In Vitro Assessment of the Combination of Antibiotics against Some Integron-Harbouring Enterobacteriaceae from Environmental Sources
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolate Characterisations
4.2. Preparation of Antibiotics and Media Used
4.3. Standardisation of Inoculum
4.4. Antimicrobial Susceptibility Testing
4.5. Quality Control
4.6. Checkerboard Assay
4.7. Time-Kill Assays
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, P.; Singh, A.; Chowdhary, P.; Pandey, A.; Gupta, P. Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems. Sci. Total Environ. 2021, 751, 142217. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.S.; Singhal, N.; Kumar, M.; Virdi, J.S. High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated from River Yamuna, India: A Serious Public Health Risk. Front. Microbiol. 2021, 12, 621564. [Google Scholar] [CrossRef] [PubMed]
- Fadare, F.T.; Okoh, A.I. Distribution and molecular characterization of ESBL, pAmpC β-lactamases, and non-β-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa. PLoS ONE 2021, 16, e0254753. [Google Scholar] [CrossRef] [PubMed]
- Fadare, F.T.; Okoh, A.I. The Abundance of Genes Encoding ESBL, pAmpC and Non-β-Lactam Resistance in Multidrug-Resistant Enterobacteriaceae Recovered from Wastewater Effluents. Front. Environ. Sci. 2021, 9, 295. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Zhou, H.; Yuan, M.; Hu, D.; Wang, Y.; Sun, H.; Xu, J.; Lan, R. Antimicrobial Resistance and Molecular Characterization of Citrobacter spp. Causing Extraintestinal Infections. Front. Cell. Infect. Microbiol. 2021, 11, 737636. [Google Scholar] [CrossRef]
- Teixeira, P.; Tacão, M.; Pureza, L.; Gonçalves, J.; Silva, A.; Cruz-Schneider, M.P.; Henriques, I. Occurrence of carbapenemase-producing Enterobacteriaceae in a Portuguese river: blaNDM, blaKPC and blaGES among the detected genes. Environ. Pollut. 2020, 260, 113913. [Google Scholar] [CrossRef]
- Fadare, F.; Okoh, A. Integrons as emerging contaminants facilitating the widespread of antimicrobial resistance in Enterobacteriaceae. Adv. Biomed. Health Sci. 2022, 1, 68. [Google Scholar] [CrossRef]
- Gillings, M.R. Integrons: Past, Present, and Future. Microbiol. Mol. Biol. Rev. 2014, 78, 257–277. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, M.; Kumar, S.; Kapoor, R.K.; Gulati, P. Integrons and antibiotic resistance genes in water-borne pathogens: Threat detection and risk assessment. J. Med. Microbiol. 2019, 68, 679–692. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 1 July 2022).
- Spellberg, B. The future of antibiotics. Crit. Care 2014, 18, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan-Krohn, T.; Kirby, J.E. Antimicrobial Synergy Testing by the Inkjet Printer-assisted Automated Checkerboard Array and the Manual Time-kill Method. J. Vis. Exp. 2019, 146, e58636. [Google Scholar] [CrossRef] [PubMed]
- Moellering, R.C. Rationale for use of antimicrobial combinations. Am. J. Med. 1983, 75, 4–8. [Google Scholar] [CrossRef]
- Silver, L.L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 2007, 6, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Silver, L.L. Appropriate Targets for Antibacterial Drugs. Cold Spring Harb. Perspect. Med. 2016, 6, a030239. [Google Scholar] [CrossRef] [Green Version]
- Jawetz, E.; Gunnison, J.B.; Bruff, J.B.; Coleman, V.R. Studies on antibiotic synergism and antagonism: Synergism among seven antibiotics against various bacteria in vitro. J. Bacteriol. 1952, 64, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Bushby, S.R.M.; Hitchings, G.H. Trimethoprim, a sulphonamide potentiator. Br. J. Pharmacol. Chemother. 1968, 33, 72–90. [Google Scholar] [CrossRef] [Green Version]
- Brennan-Krohn, T.; Pironti, A.; Kirby, J.E. Synergistic Activity of Colistin-Containing Combinations against Colistin-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e00873-18. [Google Scholar] [CrossRef] [Green Version]
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Genet. 2019, 17, 141–155. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Fadare, F.T.; Adefisoye, M.A.; Okoh, A.I. Occurrence, identification and antibiogram signatures of selected Enterobacteriaceae from Tsomo and Tyhume rivers in the Eastern Cape Province, Republic of South Africa. PLoS ONE 2020, 15, e0238084. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javan, A.O.; Shokouhi, S.; Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, R.M. Integrons and gene cassettes: Hotspots of diversity in bacterial genomes. Ann. N. Y. Acad. Sci. 2012, 1267, 71–78. [Google Scholar] [CrossRef]
- Kaushik, M.; Kumar, S.; Kapoor, R.K.; Virdi, J.S.; Gulati, P. Integrons in Enterobacteriaceae: Diversity, distribution and epidemiology. Int. J. Antimicrob. Agents 2018, 51, 167–176. [Google Scholar] [CrossRef]
- Li, B.; Hu, Y.; Wang, Q.; Yi, Y.; Woo, P.C.Y.; Jing, H.; Zhu, B.; Liu, C.H. Structural Diversity of Class 1 Integrons and Their Associated Gene Cassettes in Klebsiella pneumoniae Isolates from a Hospital in China. PLoS ONE 2013, 8, e75805. [Google Scholar] [CrossRef] [Green Version]
- Lemaître, N.; Ricard, I.; Pradel, E.; Foligne, B.; Courcol, R.; Simonet, M.; Sebbane, F. Efficacy of Ciprofloxacin-Gentamicin Combination Therapy in Murine Bubonic Plague. PLoS ONE 2012, 7, e52503. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.; Davis, A.P.; Mendes, R.E.; Serio, A.W.; Krause, K.M.; Flamm, R.K. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from U.S. Hospitals and Comparative Activities of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes. Antimicrob. Agents Chemother. 2018, 62, e00313-18. [Google Scholar] [CrossRef] [Green Version]
- Wachino, J.-I.; Doi, Y.; Arakawa, Y. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Me-thyltransferases. Infect. Dis. Clin. N. Am. 2020, 34, 887–902. [Google Scholar] [CrossRef]
- Sparo, M.; Delpech, G.; Allende, N.G. Impact on Public Health of the Spread of High-Level Resistance to Gentamicin and Vancomycin in Enterococci. Front. Microbiol. 2018, 9, 3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Luo, J.; Deng, F.; Huang, Y.; Zhou, H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front. Pharmacol. 2022, 13, 839808. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.D. Bactericidal Synergism between beta-Lactams and Aminoglycosides: Mechanism and Possible Therapeutic Implications. Clin. Infect. Dis. 1982, 4, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; McKee, B.; Srisupha-Olarn, W.; Burgess, D.S. In Vitro Activity of Carbapenems Alone and in Combination with Amikacin Against KPC-Producing Klebsiella Pneumoniae. J. Clin. Med. Res. 2011, 3, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Sick, A.C.; Tschudin-Sutter, S.; Turnbull, A.E.; Weissman, S.J.; Tamma, P.D. Empiric Combination Therapy for Gram-Negative Bacteremia. Pediatrics 2014, 133, e1148–e1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, M.; Han, M.-L.; Zhu, Y.; Zhou, Q.; Lin, Y.-W.; Hancock, R.E.W.; Hoyer, D.; Creek, D.J.; Li, J.; Velkov, T. Metabolomics Study of the Synergistic Killing of Polymyxin B in Combination with Amikacin against Polymyxin-Susceptible and -Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01587-19. [Google Scholar] [CrossRef]
- Maugeri, T.; Carbone, M.; Fera, M.; Irrera, G.; Gugliandolo, C. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J. Appl. Microbiol. 2004, 97, 354–361. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Wayne PA: CLSI supplement M100; Clinical and Laboratory Statandard Institute: Wanye, PA, USA, 2020. [Google Scholar]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2018. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf (accessed on 2 February 2021).
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Brisse, S.; Verhoef, J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int. J. Syst. Evol. Microbiol. 2001, 51, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Zheng, W.; Zhang, X.; Yu, J.; Gao, Q.; Hou, Y.; Huang, X. PCR detection of Klebsiella pneumoniae in infant formula based on 16S–23S internal transcribed spacer. Int. J. Food Microbiol. 2008, 125, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Kovtunovych, G.; Lytvynenko, T.; Negrutska, V.; Lar, O.; Brisse, S.; Kozyrovska, N. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene. Res. Microbiol. 2003, 154, 587–592. [Google Scholar] [CrossRef]
- Akbari, M.; Bakhshi, B.; Peerayeh, S.N. Particular Distribution of Enterobacter cloacae Strains Isolated from Urinary Tract Infection within Clonal Complexes. Iran. Biomed. J. 2015, 20, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lü, A.; Hu, X.; Zheng, L.; Zhu, A.; Cao, C.; Jiang, J. Isolation and characterization of Citrobacter spp. from the intestine of grass carp Ctenopharyngodon idellus. Aquaculture 2011, 313, 156–160. [Google Scholar] [CrossRef]
- Bej, A.K.; DiCesare, J.L.; Haff, L.; Atlas, R.M. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl. Environ. Microbiol. 1991, 57, 1013–1017. [Google Scholar] [CrossRef] [Green Version]
- Koeleman, J.G.M.; Stoof, J.; Van Der Bijl, M.W.; Vandenbroucke-Grauls, C.M.J.E.; Savelkoul, P.H.M. Identification of Epidemic Strains of Acinetobacter baumannii by Integrase Gene PCR. J. Clin. Microbiol. 2001, 39, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, C.; Lee, M.D.; Sanchez, S.; Hudson, C.; Phillips, B.; Register, B.; Grady, M.; Liebert, C.; Summers, A.; White, D.G.; et al. Incidence of Class 1 and 2 Integrases in Clinical and Commensal Bacteria from Livestock, Companion Animals, and Exotics. Antimicrob. Agents Chemother. 2001, 45, 723–726. [Google Scholar] [CrossRef] [Green Version]
Isolate Identifier | Species | Source b | Integrase Gene | MIC a (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GEN | MEM | CIP | TET | CAZ | AMP | COS | AMK | ||||
C1 | C. braakii | WWTP | intI1 + intI2 | 1 | 0.03 | 1 | 1024 | 64 | >4096 | 4 | 1 |
C2 | C. freundii | River | intI1 | 2 | 0.015 | 0.25 | 1 | 2 | 16 | 4 | 4 |
C3 | C. freundii | HWW | intI1 | 64 | 0.03 | 64 | 128 | 128 | >4096 | 4 | 4 |
C4 | C. freundii | HWW | intI1 | 128 | 0.015 | 128 | 1024 | 128 | >4096 | 2 | 16 |
EC1 | E. cloacae | River | intI1 | 1 | 0.015 | 0.06 | 4 | 0.05 | 4 | 0.125 | 2 |
EC2 | E. cloacae | WWTP | intI1 | 1 | 0.015 | 0.06 | 2 | 0.05 | 4 | 0.25 | 2 |
EC3 | E. cloacae | WWTP | intI1 + intI2 | 2 | 0.25 | 2 | 64 | 8 | ≤8 | 4 | 8 |
E1 | E. coli | River | intI1 + intI2 | 32 | 0.015 | 0.03 | 512 | 32 | >4096 | 8 | 8 |
E2 | E. coli | WWTP | intI1 + intI2 | 128 | 0.007 | 1 | 1024 | 128 | >4096 | 4 | 8 |
E3 | E. coli | HWW | intI1 + intI2 | 64 | 0.007 | 2 | 512 | 64 | 1024 | 8 | 64 |
E4 | E. coli | WWTP | intI1 + intI2 | 1 | 0.007 | 0.06 | 4 | 0.5 | 8 | 0.125 | 4 |
KO1 | K. oxytoca | WWTP | intI1 | 1 | 0.125 | >32 | 8 | 8 | >4096 | 1 | 1 |
KO2 | K. oxytoca | HWW | intI1 | 1 | 0.015 | ≤0.06 | 4 | ≤0.5 | 16 | 1 | 4 |
KO3 | K. oxytoca | HWW | intI1 | 128 | 0.06 | 16 | 64 | ˃256 | >4096 | 64 | 32 |
KO4 | K. oxytoca | HWW | intI1 | 8 | 0.125 | 64 | 512 | 64 | 8192 | 0.5 | 0.5 |
KO5 | K. oxytoca | HWW | intI1 | 0.5 | 0.03 | ≤0.003 | 2 | 0.25 | 8 | 1 | 0.25 |
KO6 | K. oxytoca | WWTP | intI1 + intI2 | 0.25 | 0.015 | ≤0.0019 | 1 | 0.06 | 64 | 2 | 0.125 |
KP1 | K. pneumoniae | WWTP | intI1 | 128 | 0.125 | 32 | 4096 | 128 | >4096 | 8 | 8 |
KP2 | K. pneumoniae | WWTP | intI1 | 0.5 | 0.015 | 0.03 | 4 | 0.5 | 8 | 4 | 0.5 |
KP3 | K. pneumoniae | River | intI1 + intI2 | 1 | 0.015 | 0.5 | 2 | 32 | 1024 | 4 | 4 |
KP4 | K. pneumoniae | River | intI1 + intI2 | 1 | 0.015 | 0.125 | 2 | 1 | 32 | 1 | 2 |
KP5 | K. pneumoniae | WWTP | intI1 | 32 | 0.25 | 16 | 1024 | 512 | >16384 | >4096 | 1 |
KP6 | K. pneumoniae | HWW | intI1 | 16 | 0.03 | 64 | 512 | 128 | 8192 | 0.5 | 8 |
KP7 | K. pneumoniae | HWW | intI1 | 1 | 0.06 | 0.015 | 54 | 0.5 | 8 | >4096 | 32 |
KP8 | K. pneumoniae | HWW | intI1 | 1 | 0.015 | 0.125 | 1 | 64 | >4096 | 8 | 2 |
KP9 | K. pneumoniae | HWW | intI1 + intI2 | 128 | 0.03 | 2 | 128 | 64 | >4096 | 4 | 2 |
Isolate Identifier | Antibiotic a | MIC Alone | MIC in Combination | FIC b | FICI c | Interpretation |
---|---|---|---|---|---|---|
C1 | CAZ | 128 | 64 | 0.50 | 1.00 | Indifferent |
COS | 2 | 1 | 0.50 | |||
C2 | CAZ | 4 | 1 | 0.25 | 0.50 | Synergy |
COS | 4 | 1 | 0.25 | |||
C3 | CAZ | 128 | 64 | 0.50 | 1.00 | Indifferent |
COS | 2 | 1 | 0.50 | |||
C4 | CAZ | 128 | 32 | 0.25 | 0.75 | Indifferent |
COS | 2 | 1 | 0.50 | |||
C1 | TET | 1024 | 512 | 0.50 | 0.75 | Indifferent |
GEN | 1 | 0.25 | 0.25 | |||
C2 | TET | 2 | 1 | 0.50 | 1.00 | Indifferent |
GEN | 2 | 1 | 0.50 | |||
C3 | TET | 256 | 16 | 0.06 | 0.56 | Indifferent |
GEN | 32 | 16 | 0.50 | |||
C4 | TET | 1024 | 128 | 0.13 | 0.25 | Synergy |
GEN | 64 | 8 | 0.13 | |||
C1 | GEN | 1 | 0.5 | 0.50 | 0.75 | Indifferent |
COS | 2 | 0.5 | 0.25 | |||
C2 | GEN | 1 | 0.25 | 0.25 | 0.75 | Indifferent |
COS | 4 | 2 | 0.50 | |||
C3 | GEN | 64 | 32 | 0.50 | 0.63 | Indifferent |
COS | 2 | 0.25 | 0.13 | |||
C4 | GEN | 128 | 32 | 0.25 | 0.38 | Synergy |
COS | 2 | 0.25 | 0.13 | |||
C1 | TET | 2048 | 1024 | 0.50 | 0.75 | Indifferent |
COS | 2 | 0.5 | 0.25 | |||
C2 | COS | 4 | 4 | 1.00 | 2.00 | Indifferent |
TET | 2 | 2 | 1.00 | |||
C3 | TET | 128 | 64 | 0.50 | 1.00 | Indifferent |
COS | 2 | 1 | 0.50 | |||
C4 | TET | 2048 | 1024 | 0.50 | 0.75 | Indifferent |
COS | 2 | 0.5 | 0.25 | |||
C1 | AMP | 8192 | 4096 | 0.50 | 1.00 | Indifferent |
CIP | 0.5 | 0.25 | 0.50 | |||
C2 | AMP | 8 | 4 | 0.50 | 1.00 | Indifferent |
CIP | 0.25 | 0.125 | 0.50 | |||
C3 | AMP | 8192 | 4096 | 0.50 | 1.00 | Indifferent |
CIP | 2 | 1 | 0.50 | |||
C4 | AMP | 8192 | 4096 | 0.50 | 1.00 | Indifferent |
CIP | 128 | 64 | 0.50 |
Organism (Isolate Code) | Antibiotic a | MIC Alone | MIC in Combination | FIC b | FICI c | Interpretation |
---|---|---|---|---|---|---|
E. coli (E3) | GEN | 32 | 8 | 0.25 | 0.50 | Synergy |
TET | 512 | 128 | 0.25 | |||
E. coli (E2) | GEN | 64 | 16 | 0.25 | 0.38 | Synergy |
TET | 512 | 64 | 0.13 | |||
E. coli (E1) | GEN | 64 | 16 | 0.25 | 0.31 | Synergy |
TET | 1024 | 64 | 0.06 | |||
K. pneumoniae (KP1) | GEN | 128 | 16 | 0.13 | 0.38 | Synergy |
TET | 4096 | 1024 | 0.25 | |||
K. oxytoca (KO1) | GEN | 0.5 | 0.06 | 0.12 | 0.62 | Indifferent |
TET | 4 | 2 | 0.50 | |||
E. coli (E3) | GEN | 32 | 16 | 0.50 | 0.63 | Indifferent |
CAZ | 128 | 16 | 0.13 | |||
E. coli (E2) | GEN | 64 | 16 | 0.25 | 0.75 | Indifferent |
CAZ | 64 | 32 | 0.50 | |||
E. coli (E1) | GEN | 64 | 32 | 0.50 | 0.75 | Indifferent |
CAZ | 64 | 16 | 0.25 | |||
K. pneumoniae (KP1) | GEN | 128 | 16 | 0.13 | 0.19 | Synergy |
CAZ | 128 | 8 | 0.06 | |||
K. pneumoniae (KP1) | GEN | 128 | 16 | 0.13 | 0.38 | Synergy |
CIP | 32 | 8 | 0.25 | |||
K. pneumoniae (KP1) | CAZ | 128 | 64 | 0.50 | 1.00 | Indifferent |
CIP | 32 | 16 | 0.50 | |||
K. pneumoniae (KP1) | AMP | 16384 | 8192 | 0.50 | 1.00 | Indifferent |
CIP | 32 | 16 | 0.50 | |||
E. coli (E3) | TET | 512 | 256 | 0.50 | 0.63 | Indifferent |
CAZ | 128 | 16 | 0.13 | |||
E. coli (E2) | TET | 512 | 256 | 0.50 | 1.00 | Indifferent |
CAZ | 64 | 32 | 0.50 | |||
E. coli (E1) | TET | 512 | 64 | 0.13 | 0.38 | Synergy |
CAZ | 64 | 16 | 0.25 | |||
K. oxytoca (KO1) | TET | 4 | 1 | 0.25 | 0.75 | Indifferent |
COS | 0.5 | 0.25 | 0.50 | |||
K. oxytoca (KO1) | CAZ | 8 | 2 | 0.25 | 0.75 | Indifferent |
COS | 0.5 | 0.25 | 0.50 | |||
K. oxytoca (KO1) | CIP | 256 | 128 | 0.50 | 0.75 | Indifferent |
COS | 0.5 | 0.125 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadare, F.T.; Elsheikh, E.A.E.; Okoh, A.I. In Vitro Assessment of the Combination of Antibiotics against Some Integron-Harbouring Enterobacteriaceae from Environmental Sources. Antibiotics 2022, 11, 1090. https://doi.org/10.3390/antibiotics11081090
Fadare FT, Elsheikh EAE, Okoh AI. In Vitro Assessment of the Combination of Antibiotics against Some Integron-Harbouring Enterobacteriaceae from Environmental Sources. Antibiotics. 2022; 11(8):1090. https://doi.org/10.3390/antibiotics11081090
Chicago/Turabian StyleFadare, Folake Temitope, Elsiddig A. E. Elsheikh, and Anthony Ifeanyin Okoh. 2022. "In Vitro Assessment of the Combination of Antibiotics against Some Integron-Harbouring Enterobacteriaceae from Environmental Sources" Antibiotics 11, no. 8: 1090. https://doi.org/10.3390/antibiotics11081090
APA StyleFadare, F. T., Elsheikh, E. A. E., & Okoh, A. I. (2022). In Vitro Assessment of the Combination of Antibiotics against Some Integron-Harbouring Enterobacteriaceae from Environmental Sources. Antibiotics, 11(8), 1090. https://doi.org/10.3390/antibiotics11081090