Salmonella enterica Serovar Dublin from Cattle in California from 1993–2019: Antimicrobial Resistance Trends of Clinical Relevance
Abstract
:1. Introduction
2. Results
2.1. Sample Selection and Metadata Collected
2.2. Minimum Inhibitory Concentration Distributions
2.3. Epidemiological Cut-Offs for MICs
2.4. Proportion of Resistant Isolates over Time Using NARMS Criteria
2.5. Odds Ratios for Effect of Response Levels on Resistance Using NARMS Criteria
3. Discussion
4. Materials and Methods
4.1. Sample Source
4.2. Salmonella Identification and Serotyping
4.3. Antimicrobial Susceptibility Testing
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, L.R. Review of pathogenesis and diagnostic methods of immediate relevance for epidemiology and control of Salmonella Dublin in cattle. Vet. Microbiol. 2013, 162, 1–9. [Google Scholar] [CrossRef]
- Holschbach, C.L.; Peek, S.F. Salmonella in Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.R.; Friedman, C.R.; Crim, S.M.; Judd, M.; Barrett, K.A.; Tolar, B.; Folster, J.P.; Griffin, P.M.; Brown, A.C. Epidemiology of Salmonella enterica Serotype Dublin Infections among Humans, United States, 1968–2013. Emerg. Infect. Dis. 2017, 23, 1493. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.R.; Schukken, Y.H.; Grohn, Y.T.; Ersboll, A.K. SalmonellaDublin infection in dairy cattle: Risk factors for becoming a carrier. Prev. Vet. Med. 2004, 65, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.J.; Burrows, M.R. The survival of Escherichia coli and Salmonella Dublin in slurry on pasture and the infectivity of S. Dublin for grazing calves. Br. Vet. J. 1971, 127, 536–543. [Google Scholar] [CrossRef]
- Plym-Forshell, L.; Ekesbo, I. Survival of salmonellas in urine and dry faeces from cattle—An experimental study. Acta Vet. Scand. 1996, 37, 127–131. [Google Scholar] [CrossRef]
- Davidson, K.E.; Byrne, B.A.; Pires, A.F.A.; Magdesian, K.G.; Pereira, R.V. Antimicrobial resistance trends in fecal Salmonella isolates from northern California dairy cattle admitted to a veterinary teaching hospital, 2002–2016. PLoS ONE 2018, 13, e0199928. [Google Scholar] [CrossRef]
- Salaheen, S.; Sonnier, J.; Kim, S.W.; Haley, B.J.; Van Kessel, J.A.S. Interaction of Salmonella enterica with Bovine Epithelial Cells Demonstrates Serovar-Specific Association and Invasion Patterns. Foodborne Pathog. Dis. 2020, 17, 608–610. [Google Scholar] [CrossRef]
- Davis, M.A.; Hancock, D.D.; Besser, T.E.; Daniels, J.B.; Baker, K.N.; Call, D.R. Antimicrobial resistance in Salmonella enterica serovar Dublin isolates from beef and dairy sources. Vet. Microbiol. 2007, 119, 221–230. [Google Scholar] [CrossRef]
- 2015 Integrated Report. National Antimicrobial Resistance Monitoring System. Available online: https://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm059103.htm (accessed on 1 November 2017).
- Federal Task Force on Combating Antibiotic-Resistant Bacteria. National Action Plan for Combating Antibiotic-Resistant Bacteria 2020. Available online: https://aspe.hhs.gov/sites/default/files/migrated_legacy_files//196436/CARB-National-Action-Plan-2020-2025.pdf (accessed on 1 October 2020).
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- U.S. Food and Drug Administration. Veterinary Feed Directive (VFD): Food and Drug Administration. 2015. Available online: https://www.fda.gov/animalveterinary/developmentapprovalprocess/ucm071807.htm (accessed on 23 August 2017).
- FAC (Food and Agriculture Code). Livestock Use of Antimicrobial Drugs [14400–14408]; FAC: Sacramento, CA, USA, 2015. [Google Scholar]
- USDA. Dairy Cattle Management Practices in the United States, 2014; USDA: Fort Collins, CO, USA, 2016. [Google Scholar]
- Centers for Disease Control and Prevention. National Antimicrobial Resistnace Monitoring System for Enteric Bacteria (NARMS). Antibiotics Tested by NARMS. 2019. Available online: https://www.cdc.gov/narms/antibiotics-tested.html (accessed on 1 October 2020).
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Turnidge, J.; Kahlmeter, G.; Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef] [PubMed]
- CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2015 (Final Report); U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2018. Available online: https://www.cdc.gov/narms/pdf/2015-NARMS-Annual-Report-cleared_508.pdf (accessed on 1 October 2020).
- U.S. Food and Drug Administration. Extralabel Use and Antimicrobials. 2012. Available online: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/extralabel-use-and-antimicrobials (accessed on 1 October 2020).
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Bolton, L.F.; Kelley, L.C.; Lee, M.D.; Fedorka-Cray, P.J.; Maurer, J.J. Detection of multidrug-resistant Salmonella enterica serotype typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J. Clin. Microbiol. 1999, 37, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Doublet, B.; Carattoli, A.; Whichard, J.M.; White, D.G.; Baucheron, S.; Chaslus-Dancla, E.; Cloeckaert, A. Plasmid-mediated florfenicol and ceftriaxone resistance encoded by the floR and bla(CMY-2) genes in Salmonella enterica serovars Typhimurium and Newport isolated in the United States. FEMS Microbiol. Lett. 2004, 233, 301–305. [Google Scholar] [CrossRef]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. Management factors associated with bovine respiratory disease in preweaned calves on California dairies: The BRD 100 study. J. Dairy Sci. 2019, 102, 7288–7305. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Gentamicin Sulfate, Sulfamethoxazole Used Illegally; AVMA (American Veterinary Medical Association): Schaumburg, IL, USA, 2004; Available online: https://www.avma.org/javma-news/2004-08-01/gentamicin-sulfate-sulfamethoxazole-used-illegally (accessed on 1 October 2020).
- FDA warns against aminoglycoside residue in cattle. J. Am. Vet. Med. Assoc. 2001, 219, 423.
- Eyler, A.B.; M’Ikanatha, N.M.; Xiaoli, L.; Dudley, E.G. Whole-genome sequencing reveals resistome of highly drug-resistant retail meat and human Salmonella Dublin. Zoonoses Public Health 2020, 67, 251–262. [Google Scholar] [CrossRef]
- Kudirkiene, E.; Sorensen, G.; Torpdahl, M.; de Knegt, L.V.; Nielsen, L.R.; Rattenborg, E.; Ahmed, S.; Olsen, J.E. Epidemiology of Salmonella enterica Serovar Dublin in Cattle and Humans in Denmark, 1996 to 2016: A Retrospective Whole-Genome-Based Study. Appl. Environ. Microbiol. 2020, 86, e01894-19. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; den Bakker, H.; Siler, J.; Warchocki, S.; Kent, D.; Lyalina, S.; Davis, M.; Sischo, W.; Besser, T.; et al. Whole-Genome Sequencing of Drug-Resistant Salmonella enterica Isolates from Dairy Cattle and Humans in New York and Washington States Reveals Source and Geographic Associations. Appl. Environ. Microbiol. 2017, 83, e00140-17. [Google Scholar] [CrossRef]
- The National Antimicrobial Resistance Monitoring System: Enteric Bacteria. NARMS Integrated Report: 2012–2013. Available online: https://www.fda.gov/media/92769/download (accessed on 1 October 2020).
- Centers for Disease Control and Prevention. Outbreak Investigation Updates by Date. Salmonella. 2019. Available online: https://www.cdc.gov/salmonella/Dublin-11-19/updates.html (accessed on 1 October 2020).
- Paudyal, N.; Pan, H.; Elbediwi, M.; Zhou, X.; Peng, X.; Li, X.; Fang, W.; Yue, M. Characterization of Salmonella Dublin isolated from bovine and human hosts. BMC Microbiol. 2019, 19, 226. [Google Scholar] [CrossRef]
- United States Department of Agriculture, National Agricultural Statistics Service. California Cattle County Estimates. 2021. Available online: https://www.nass.usda.gov/Statistics_by_State/California/Publications/County_Estimates/2021/CATCNTYE_2021.pdf (accessed on 1 January 2022).
- Springer, H.R.; Denagamage, T.N.; Fenton, G.D.; Haley, B.J.; Van Kessel, J.A.S.; Hovingh, E.P. Antimicrobial Resistance in Fecal Escherichia coli and Salmonella enterica from Dairy Calves: A Systematic Review. Foodborne Pathog. Dis. 2019, 16, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Standard VET01; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. MIC Distributions and Epidemiological Cut-Off Value (ECOFF) Setting, EUCAST SOP 10.0, 2017. Available online: http://www.eucast.org (accessed on 1 January 2022).
Year Group | n | Age Group | n | Specimen Source | n | Clinical Signs | n | Region | n | Season | n |
---|---|---|---|---|---|---|---|---|---|---|---|
1993–1999 | 36 | Early PW | 97 | Feces | 98 | Diarrhea | 62 | North | 82 | Winter | 58 |
2000–2005 | 59 | Late PW | 49 | Liver | 66 | Systemic | 162 | Central | 132 | Spring | 59 |
2006–2010 | 54 | Early HF | 46 | Lungs | 64 | Unknown | 23 | South | 33 | Summer | 67 |
2011–2015 | 49 | Adult Cow | 22 | Lymph node | 10 | - | - | Fall | 62 | ||
2016–2019 | 49 | NA * | 33 | Other | 9 | - | - | NA * | 1 |
BOPO6F | Breakpoints (µg/mL) | % Distribution of MICs (µg/mL) 1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | S | I | R | %R 2 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | GAD 5 |
Ampicillin 3 | ≤0.25 | 0.5 | ≥1.0 | 97.1 | - | - | 3 | 19 | 8 | 3 | - | - | - | - | - | 67 |
Ceftiofur 4 | ≤2 | 4 | ≥8 | 46.1 | - | - | 26 | 22 | 4 | - | 44 | - | - | - | - | 2 |
Chlortetracycline | - | - | - | - | - | - | 1 | 10 | 11 | 2 | 1 | - | - | - | - | 75 |
Clindamycin | - | - | - | - | - | - | - | - | - | - | 1 | 0 | - | - | - | 99 |
Danofloxacin | - | - | - | - | 81 | - | 14 | 0.5 | - | - | - | - | - | - | - | 0.5 |
Enrofloxacin | - | - | - | - | 81 | - | 15 | 1 | - | - | - | - | - | - | - | 0 |
Florfenicol | - | - | - | - | - | - | - | 1 | - | 16 | 4 | - | - | - | - | 64 |
Gentamicin | - | - | - | - | - | - | - | 72 | - | 1 | - | 5 | - | - | - | 18 |
Neomycin | - | - | - | - | - | - | - | - | - | 48 | 1 | 1 | 4 | - | - | 46 |
Oxytetracycline | - | - | - | - | - | - | 1 | - | - | 2 | 0 | - | - | - | - | 77 |
Penicillin | - | - | - | - | - | - | - | - | - | 4 | 15 | - | - | - | - | 81 |
Spectinomycin | - | - | - | - | - | - | - | - | - | - | - | 1 | 77 | 10 | - | 12 |
Tiamulin | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | 98 |
Tilmicosin | - | - | - | - | - | - | - | - | - | 1 | - | 1 | 1 | 40 | - | 57 |
Tulathromycin | - | - | - | - | - | - | - | - | - | 17 | - | 43 | 12 * | 1 * | - | 0 |
NARMS | Breakpoints (µg/mL) | % Distribution of MICs (µg/mL) 1 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | S | I | R | %R 2 | % NWT 6 | 0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 256 | GAD 5 |
Streptomycin | ≤16 | N/A | ≥32 | 81 | - | - | - | - | - | - | - | - | - | - | 3 | 16 | 16 | 2 | - | 63 |
Tetracycline | ≤4 | 8 | ≥16 | 76 | - | - | - | - | - | - | - | - | - | 24 | - | 1 | 1 | - | - | 74 |
Chloramphenicol | ≤8 | 16 | ≥32 | 70 | - | - | - | - | - | - | - | - | 2 | 23 | 2 | 3 | 1 | - | - | 69 |
Ampicillin | ≤8 | 16 | ≥32 | 67 | - | - | - | - | - | - | - | 22 | 8 | 2 | 0.5 | - | 0.5 | - | - | 67 |
AMC 3 | ≤8/4 | 16/8 | ≥32/16 | 46 | - | - | - | - | - | - | - | 22 | 9 | 3 | 16 | 4 | 1 | - | - | 45 |
Ceftiofur | ≤2 | 4 | ≥8 | 46 | - | - | - | - | - | 1 | 22 | 29 | 2 | - | 3 | - | - | - | - | 43 |
Ceftriaxone | ≤1 | 2 | ≥4 | 46 | 31 | - | - | - | - | 54 | - | - | - | 1 | 4 * | 12 * | 17 | 10 | - | 2 |
Cefoxitin | ≤8 | 16 | ≥32 | 45 | - | - | - | - | - | - | - | 1 | 16 | 18 | 13 | 7 | 38 | - | 7 | |
Gentamicin | ≤4 | 8 | ≥16 | 23 | 24 | - | - | - | - | 11 | 27 | 4 ** | 1 | - | - | 4 | - | - | - | 19 |
Nalidixic acid | ≤16 | N/A | ≥32 | 17 | 19 | - | 1 | - | - | - | 1 | 1 | 8 | 67 | 4 ** | 2 | - | - | - | 17 |
TMS 4 | ≤2/38 | N/A | ≥4/76 | 3.2 | 4 | - | - | - | 42 | 44 | 10 | 1 | - | 3 | - | - | - | - | - | 0 |
Cipropfloxacin | ≤0.06 | 0.12–0.5 | ≥1 | 1.2 | 20 | 29 | 48 * | 4 * | 3 | 7 | 7.5 | 1 | 0.5 | - | - | - | - | - | - | 0 |
Azithromycin | ≤16 | N/A | ≥32 | 0 | 0 | - | - | - | - | - | 1 | 1 | 35.5 | 61 * | 1.5 * | - | - | - | 0 | |
Sulfisoxazole | ≤256 | N/A | ≥512 | 67 | - | - | - | - | - | - | - | - | - | - | - | 22 | 8 | 2 | 1 | 67 |
Antimicrobial Drug | ECOFFs Endpoint Criteria% | ||
95 | 97.5 | 99 | |
Tulathromycin_BOPO6F | 32 | 64 | 64 |
Azithromycin_NARMS | 4 | 4 | 8 |
Ceftriaxone_NARMS | 8 | 16 | 16 |
Ciprofloxacin_NARMS | 0.03 | 0.06 | 0.06 |
Gentamycin_NARMS | 2 | 2 | 2 |
Nalidixic acid_NARMS | 8 | 8 | 8 |
Trimethoprim-Sulfadimethoxine_NARMS | 0.5 | 0.5 | 0.5 |
Ceftiofur | Ceftriaxone | Cefoxitin | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable 1 | OR 2 | 95% CI 3 | p Value 4 | OR 2 | 95% CI 3 | p Value 4 | OR 2 | 95% CI 3 | p Value 4 |
Year Group 5 | <0.0001 | 0.0004 | <0.0001 | ||||||
1993–1999 vs. 2000–2005 | 0.1 | (0–0.6) | 0.01 | 0.1 | (0–0.6) | 0.01 | 0.1 | (0–0.6) | 0.01 |
1993–1999 vs. 2006–2010 | 0.02 | (0–0.1) | <0.0001 | 0.0 | (0–0.1) | <0.0001 | 0.02 | (0–0.1) | <0.0001 |
1993–1999 vs. 2011–2015 | 0.02 | (0–0.1) | <0.0001 | 0.0 | (0–0.1) | <0.0001 | 0.02 | (0–0.1) | <0.0001 |
1993–1999 vs. 2016–2019 | 0.02 | (0–0.1) | <0.0001 | 0.0 | (0–0.1) | <0.0001 | 0.03 | (0–0.1) | <0.0001 |
2000–2005 vs. 2006–2010 | 0.1 | (0–0.3) | 0.0001 | 0.1 | (0.1–0.4) | 0.0001 | 0.1 | (0–0.4) | 0.0001 |
2000–2005 vs. 2011–2015 | 0.2 | (0.1–0.5) | 0.0007 | 0.2 | (0.1–0.5) | 0.0007 | 0.1 | (0–0.4) | 0.0001 |
2000–2005 vs. 2016–2019 | 0.2 | (0.1–0.4) | 0.0002 | 0.1 | (0.1–0.4) | 0.0002 | 0.2 | (0.1–0.5) | 0.001 |
2006–2010 vs. 2011–2015 | 1.3 | (0.5–3.5) | 0.55 | 1.3 | (0.5–3.5) | 0.55 | 1.0 | (0.4–2.8) | 0.93 |
2006–2010 vs. 2016–2019 | 1.1 | (0.4–3.0) | 0.78 | 1.1 | (0.4–2.9) | 0.78 | 1.4 | (0.6–3.7) | 0.41 |
2011–2015 vs. 2016–2019 | 0.8 | (0.3–2.1) | 0.72 | 0.8 | (0.3–2.1) | 0.72 | 1.4 | (0.6–3.5) | 0.45 |
Region6 | 0.0004 | <0.0001 | 0.0002 | ||||||
Central vs. North | 3.6 | (1.7–7.4) | 0.0005 | 3.6 | (1.8–7.5) | 0.0005 | 3.7 | (1.8–7.6) | 0.0004 |
Central vs. South | 0.5 | (0.2–1.7) | 0.31 | 0.6 | (0.2–1.7) | 0.32 | 0.4 | (0.1–1.3) | 0.15 |
North vs. South | 0.1 | (0–0.5) | 0.002 | 0.1 | (0–0.5) | 0.002 | 0.1 | (0–0.4) | 0.0006 |
Variable 1 | Tetracycline | Gentamicin | Streptomycin | ||||||
---|---|---|---|---|---|---|---|---|---|
OR 2 | 95% CI 3 | p Value 4 | OR2 | 95% CI 3 | p Value 4 | OR 2 | 95% CI 3 | p Value 4 | |
Year Group5 | 0.13 * | 0.0004 | 0.42 * | ||||||
1993–1999 vs. 2000–2005 | 0.4 | (0.1–1.2) | 0.09 | 0.2 | (0.1–0.8) | 0.01 | 0.7 | (0.2–2.5) | 0.60 |
1993–1999 vs. 2006–2010 | 0.2 | (0.1–0.9) | 0.03 | 0.6 | (0.2–1.8) | 0.38 | 0.6 | (0.2–2.2) | 0.45 |
1993–1999 vs. 2011–2015 | 0.2 | (0–0.7) | 0.01 | 1.8 | (0.5–6.6) | 0.34 | 0.3 | (0.1–1.2) | 0.08 |
1993–1999 vs. 2016–2019 | 0.3 | (0.1–1.1) | 0.07 | 9.6 | (1.1–83.8) | 0.04 | 0.9 | (0.2–3.0) | 0.83 |
2000–2005 vs. 2006–2010 | 0.6 | (0.2–2.2) | 0.50 | 2.3 | (0.9–5.8) | 0.09 | 0.8 | (0.3–2.6) | 0.79 |
2000–2005 vs. 2011–2015 | 0.5 | (0.1–1.7) | 0.26 | 6.8 | (2.2–21.4) | 0.0009 | 0.4 | (0.1–1.4) | 0.16 |
2000–2005 vs. 2016–2019 | 0.8 | (0.2–2.7) | 0.79 | 35.4 | (4.4–282.6) | 0.0008 | 1.2 | (0.4–3.6) | 0.71 |
2006–2010 vs. 2011–2015 | 0.7 | (0.2–2.8) | 0.65 | 3.0 | (0.9–10.0) | 0.07 | 0.4 | (0.1–1.7) | 0.23 |
2006–2010 vs. 2016–2019 | 1.3 | (0.4–4.1) | 0.66 | 15.7 | (1.9–130.0) | 0.01 | 1.4 | (0.4–4.2) | 0.52 |
2011–2015 vs. 2016–2019 | 1.8 | (0.5–6.4) | 0.38 | 5.1 | (0.6–47.1) | 0.14 | 3.2 | (0.8–12.0) | 0.07 |
Region6 | <0.0001 | 0.003 | <0.0001 | ||||||
Central vs. North | 11.4 | (4.5–28.5) | <0.0001 | 1.2 | (0.5–3.0) | 0.60 | 3.6 | (3.6–21.0) | <0.0001 |
Central vs. South | 0.9 | (02–3.7) | 0.86 | 0.2 | (0.1–0.6) | 0.002 | 2.0 | (0.5–7.5) | 0.26 |
North vs. South | 0.08 | (0–0.3) | 0.0007 | 0.2 | (0.1–0.5) | 0.002 | 0.2 | (0.1–0.8) | 0.02 |
Age Group7 | 0.04 | ||||||||
Cow vs. Early PW | 0.3 | (0.1–0.9) | 0.03 | - | - | - | - | - | - |
Cow vs. Early HF | 0.1 | (0–0.6) | 0.01 | - | - | - | - | - | - |
Cow vs. Late PW | 0.5 | (0.1–1.6) | 0.22 | - | - | - | - | - | - |
Early PW vs. Early HF | 0.5 | (0.1–1.8) | 0.27 | - | - | - | - | - | - |
Early PW vs. Late PW | 1.6 | (0.6–4.1) | 0.28 | - | - | - | - | - | - |
Early HF vs. Late PW | 3.5 | (0.8–15.0) | 0.08 | - | - | - | - | - | - |
Season8 | 0.04 | ||||||||
Fall vs. Spring | 3.3 | (1.0–11.1) | 0.05 | - | - | - | - | - | - |
Fall vs. Summer | 3.4 | (1.3–14.4) | 0.01 | - | - | - | - | - | - |
Fall vs. Winter | 1.2 | (0.3–4.1) | 0.76 | - | - | - | - | - | - |
Spring vs. Summer | 1.3 | (0.5–3.7) | 0.60 | - | - | - | - | - | - |
Spring vs. Winter | 0.4 | (0.1–1.2) | 0.09 | - | - | - | - | - | - |
Summer vs. Winter | 0.3 | (0.08–0.9) | 0.03 | - | - | - | - | - | - |
Variable 1 | Nalidixic Acid | Ampicillin | AMC * | ||||||
---|---|---|---|---|---|---|---|---|---|
OR 2 | 95% CI 3 | p Value 4 | OR 2 | 95% CI 3 | p Value 4 | OR 2 | 95% CI 3 | p Value 4 | |
Year Group 5 | <0.0001 | 0.33 ** | <0.0001 | ||||||
1993–1999 vs. 2000–2005 | - | - | - | 0.5 | (0.2–1.5) | 0.25 | 0.1 | (0–0.6) | 0.01 |
1993–1999 vs. 2006–2010 | - | - | - | 0.3 | (0.1–0.9) | 0.03 | 0.02 | (0–0.1) | <0.0001 |
1993–1999 vs. 2011–2015 | - | - | - | 0.7 | (0.2–1.9) | 0.48 | 0.02 | (0–0.1) | <0.0001 |
1993–1999 vs. 2016–2019 | - | - | - | 0.6 | (0.2–1.6) | 0.30 | 0.02 | (0–0.1) | <0.0001 |
2000–2005 vs. 2006–2010 | 0.4 | (0–4.9) | 0.49 | 0.6 | (0.2–1.6) | 0.27 | 0.1 | (0.1–0.4) | 0.0001 |
2000–2005 vs. 2011–2015 | 0.04 | (0–0.3) | 0.004 | 1.3 | (0.5–3.3) | 0.62 | 0.2 | (0.1–0.5) | 0.0007 |
2000–2005 vs. 2016–2019 | 0.01 | (0–1.3) | 0.0001 | 1.1 | (0.4–2.7) | 0.88 | 0.2 | (0.1–0.4) | 0.0002 |
2006–2010 vs. 2011–2015 | 0.1 | (0–0.5) | 0.008 | 2.2 | (0.8–6.3) | 0.12 | 1.3 | (0.5–3.5) | 0.55 |
2006–2010 vs. 2016–2019 | 0.04 | (0–0.2) | 0.0002 | 1.9 | (0.7–5.2) | 0.21 | 1.1 | (0.4–2.9) | 0.78 |
2011–2015 vs. 2016–2019 | 0.3 | (0.1–0.9) | 0.04 | 0.8 | (0.3–2.2) | 0.72 | 0.8 | (0.3–2.1) | 0.73 |
Region 6 | 0.001 | <0.0001 | 0.0004 | ||||||
Central vs. North | 7.5 | (2.4–23.0) | 0.0005 | 5.1 | (2.6–10.2) | <0.0001 | 3.6 | (1.7–7.5) | 0.0005 |
Central vs. South | 0.6 | (0.1–2.7) | 0.5 | 0.8 | (0.3–2.5) | 0.75 | 0.6 | (0.2–1.7) | 0.32 |
North vs. South | 0.08 | (0–0.5) | 0.005 | 0.2 | (0.1–0.5) | 0.001 | 0.2 | (0.05–0.5) | 0.002 |
Variable 1 | Chloramphenicol | ||
---|---|---|---|
OR 2 | 95% CI 3 | p Value 4 | |
Year Group 5 | <0.0001 | ||
1993–1999 vs. 2000–2005 | 0.1 | (0–0.5) | 0.001 |
1993–1999 vs. 2006–2010 | 0.06 | (0–0.2) | <0.0001 |
1993–1999 vs. 2011–2015 | 0.04 | (0–0.2) | <0.0001 |
1993–1999 vs. 2016–2019 | 0.06 | (0–0.2) | <0.0001 |
2000–2005 vs. 2006–2010 | 0.4 | (0.1–1.3) | 0.13 |
2000–2005 vs. 2011–2015 | 0.27 | (0.1–1.0) | 0.04 |
2000–2005 vs. 2016–2019 | 0.4 | (0.1–1.3) | 0.11 |
2006–2010 vs. 2011–2015 | 0.7 | (0.2–2.7) | 0.59 |
2006–2010 vs. 2016–2019 | 1.0 | (0.3–3.5) | 0.95 |
2011–2015 vs. 2016–2019 | 1.5 | (0.4–5.5) | 0.54 |
Region 6 | <0.0001 | ||
Central vs. North | 17.911 | (6.6–48.5) | <0.0001 |
Central vs. South | 0.660 | (0.2–2.5) | 0.54 |
North vs. South | 0.037 | (0–0.2) | <0.0001 |
Season7 | 0.01 | ||
Fall vs. Spring | 5.5 | (1.7–17.7) | 0.004 |
Fall vs. Summer | 3.6 | (1.1–11.1) | 0.03 |
Fall vs. Winter | 1.3 | (0.4–4.2) | 0.68 |
Spring vs. Summer | 0.6 | (0.2–1.7) | 0.37 |
Spring vs. Winter | 0.2 | (0.1–0.7) | 0.01 |
Summer vs. Winter | 0.3 | (0.1–1.1) | 0.08 |
Variable 1 | MDR by Class * | ||
---|---|---|---|
OR 2 | 95% CI 3 | p Value 4 | |
Year Group 5 | 0.03 | ||
1993–1999 vs. 2000–2005 | 0.3 | (0.1–0.9) | 0.04 |
1993–1999 vs. 2006–2010 | 0.1 | (0–0.5) | 0.006 |
1993–1999 vs. 2011–2015 | 0.1 | (0–0.5) | 0.05 |
1993–1999 vs. 2016–2019 | 0.2 | (0–0.7) | 0.02 |
2000–2005 vs. 2006–2010 | 0.5 | (0.1–1.7) | 0.28 |
2000–2005 vs. 2011–2015 | 0.5 | (0.1–1.6) | 0.24 |
2000–2005 vs. 2016–2019 | 0.7 | (0.2–2.4) | 0.64 |
2006–2010 vs. 2011–2015 | 0.9 | (0.2–3.6) | 0.92 |
2006–2010 vs. 2016–2019 | 1.5 | (0.4–5.1) | 0.49 |
2011–2015 vs. 2016–2019 | 1.6 | (0.4–5.9) | 0.46 |
Region 6 | <0.0001 | ||
Central vs. North | 12.4 | (4.8–32.6) | <0.0001 |
Central vs. South | 0.5 | (0.1–2.4) | 0.34 |
North vs. South | 0.04 | (0–0.2) | 0.0002 |
Age Group 7 | 0.03 | ||
Cow vs. Early PW | 0.3 | (0.1–0.9) | 0.02 |
Cow vs. Early HF | 0.1 | (0–0.7) | 0.01 |
Cow vs. Late PW | 0.6 | (0.2–2.0) | 0.41 |
Early PW vs. Early HF | 0.5 | (0.1–2.0) | 0.35 |
Early PW vs. Late PW | 2.1 | (0.8–5.5) | 0.10 |
Early HF vs. Late PW | 4.1 | (0.98–18) | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritz, H.M.; Pereira, R.V.; Toohey-Kurth, K.; Marshall, E.; Tucker, J.; Clothier, K.A. Salmonella enterica Serovar Dublin from Cattle in California from 1993–2019: Antimicrobial Resistance Trends of Clinical Relevance. Antibiotics 2022, 11, 1110. https://doi.org/10.3390/antibiotics11081110
Fritz HM, Pereira RV, Toohey-Kurth K, Marshall E, Tucker J, Clothier KA. Salmonella enterica Serovar Dublin from Cattle in California from 1993–2019: Antimicrobial Resistance Trends of Clinical Relevance. Antibiotics. 2022; 11(8):1110. https://doi.org/10.3390/antibiotics11081110
Chicago/Turabian StyleFritz, Heather M., Richard V. Pereira, Kathy Toohey-Kurth, Edie Marshall, Jenna Tucker, and Kristin A. Clothier. 2022. "Salmonella enterica Serovar Dublin from Cattle in California from 1993–2019: Antimicrobial Resistance Trends of Clinical Relevance" Antibiotics 11, no. 8: 1110. https://doi.org/10.3390/antibiotics11081110
APA StyleFritz, H. M., Pereira, R. V., Toohey-Kurth, K., Marshall, E., Tucker, J., & Clothier, K. A. (2022). Salmonella enterica Serovar Dublin from Cattle in California from 1993–2019: Antimicrobial Resistance Trends of Clinical Relevance. Antibiotics, 11(8), 1110. https://doi.org/10.3390/antibiotics11081110