Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages
Abstract
:1. Introduction
2. Results
2.1. Presence and Type of Carbapenemase Genes
2.2. MLST and Phylogenetic Analysis
2.3. Genomic Location of Carbapenemase Genes and Ttransformation Assays
2.4. Resistance Phenotype and Genotype
2.5. Flanking Region of Carbapenemase Genes
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and DNA Isolation
4.2. Detection of Carbapenemase Genes
4.3. Antimicrobial Susceptibility Testing
4.4. Genome Sequencing and Annotation
4.5. MLST, cgMLST and Phylogenetic Comparison
4.6. Identification of Antimicrobial Resistance Genes and Islands and of Genetic Regions Flanking Carbapenemase Genes
4.7. Southern Blot Hybridization Analysis
4.8. Transformation of Plasmids Carrying Carbapenemase Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, P.G.; Dammhayn, C.; Hackel, M.; Seifert, H. Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2010, 65, 233–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams-Haduch, J.M.; Onuoha, E.O.; Bogdanovich, T.; Tian, G.B.; Marschall, J.; Urban, C.M.; Spellberg, B.J.; Rhee, D.; Halstead, D.C.; Pasculle, A.W.; et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J. Clin. Microbiol. 2011, 49, 3849–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahl, J.W.; Del Franco, M.; Pournaras, S.; Colman, R.E.; Karah, N.; Dijkshoorn, L.; Zarrilli, R. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci. Rep. 2015, 5, 15188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmonte, O.; Pailhories, H.; Kempf, M.; Gaultier, M.P.; Lemarie, C.; Ramont, C.; Joly-Guillou, M.L.; Eveillard, M. High prevalence of closely-related Acinetobacter baumannii in pets according to a multicentre study in veterinary clinics, Reunion Island. Vet. Microbiol. 2014, 170, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goettig, S.; Gruber, T.M.; Higgins, P.G.; Wachsmuth, M.; Seifert, H.; Kempf, V.A. Detection of pan drug-resistant Acinetobacter baumannii in Germany. J. Antimicrob. Chemother. 2014, 69, 2578–2579. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Nguyen, M.; Joshi, S.G. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. J. Appl. Microbiol. 2021, 131, 2715–2738. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Klotz, P.; Leidner, U.; Stamm, I.; Prenger-Berninghoff, E.; Gottig, S.; Semmler, T.; Scheufen, S. OXA-23 and ISAba1-OXA-66 class D beta-lactamases in Acinetobacter baumannii isolates from companion animals. Int. J. Antimicrob. Agents 2017, 49, 37–44. [Google Scholar] [CrossRef]
- Ewers, C.; Klotz, P.; Scheufen, S.; Leidner, U.; Gottig, S.; Semmler, T. Genome sequence of OXA-23 producing Acinetobacter baumannii IHIT7853, a carbapenem-resistant strain from a cat belonging to international clone IC1. Gut Pathog. 2016, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Endimiani, A.; Hujer, K.M.; Hujer, A.M.; Bertschy, I.; Rossano, A.; Koch, C.; Gerber, V.; Francey, T.; Bonomo, R.A.; Perreten, V. Acinetobacter baumannii isolates from pets and horses in Switzerland: Molecular characterization and clinical data. J. Antimicrob. Chemother. 2011, 66, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Pomba, C.; Endimiani, A.; Rossano, A.; Saial, D.; Couto, N.; Perreten, V. First report of OXA-23-mediated carbapenem resistance in sequence type 2 multidrug-resistant Acinetobacter baumannii associated with urinary tract infection in a cat. Antimicrob. Agents Chemother. 2014, 58, 1267–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herivaux, A.; Pailhories, H.; Quinqueneau, C.; Lemarie, C.; Joly-Guillou, M.L.; Ruvoen, N.; Eveillard, M.; Kempf, M. First report of carbapenemase-producing Acinetobacter baumannii carriage in pets from the community in France. Int. J. Antimicrob. Agents 2016, 48, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Jacobmeyer, L.; Stamm, I.; Semmler, T.; Ewers, C. First report of NDM-1 in an Acinetobacter baumannii strain from a pet animal in Europe. J. Glob. Antimicrob. Resist. 2021, 26, 128–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Lu, Z.; Schwarz, S.; Zhang, R.M.; Wang, X.M.; Si, W.; Yu, S.; Chen, L.; Liu, S. Complete sequence of the blaNDM-1-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J. Antimicrob. Chemother. 2013, 68, 1681–1682. [Google Scholar] [CrossRef] [Green Version]
- Al Bayssari, C.; Dabboussi, F.; Hamze, M.; Rolain, J.M. Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. J. Antimicrob. Chemother. 2015, 70, 950–951. [Google Scholar] [CrossRef] [Green Version]
- Pailhories, H.; Belmonte, O.; Kempf, M.; Lemarie, C.; Cuziat, J.; Quinqueneau, C.; Ramont, C.; Joly-Guillou, M.L.; Eveillard, M. Diversity of Acinetobacter baumannii strains isolated in humans, companion animals, and the environment in Reunion Island: An exploratory study. Int. J. Infect. Dis. 2015, 37, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Spijk, J.N.; Schmitt, S.; Furst, A.E.; Schoster, A. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012–2015). Schweiz. Arch. Tierheilkd. 2016, 158, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Linz, B.; Mukhtar, N.; Shabbir, M.Z.; Rivera, I.; Ivanov, Y.V.; Tahir, Z.; Yaqub, T.; Harvill, E.T. Virulent Epidemic Pneumonia in Sheep Caused by the Human Pathogen Acinetobacter baumannii. Front. Microbiol. 2018, 9, 2616. [Google Scholar] [CrossRef]
- Lupo, A.; Chatre, P.; Ponsin, C.; Saras, E.; Boulouis, H.J.; Keck, N.; Haenni, M.; Madec, J.Y. Clonal Spread of Acinetobacter baumannii Sequence Type 25 Carrying blaOXA-23 in Companion Animals in France. Antimicrob. Agents Chemother. 2017, 61, e01881-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, V.; White, P.A.; Hall, R.M. Evolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2010, 65, 1162–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamidian, M.; Hall, R.M. The AbaR antibiotic resistance islands found in Acinetobacter baumannii global clone 1-Structure, origin and evolution. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2018, 41, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, M.; Hawkey, J.; Wick, R.; Holt, K.E.; Hall, R.M. Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1. Microb. Genom. 2019, 5, e000242. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Chan, E.R.; Molyneaux, N.D.; Bonomo, R.A. Genomewide analysis of divergence of antibiotic resistance determinants in closely related isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 3569–3577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentilini, F.; Turba, M.E.; Pasquali, F.; Mion, D.; Romagnoli, N.; Zambon, E.; Terni, D.; Peirano, G.; Pitout, J.D.D.; Parisi, A.; et al. Hospitalized Pets as a Source of Carbapenem-Resistance. Front. Microbiol. 2018, 9, 2872. [Google Scholar] [CrossRef]
- Chanchaithong, P.; Prapasarakul, N.; Sirisopit Mehl, N.; Suanpairintr, N.; Teankum, K.; Collaud, A.; Endimiani, A.; Perreten, V. Extensively drug-resistant community-acquired Acinetobacter baumannii sequence type 2 in a dog with urinary tract infection in Thailand. J. Glob. Antimicrob. Resist. 2018, 13, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Misic, D.; Asanin, J.; Spergser, J.; Szostak, M.; Loncaric, I. OXA-72-Mediated Carbapenem Resistance in Sequence Type 1 Multidrug (Colistin)-Resistant Acinetobacter baumannii Associated with Urinary Tract Infection in a Dog from Serbia. Antimicrob. Agents Chemother. 2018, 62, e00219-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taj, Z.; Rasool, M.H.; Almatroudi, A.; Saqalein, M.; Khurshid, M. Extensively Drug-resistant Acinetobacter baumannii Belonging to International Clone II from A Pet Cat with Urinary Tract Infection; The First Report from Pakistan. Pol. J. Microbiol. 2020, 69, 231–234. [Google Scholar] [CrossRef]
- Zordan, S.; Prenger-Berninghoff, E.; Weiss, R.; van der Reijden, T.; van den Broek, P.; Baljer, G.; Dijkshoorn, L. Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerg. Infect. Dis. 2011, 17, 1751–1754. [Google Scholar] [CrossRef] [PubMed]
- Klotz, P.; Jacobmeyer, L.; Stamm, I.; Leidner, U.; Pfeifer, Y.; Semmler, T.; Prenger-Berninghoff, E.; Ewers, C. Carbapenem-resistant Acinetobacter baumannii ST294 harbouring the OXA-72 carbapenemase from a captive grey parrot. J. Antimicrob. Chemother. 2018, 73, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Pailhories, H.; Kempf, M.; Belmonte, O.; Joly-Guillou, M.L.; Eveillard, M. First case of OXA-24-producing Acinetobacter baumannii in cattle from Reunion Island, France. Int. J. Antimicrob. Agents 2016, 48, 763–764. [Google Scholar] [CrossRef] [PubMed]
- Hrenovic, J.; Seruga Music, M.; Durn, G.; Dekic, S.; Hunjak, B.; Kisic, I. Carbapenem-Resistant Acinetobacter baumannii Recovered from Swine Manure. Microb. Drug Resist. 2019, 25, 725–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlenberg, A.; Brummer, S.; Higgins, P.G.; Sohr, D.; Piening, B.C.; de Grahl, C.; Halle, E.; Ruden, H.; Seifert, H. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J. Med. Microbiol. 2009, 58, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Piazza, A.; Giani, T.; Bracco, S.; Caltagirone, M.S.; Arena, F.; Nucleo, E.; Tammaro, F.; Rossolini, G.M.; Pagani, L.; et al. Epidemic diffusion of OXA-23-producing Acinetobacter baumannii isolates in Italy: Results of the first cross-sectional countrywide survey. J. Clin. Microbiol. 2014, 52, 3004–3010. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.Y.; Apisarnthanarak, A.; Khan, E.; Suwantarat, N.; Ghafur, A.; Tambyah, P.A. Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin. Microbiol. Rev. 2017, 30, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Lukovic, B.; Gajic, I.; Dimkic, I.; Kekic, D.; Zornic, S.; Pozder, T.; Radisavljevic, S.; Opavski, N.; Kojic, M.; Ranin, L. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: Emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob. Resist. Infect. Control 2020, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Mugnier, P.D.; Poirel, L.; Naas, T.; Nordmann, P. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg. Infect. Dis. 2010, 16, 35–40. [Google Scholar] [CrossRef]
- Pfennigwerth, N.; Schauer, J. Bericht des Nationalen Referenzzentrums für gramnegative Krankenhauserreger-Zeitruam 1. Januar 2021 bis 31. Dezember 2021. Epidemiol. Bull. 2022, 19, 3–9. [Google Scholar] [CrossRef]
- Jeannot, K.; Diancourt, L.; Vaux, S.; Thouverez, M.; Ribeiro, A.; Coignard, B.; Courvalin, P.; Brisse, S. Molecular Epidemiology of Carbapenem Non-Susceptible Acinetobacter baumannii in France. PLoS ONE 2014, 9, e115452. [Google Scholar] [CrossRef]
- Giannouli, M.; Antunes, L.C.; Marchetti, V.; Triassi, M.; Visca, P.; Zarrilli, R. Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infect. Dis. 2013, 13, 282. [Google Scholar] [CrossRef] [Green Version]
- da Silva, K.E.; Maciel, W.G.; Croda, J.; Cayo, R.; Ramos, A.C.; de Sales, R.O.; Kurihara, M.N.L.; Vasconcelos, N.G.; Gales, A.C.; Simionatto, S. A high mortality rate associated with multidrug-resistant Acinetobacter baumannii ST79 and ST25 carrying OXA-23 in a Brazilian intensive care unit. PLoS ONE 2018, 13, e0209367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puentener-Simmen, S.; Zurfluh, K.; Schmitt, S.; Stephan, R.; Nuesch-Inderbinen, M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland. Front. Vet. Sci. 2019, 6, 17. [Google Scholar] [CrossRef]
- Schleicher, X.; Higgins, P.G.; Wisplinghoff, H.; Korber-Irrgang, B.; Kresken, M.; Seifert, H. Molecular epidemiology of Acinetobacter baumannii and Acinetobacter nosocomialis in Germany over a 5-year period (2005–2009). Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2013, 19, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Bi, D.; Zheng, J.; Xie, R.; Zhu, Y.; Wei, R.; Ou, H.Y.; Wei, Q.; Qin, H. Comparative Analysis of AbaR-Type Genomic Islands Reveals Distinct Patterns of Genetic Features in Elements with Different Backbones. mSphere 2020, 5, e00349-20. [Google Scholar] [CrossRef] [PubMed]
- Krizova, L.; Dijkshoorn, L.; Nemec, A. Diversity and evolution of AbaR genomic resistance islands in Acinetobacter baumannii strains of European clone I. Antimicrob. Agents Chemother. 2011, 55, 3201–3206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godeux, A.S.; Svedholm, E.; Lupo, A.; Haenni, M.; Venner, S.; Laaberki, M.H.; Charpentier, X. Scarless Removal of Large Resistance Island AbaR Results in Antibiotic Susceptibility and Increased Natural Transformability in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2020, 64, e00951-20. [Google Scholar] [CrossRef]
- Evans, B.A.; Hamouda, A.; Towner, K.J.; Amyes, S.G. Novel genetic context of multiple blaOXA-58 genes in Acinetobacter genospecies 3. J. Antimicrob. Chemother. 2010, 65, 1586–1588. [Google Scholar] [CrossRef] [PubMed]
- Ayibieke, A.; Kobayashi, A.; Suzuki, M.; Sato, W.; Mahazu, S.; Prah, I.; Mizoguchi, M.; Moriya, K.; Hayashi, T.; Suzuki, T.; et al. Prevalence and Characterization of Carbapenem-Hydrolyzing Class D beta-Lactamase-Producing Acinetobacter Isolates From Ghana. Front. Microbiol. 2020, 11, 587398. [Google Scholar] [CrossRef] [PubMed]
- Castro-Jaimes, S.; Salgado-Camargo, A.D.; Grana-Miraglia, L.; Lozano, L.; Bocanegra-Ibarias, P.; Volkow-Fernandez, P.; Silva-Sanchez, J.; Castillo-Ramirez, S.; Cevallos, M.A. Complete Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii Isolate Obtained from a Mexican Hospital (Sequence Type 422). Genome Announc. 2016, 4, e00583-16. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Jiang, J.; Zhou, H.; Jiang, Y.; Fu, Y.; Yu, Y.; Zhou, J. Characterization of a novel plasmid type and various genetic contexts of blaOXA-58 in Acinetobacter spp. from multiple cities in China. PLoS ONE 2014, 9, e84680. [Google Scholar] [CrossRef] [Green Version]
- Zarrilli, R.; Vitale, D.; Di Popolo, A.; Bagattini, M.; Daoud, Z.; Khan, A.U.; Afif, C.; Triassi, M. A plasmid-borne blaOXA-58 gene confers imipenem resistance to Acinetobacter baumannii isolates from a Lebanese hospital. Antimicrob. Agents Chemother. 2008, 52, 4115–4120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, P.G.; Lehmann, M.; Wisplinghoff, H.; Seifert, H. gyrB multiplex PCR to differentiate between Acinetobacter calcoaceticus and Acinetobacter genomic species 3. J. Clin. Microbiol. 2010, 48, 4592–4594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groebner, S.; Linke, D.; Schutz, W.; Fladerer, C.; Madlung, J.; Autenrieth, I.B.; Witte, W.; Pfeifer, Y. Emergence of carbapenem-non-susceptible extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tubingen, Germany. J. Med. Microbiol. 2009, 58, 912–922. [Google Scholar] [CrossRef] [Green Version]
- Higgins, P.G.; Lehmann, M.; Seifert, H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2010, 35, 305. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Zander, E.; Seifert, H. Identification of a novel insertion sequence element associated with carbapenem resistance and the development of fluoroquinolone resistance in Acinetobacter radioresistens. J. Antimicrob. Chemother. 2013, 68, 720–722. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, Y.; Witte, W.; Holfelder, M.; Busch, J.; Nordmann, P.; Poirel, L. NDM-1-producing Escherichia coli in Germany. Antimicrob. Agents Chemother. 2011, 55, 1318–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Dortet, L.; Bernabeu, S.; Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 5403–5407. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Hujer, K.M.; Hujer, A.M.; Hulten, E.A.; Bajaksouzian, S.; Adams, J.M.; Donskey, C.J.; Ecker, D.J.; Massire, C.; Eshoo, M.W.; Sampath, R.; et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006, 50, 4114–4123. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PloS ONE 2010, 5, e10034. [Google Scholar] [CrossRef] [Green Version]
- Higgins, P.G.; Prior, K.; Harmsen, D.; Seifert, H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS ONE 2017, 12, e0179228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, V.; Ezaki, S.; Susa, M.; Knabbe, C.; Schmid, R.D.; Bachmann, T.T. Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J. Clin. Microbiol. 2004, 42, 3766–3774. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.H.; Kumar, A.; Schweizer, H.P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 2006, 64, 391–397. [Google Scholar] [CrossRef]
Sample Collection * | blaOXA-23 | blaOXA-58 | Carbapenemase Positive Ab Isolates | |||
---|---|---|---|---|---|---|
Host/Origin | Country | IC | STPa | |||
n (%) | n (%) | (n Isolates) | ||||
1 (n = 473 Ab Isolates) | 0 | 15 (3.2) | dog (10), cat (4), air con-ditioner (1) | GER (15) | IC1 (15) | ST1 (15) |
2 (n = 30 Ab Isolates) | 13 | 14 | dog/cat (18/10) | GER (16), FRA (9), ITA (3) | IC1 (13), IC7 (10), IC10 (1), n.a. (4) | ST1 (13), ST10 (1), ST25 (10), ST578 (1), ST602 (3) |
Strain ID | Host | Source | Date of Isolation | Country | IC | STPa | STOx | cgMLST | VC a | Acquired OXA b | OXA-Flanking Pattern c | OXA-51 Type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CT | Cluster | ||||||||||||
IHIT28446 | Cat | Urine | 12/2014 | DE | 1 | 1 | 231 | 1808 | 1 | 1 | 58PL | B | 69 |
IHIT29418 | Dog | Wound | 06/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 3 | 58PL | C | 69 |
IHIT29480 | Cat | CVC | 06/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | C | 69 |
IHIT29548 | Env. | Air cond. | 06/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | C | 69 |
IHIT29580 | Cat | Phlegmon | 06/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | C | 69 |
IHIT29983 | Cat | Nose | 06/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 6 | 58PL | D | 69 |
IHIT29985 | Dog | Abdomen | 03/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 1 | 58PL | D | 69 |
IHIT30000 | Dog | Nose | 05/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 1 | 58PL | B | 69 |
IHIT33215 | Dog | Urine | 11/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 6 | 58PL | C | 69 |
IHIT32291 | Dog | Wound | 12/2015 | DE | 1 | 1 | 231 | 1808 | 1 | 1 | 58PL | B | 69 |
IHIT31605 | Dog | Wound | 05/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | A | 69 |
IHIT31634 | Dog | CVC | 06/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | A | 69 |
IHIT31820 | Dog | CVC | 06/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | A | 69 |
IHIT32293 | Dog | Wound | 01/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 13 | 58PL | A | 69 |
IHIT32295 | Dog | Urine | 03/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 14 | 58PL | A | 69 |
IHIT32298 | Cat | Urine | 05/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 1 | 58PL | A | 69 |
IHIT32299 | Cat | Wound | 06/2016 | DE | 1 | 1 | 231 | 1808 | 1 | 15 | 58PL | A | 69 |
IHIT33967 | Cat | CVC | 02/2017 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | A | 69 |
IHIT34210 | Dog | Throat | 04/2017 | DE | 1 | 1 | 231 | 1808 | 1 | 17 | 58PL | B | 69 |
IHIT34211 | Dog | Nose | 04/2017 | DE | 1 | 1 | 231 | 2175 | S | 17 | 58PL | B | 69 |
IHIT34212 | Dog | BAL | 04/2017 | DE | 1 | 1 | 231 | 1808 | 1 | 17 | 58PL | B | 69 |
IHIT34531 | Dog | Wound | 05/2017 | DE | 1 | 1 | 231 | 1808 | 1 | 1 | 58PL | A | 69 |
IHIT34607 | Dog | Abdomen | 05/2017 | DE | 1 | 1 | 231 | 1808 | 1 | 17 | 58PL | B | 69 |
IHIT35448 | Cat | Skin | 10/2017 | DE | 1 | 1 | 231 | 1808 | 1 | 20 | 58PL | B | 69 |
IHIT36934 | Dog | CVC | 04/2018 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | A | 69 |
IHIT36988 | Dog | Wound | 03/2018 | DE | 1 | 1 | 231 | 1808 | 1 | 21 | 58PL | B | 69 |
IHIT37071 | Dog | BAL | 05/2018 | DE | 1 | 1 | 231 | 1808 | 1 | 4 | 58PL | A | 69 |
IHIT38001 | Dog | Skin | 08/2018 | DE | 1 | 1 | 231 | 1808 | 1 | 22 | 58PL | B | 69 |
IHIT29027 | Dog | Urine | 07/2015 | IT | 8 | 10 | 447 | 2190 | S | 2 | 23PL | b | 68 |
IHIT29982 | Dog | Urine | 07/2015 | FR | 7 | 25 | 229 | 2184 | 3 | 5 | 23CH | a | 64 |
IHIT29995 | Dog | Ear | 07/2015 | FR | 7 | 25 | 229 | 2185 | S | 7 | 23CH | a | 64 |
IHIT30557 | Dog | Urine | 09/2015 | FR | 7 | 25 | 229 | 2184 | 3 | 5 | 23CH | a | 64 |
IHIT32250 | Cat | Urine | 08/2016 | FR | 7 | 25 | 229 | 2186 | 3 | 10 | 23CH | a | 64 |
IHIT32292 | Dog | Paw | 01/2016 | DE | 7 | 25 | 229 | 2177 | 4 | 12 | 23PL | b | 64 |
IHIT32297 | Dog | Trachea | 04/2016 | DE | 7 | 25 | 229 | 2177 | 4 | 12 | 23PL | b | 64 |
IHIT32362 | Dog | Urine | 10/2016 | DE | 7 | 25 | 229 | 2177 | 4 | 16 | 23PL | b | 64 |
IHIT34486 | Cat | Wound | 05/2017 | IT | 7 | 25 | 229 | 2182 | S | 18 | 23PL | c | 64 |
IHIT34502 | Cat | Urine | 05/2017 | FR | 7 | 25 | 229 | 2181 | S | 19 | 23PL | d | 64 |
IHIT29997 | Dog | BAL | 08/2015 | FR | n.t. | 578 | 799 | 2189 | S | 9 | 58PL | E | 65 |
IHIT29996 | Cat | Tissue | 06/2015 | FR | n.t. | 602 | 732 | 1368 | 2 | 8 | 23PL | e | 378 |
IHIT30558 | Cat | Urine | 09/2015 | FR | n.t. | 602 | 732 | 2191 | 2 | 8 | 23PL | e | 378 |
IHIT32289 | Cat | Urine | 01/2016 | FR | n.t. | 602 | 732 | 2191 | 2 | 11 | 23PL | e | 378 |
Host | Country | Year | Source | CP Type | CR Isolates/Total No. of Isolates | Localization of CP | Carbapenem Resistance | IC | STPa/Ox | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Cat | DE | 2000 | Ur | n.s. | 1/52 | n.s. | IMP | n.s. | n.s. | [29] |
Cat | DE | 2000 | Ur | OXA-23 | 1/1 | P, Tn2008 | IMP | 1 | 1/231 | [9] |
Cat, dog | CH | 2005, 2009 | Ur, Wo, Bl | ISAba1-OXA-51 | 2/19 | C | IMP, MER | 1, 2 | 12Ox & 15Ox | [10] |
Cat | PT | 2009 | Ur | OXA-23 | 1/1 | C, Tn2006 | IMP, MER | 2 | 2Past | [11] |
Dog | DE | 2011 | Ur, Sk | OXA-23 | 3/223 | P, Tn2008 | IMP, MER | 1, 8 | 10/585 | [8] |
Cat, dog | FR | 2011–2015 | Ur | OXA-23 | 7/41 | C | IMP, MER | 7 | 25Past | [19] |
Cat, dog | IT | 2014, 2015 | Fe | NDM-1 | 5/5 | C, Tn125 | IMP, MER | 2 | 2Past | [25] |
Dog | FR | 2015 | Or, Re | OXA-23 | 2/4 CR | n.s. | IMP, MER, DOR | 7 | 25Past | [12] |
Dog | RS | 2016 | Ur | OXA-72 | 1/1 | P | IMP, MER | 1 | 1Past | [27] |
Dog | TH | 2017 | Ur | OXA-23 | 1/1 | Tn2006 | IMP, MER | 2 | 2Past | [26] |
Grey Parrot | LUX | 2016 | Cho | OXA-72 | 1/1 | P | IMP, MER | n.s. | 294Past | [30] |
Cat | PK | 2020 | Ur | OXA-23 | 1/1 | n.s. | IMP, MER | 2 | 2Past | [28] |
Cat | IT | 2021 | Ur | NDM-1 | 1/1 | C | none | 7 | 25Past | [13] |
Collection 1 * (n = 473) | Collection 2 * (n = 29) | |
---|---|---|
Host/Source | ||
Dog and cat | 351 ** | 29 |
Horse | 46 | 0 |
Rabbit, guinea pig, mouse | 15 | 0 |
Livestock | 50 | 0 |
Wild and zoo animals | 7 | 0 |
Birds | 3 | 0 |
Environment | 1 | 0 |
Sample Source | ||
Wound, abscess, fistula | 125 | 7 |
Respiratory tract, nasopharynx | 83 | 4 |
Skin, hair | 52 | 3 |
Urinary tract | 42 | 14 |
Eye, ear | 25 | 1 |
Faeces, gastrointestinal tract | 18 | 0 |
Genital tract | 17 | 0 |
Other clinical sites | 36 | 0 |
Organ (after necropsy) | 40 | 0 |
Catheter, implant, tube | 34 | 0 |
Air conditioner | 1 | 0 |
Country | ||
Germany | 473 | 18 |
France | 0 | 9 |
Italy | 0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobmeyer, L.; Semmler, T.; Stamm, I.; Ewers, C. Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages. Antibiotics 2022, 11, 1045. https://doi.org/10.3390/antibiotics11081045
Jacobmeyer L, Semmler T, Stamm I, Ewers C. Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages. Antibiotics. 2022; 11(8):1045. https://doi.org/10.3390/antibiotics11081045
Chicago/Turabian StyleJacobmeyer, Lisa, Torsten Semmler, Ivonne Stamm, and Christa Ewers. 2022. "Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages" Antibiotics 11, no. 8: 1045. https://doi.org/10.3390/antibiotics11081045
APA StyleJacobmeyer, L., Semmler, T., Stamm, I., & Ewers, C. (2022). Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages. Antibiotics, 11(8), 1045. https://doi.org/10.3390/antibiotics11081045