.18. (R)-2-(4-((1-(4-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (18)
3.4.19. (R)-3-(4-((1-(4-Bromophenyl)ethyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)phenol (19)
3.4.20. (R)-N-(1-(4-Bromophenyl)ethyl)-6-(4-methoxyphenyl)thieno [2,3-d] pyrimidin-4-amine (20)
3.4.21. (R)-4-(4-((1-(4-Bromophenyl)ethyl)amino)thieno[2,3-d]pyrimidin-6-yl)phenol (21)
3.5. Bioassays
3.5.1. MIC Measurements
3.5.2. E. coli and Human TMPK Assay
3.5.3. In Vitro EGFR (ErbB1) Inhibitory Potency
3.5.4. Kinase Panel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuding, S.; Frasch, T.; Schaller, M.; Stange, E.; Zabel, L. Synergistic Effects of Antimicrobial Peptides and Antibiotics against Clostridium difficile. Antimicrob. Agents Chemother. 2014, 58, 5719–5725. [Google Scholar] [CrossRef] [Green Version]
- Rajasekaran, G.; Kim, E.Y.; Shin, S.Y. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim. Biophys. Acta Biomembr. 2017, 1859, 722–733. [Google Scholar] [CrossRef]
- Naghmouchi, K.; Le Lay, C.; Baah, J.; Drider, D. Antibiotic and antimicrobial peptide combinations: Synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res. Microbiol. 2012, 163, 101–108. [Google Scholar] [CrossRef]
- Kampshoff, F.; Willcox, M.D.P.; Dutta, D. A Pilot Study of the Synergy between Two Antimicrobial Peptides and Two Common Antibiotics. Antibiotics 2019, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Ruden, S.; Rieder, A.; Chis Ster, I.; Schwartz, T.; Mikut, R.; Hilpert, K. Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa. Front. Microbiol. 2019, 10, 2740. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rojas, A.; Nath, A.; El Shazely, B.; Santi, G.; Kim, J.J.; Weise, C.; Kuropka, B.; Rolff, J. Antimicrobial Peptide Induced-Stress Renders Staphylococcus aureus Susceptible to Toxic Nucleoside Analogs. Front. Immunol. 2020, 11, 1686. [Google Scholar] [CrossRef]
- Zheng, X.; Cao, Q.; Cao, Q.; Mao, F.; Li, X.; Zhu, J.; Lan, L.; Li, J. Discovery of synergistic activity of fluoroquinolones in combination with antimicrobial peptides against clinical polymyxin-resistant Pseudomonas aeruginosa DK2. Chin. Chem. Lett. 2020, 31, 413–417. [Google Scholar] [CrossRef]
- Duong, L.; Gross, S.P.; Siryaporn, A. Developing Antimicrobial Synergy With AMPs. Front. Med. Technol. 2021, 3, 640981. [Google Scholar] [CrossRef]
- Nedal, A.; Ræder, S.B.; Dalhus, B.; Helgesen, E.; Forstrøm, R.J.; Lindland, K.; Sumabe, B.K.; Martinsen, J.H.; Kragelund, B.B.; Skarstad, K.; et al. Peptides containing the PCNA interacting motif APIM bind to the β-clamp and inhibit bacterial growth and mutagenesis. Nucleic Acids Res. 2020, 48, 5540–5554. [Google Scholar] [CrossRef]
- Nepal, A.; Ræder, S.B.; Søgaard, C.K.; Haugan, M.S.; Otterlei, M. Broad-Spectrum Antibacterial Peptide Kills Extracellular and Intracellular Bacteria Without Affecting Epithelialization. Front. Microbiol. 2021, 12, 764451. [Google Scholar] [CrossRef]
- Hoekstra, R.; Dumez, H.; Eskens, F.A.; van der Gaast, A.; Planting, A.S.; de Heus, G.; Sizer, K.C.; Ravera, C.; Vaidyanathan, S.; Bucana, C.; et al. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res. 2005, 11, 6908–6915. [Google Scholar] [CrossRef] [Green Version]
- Blindheim, F.H.; Malme, A.T.; Dalhus, B.; Sundby, E.; Hoff, B.H. Synthesis and Evaluation of Fused Pyrimidines as E. coli Thymidylate Monophosphate Kinase Inhibitors. ChemistrySelect 2021, 6, 12852–12857. [Google Scholar] [CrossRef]
- Mesa, R.A.; Yasothan, U.; Kirkpatrick, P. Ruxolitinib. Nat. Rev. Drug Discov. 2012, 11, 103–104. [Google Scholar] [CrossRef]
- Tian, F.; Chen, Z.; Xu, T. Efficacy and safety of tofacitinib for the treatment of chronic plaque psoriasis: A systematic review and meta-analysis. J. Int. Med. Res. 2019, 47, 2342–2350. [Google Scholar] [CrossRef]
- De Coen, L.M.; Heugebaert, T.S.A.; García, D.; Stevens, C.V. Synthetic Entries to and Biological Activity of Pyrrolopyrimidines. Chem. Rev. 2016, 116, 80–139. [Google Scholar] [CrossRef]
- Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Pyrrolopyrimidine, A Multifaceted Scaffold in Cancer Targeted Therapy. Drug Res. 2018, 68, 485–498. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, R.; Liu, X.; Zhang, P.; Zhang, Q.; Cai, Y.-S.; Deng, Z.; Winkler, M.; Wu, J.; Chen, W. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090. Microb. Cell Factories 2018, 17, 131. [Google Scholar] [CrossRef]
- Mohamed, M.S.; El-Domany, R.A.; Abd El-Hameed, R.H. Synthesis of certain pyrrole derivatives as antimicrobial agents. Acta Pharm. 2009, 59, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Tari, L.W.; Trzoss, M.; Bensen, D.C.; Li, X.; Chen, Z.; Lam, T.; Zhang, J.; Creighton, C.J.; Cunningham, M.L.; Kwan, B.; et al. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE). Part I: Structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. Bioorg. Med. Chem. Lett. 2013, 23, 1529–1536. [Google Scholar] [CrossRef]
- Trzoss, M.; Bensen, D.C.; Li, X.; Chen, Z.; Lam, T.; Zhang, J.; Creighton, C.J.; Cunningham, M.L.; Kwan, B.; Stidham, M.; et al. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), Part II: Development of inhibitors with broad spectrum, Gram-negative antibacterial activity. Bioorg. Med. Chem. Lett. 2013, 23, 1537–1543. [Google Scholar] [CrossRef]
- Kawatkar, S.P.; Keating, T.A.; Olivier, N.B.; Breen, J.N.; Green, O.M.; Guler, S.Y.; Hentemann, M.F.; Loch, J.T.; McKenzie, A.R.; Newman, J.V.; et al. Antibacterial Inhibitors of Gram-Positive Thymidylate Kinase: Structure–Activity Relationships and Chiral Preference of a New Hydrophobic Binding Region. J. Med. Chem. 2014, 57, 4584–4597. [Google Scholar] [CrossRef]
- Ke, P.-Y.; Kuo, Y.-Y.; Hu, C.-M.; Chang, Z.-F. Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev. 2005, 19, 1920–1933. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.I.; Kirk, S.H.; Eisenatark, A. Thymine metabolism and thyminless death in prokaryotes and eukaryotes. Annu. Rev. Microbiol. 1998, 52, 591–625. [Google Scholar] [CrossRef]
- Hernandes, M.Z.; Cavalcanti, S.M.; Moreira, D.R.; de Azevedo Junior, W.F.; Leite, A.C. Halogen atoms in the modern medicinal chemistry: Hints for the drug design. Curr. Drug Targets 2010, 11, 303–314. [Google Scholar] [CrossRef]
- WHO 2021 AWaRe Classification. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 22 June 2022).
- Kompis, I.; Wick, A. Cheminform Abstract: Synthesis of 4-Halo-Substituted Analogs of Trimethoprim. Chem. Inf.-Dienst. 1978, 9. [Google Scholar] [CrossRef]
- Cosmi, E.V.; Cantini, L.; Monici Preti, P.A.; Di Renzo, G.C.; Abate, F.; Balsotti, G.; Carlomagno, G.; Cirese, E.; Indraccolo, R. Efficacy and tolerability of brodimoprim at two different dosage schedules in the treatment of acute uncomplicated bacterial cystitis: Comparative study vs. pefloxacin. Eur. J. Obstet. Gynecol. Reprod. Biol. 1996, 64, 207. [Google Scholar] [CrossRef]
- Lovell, F.M. The Structure of a Bromine-Rich Marine Antibiotic. J. Am. Chem. Soc. 1966, 88, 4510–4511. [Google Scholar] [CrossRef]
- Fehér, D.; Barlow, R.; McAtee, J.; Hemscheidt, T.K. Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J. Nat. Prod. 2010, 73, 1963–1966. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Bao, W.; Zhang, H.; Lyu, Z.; Chen, Y.; Guo, Z. Discovery of Brominated Alboflavusins with Anti-MRSA Activities. Front. Microbiol. 2021, 12, 641025. [Google Scholar] [CrossRef]
- Raimondi, M.V.; Cascioferro, S.; Schillaci, D.; Petruso, S. Synthesis and antimicrobial activity of new bromine-rich pyrrole derivatives related to monodeoxypyoluteorin. Eur. J. Med. Chem. 2006, 41, 1439–1445. [Google Scholar] [CrossRef]
- Labriere, C.; Elumalai, V.; Staffansson, J.; Cervin, G.; Le Norcy, T.; Denardou, H.; Réhel, K.; Moodie, L.W.K.; Hellio, C.; Pavia, H.; et al. Phidianidine A and Synthetic Analogues as Naturally Inspired Marine Antifoulants. J. Nat. Prod. 2020, 83, 3413–3423. [Google Scholar] [CrossRef]
- Labrière, C.; Gong, H.; Finlay, B.B.; Reiner, N.E.; Young, R.N. Further investigation of inhibitors of MRSA pyruvate kinase: Towards the conception of novel antimicrobial agents. Eur. J. Med. Chem. 2017, 125, 1–13. [Google Scholar] [CrossRef]
- Martínez-Botella, G.; Breen, J.N.; Duffy, J.E.S.; Dumas, J.; Geng, B.; Gowers, I.K.; Green, O.M.; Guler, S.; Hentemann, M.F.; Hernandez-Juan, F.A.; et al. Discovery of Selective and Potent Inhibitors of Gram-Positive Bacterial Thymidylate Kinase (TMK). J. Med. Chem. 2012, 55, 10010–10021. [Google Scholar] [CrossRef]
- Mardirossian, M.; Rubini, M.; Adamo, M.F.A.; Scocchi, M.; Saviano, M.; Tossi, A.; Gennaro, R.; Caporale, A. Natural and Synthetic Halogenated Amino Acids—Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021, 26, 7401. [Google Scholar] [CrossRef]
- Molchanova, N.; Nielsen, J.E.; Sørensen, K.B.; Prabhala, B.K.; Hansen, P.R.; Lund, R.; Barron, A.E.; Jenssen, H. Halogenation as a tool to tune antimicrobial activity of peptoids. Sci. Rep. 2020, 10, 14805. [Google Scholar] [CrossRef]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013, 56, 1363–1388. [Google Scholar] [CrossRef]
- Blindheim, F.H.; Olsen, C.E.; Krogh Søgaard, C.; Otterlei, M.; Sundby, E.; Hoff, B.H. Synthetic Strategies towards Imidazopyridinones and 7-Azaoxindoles and their Evaluation as Antibacterial Agents. Eur. J. Org. Chem. 2021, 2021, 2701–2712. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed.; CLSI document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Chaudhary, S.K.; Jeyakanthan, J.; Sekar, K. Structural and functional roles of dynamically correlated residues in thymidylate kinase. Acta Cryst. D Struct Biol. 2018, 74, 341–354. [Google Scholar] [CrossRef]
- Kotaka, M.; Dhaliwal, B.; Ren, J.; Nichols, C.E.; Angell, R.; Lockyer, M.; Hawkins, A.R.; Stammers, D.K. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding. Protein Sci. 2006, 15, 774–784. [Google Scholar] [CrossRef] [Green Version]
- Sundby, E.; Han, J.; Kaspersen, S.J.; Hoff, B.H. In vitro baselining of new pyrrolopyrimidine EGFR-TK inhibitors with Erlotinib. Eur. J. Pharm. Sci. 2015, 80, 56–65. [Google Scholar] [CrossRef]
- Bugge, S.; Buene, A.F.; Jurisch-Yaksi, N.; Moen, I.U.; Skjønsfjell, E.M.; Sundby, E.; Hoff, B.H. Extended Structure–Activity Study of Thienopyrimidine-Based EGFR Inhibitors with Evaluation of Drug-Like Properties. Eur. J. Med. Chem. 2016, 107, 255–274. [Google Scholar] [CrossRef]
- Kaspersen, S.J.; Sørum, C.; Willassen, V.; Fuglseth, E.; Kjøbli, E.; Bjørkøy, G.; Sundby, E.; Hoff, B.H. Synthesis and in vitro EGFR (ErbB1) tyrosine kinase inhibitory activity of 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines. Eur. J. Med. Chem. 2011, 46, 6002–6014. [Google Scholar] [CrossRef]
- Reiersølmoen, A.C.; Han, J.; Sundby, E.; Hoff, B.H. Identification of fused pyrimidines as interleukin 17 secretion inhibitors. Eur. J. Med. Chem. 2018, 155, 562–578. [Google Scholar] [CrossRef]
- Traxler, P.; Bold, G.; Brill, W.K.-D.; Frei, J. Preparation of 7H-Pyrrolo[2,3-d]Pyrimidines as Tyrosine Protein Kinase Inhibitors. WO9702266, 23 January 1997.
- Kaspersen, S.J.; Sundby, E.; Charnock, C.; Hoff, B.H. Activity of 6-aryl-pyrrolo[2,3-d]pyrimidine-4-amines to Tetrahymena. Bioorg. Chem. 2012, 44, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Pollok, B.A.; Hamman, B.D.; Rodems, S.M.; Makings, L.R. Optical Probes and Assays. WO2000066766, 09 November 2000.
- Liang, X.; Huang, Y.; Zang, J.; Gao, Q.; Wang, B.; Xu, W.; Zhang, Y. Design, synthesis and preliminary biological evaluation of 4-aminopyrazole derivatives as novel and potent JAKs inhibitors. Bioorg. Med. Chem. 2016, 24, 2660–2672. [Google Scholar] [CrossRef]
- Klečka, M.; Poštová Slavětínská, L.; Hocek, M. Modification of Pyrrolo[2,3-d]pyrimidines by C–H Borylation Followed by Cross-Coupling or Other Transformations: Synthesis of 6,8-Disubstituted 7-Deazapurine Bases. Eur. J. Org. Chem. 2015, 2015, 7943–7961. [Google Scholar] [CrossRef]
- Bugge, S.; Kaspersen, S.J.; Sundby, E.; Hoff, B.H. Route selection in the synthesis of C-4 and C-6 substituted thienopyrimidines. Tetrahedron 2012, 68, 9226–9233. [Google Scholar] [CrossRef]
- Bugge, S.; Skjønsfjell, E.M.; Willumsen, F.B.; Sundby, E.; Hoff, B.H. Improved and Scalable Preparation of 6-Bromo-4-Chlorothieno[2,3-d]Pyrimidine. Chem. Heterocycl. Compd. 2014, 50, 1177–1187. [Google Scholar] [CrossRef]
Comp. | E. coli MIC [mg/L] 1 | S. aureus MIC [mg/L] 1 | Human EGFR [%] 2 | |
---|---|---|---|---|
1 | >128 | 64 | 100 | |
2 | >128 | 16 | 91 | |
3 | >128 | >128 | 92 | |
4 | >128 | 16 | 91 | |
5 | >128 | 8 | 81 | |
6 | >128 | 8 | 43 | |
7 | >128 | 16 | 89 | |
8 | >128 | >128 | 67 | |
9 | >128 | >128 | ND 3 | |
10 | >128 | >128 | 16 |
Comp. | 6-Aryl | X | E. coli MIC [mg/L] 1 | S. aureus MIC [mg/L] 1 | Human EGFR[% Inhibition] 2 |
11 | NH | >128 | >128 | - | |
12 | NH | >128 | >128 | 66 | |
13 | NH | >128 | >128 | 58 | |
14 | NH | >128 | >128 | 33 | |
15 | NH | >128 | >128 | 90 | |
16 | NH | >128 | >128 | 42 | |
17 | NH | >128 | >128 | 85 | |
18 | NH | >128 | >128 | 80 | |
19 | NH | >128 | 16 | 73 | |
20 | S | >128 | >128 | 12 | |
21 | S | >128 | 32 | 5 |
Comp. | 4-Amino Group | Scaffold | Single Comp. MIC [mg/L] | Combination with Betatide MIC [mg/L] |
1 | A | 64 | 8 | |
2 | A | 16 | 8 | |
4 | A | 16 | 4 | |
5 | A | 8 | 1 | |
6 | A | 8 | 2 | |
7 | A | 16 | 4 | |
19 | B | 8 | 2 | |
21 | C | 32 | 4 | |
Betatide | - | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olsen, C.E.; Blindheim, F.H.; Søgaard, C.K.; Røst, L.M.; Singleton, A.H.; Bergum, O.E.T.; Bruheim, P.; Otterlei, M.; Sundby, E.; Hoff, B.H. Halogenated Pyrrolopyrimidines with Low MIC on Staphylococcus aureus and Synergistic Effects with an Antimicrobial Peptide. Antibiotics 2022, 11, 984. https://doi.org/10.3390/antibiotics11080984
Olsen CE, Blindheim FH, Søgaard CK, Røst LM, Singleton AH, Bergum OET, Bruheim P, Otterlei M, Sundby E, Hoff BH. Halogenated Pyrrolopyrimidines with Low MIC on Staphylococcus aureus and Synergistic Effects with an Antimicrobial Peptide. Antibiotics. 2022; 11(8):984. https://doi.org/10.3390/antibiotics11080984
Chicago/Turabian StyleOlsen, Cecilie Elisabeth, Fredrik Heen Blindheim, Caroline Krogh Søgaard, Lisa Marie Røst, Amanda Holstad Singleton, Olaug Elisabeth Torheim Bergum, Per Bruheim, Marit Otterlei, Eirik Sundby, and Bård Helge Hoff. 2022. "Halogenated Pyrrolopyrimidines with Low MIC on Staphylococcus aureus and Synergistic Effects with an Antimicrobial Peptide" Antibiotics 11, no. 8: 984. https://doi.org/10.3390/antibiotics11080984
APA StyleOlsen, C. E., Blindheim, F. H., Søgaard, C. K., Røst, L. M., Singleton, A. H., Bergum, O. E. T., Bruheim, P., Otterlei, M., Sundby, E., & Hoff, B. H. (2022). Halogenated Pyrrolopyrimidines with Low MIC on Staphylococcus aureus and Synergistic Effects with an Antimicrobial Peptide. Antibiotics, 11(8), 984. https://doi.org/10.3390/antibiotics11080984