Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Literature Search Strategy
2.3. Inclusion and Exclusion Criteria
- -
- The full study was published;
- -
- The study described clinical use of CFD for HAI;
- -
- The agent responsible for the infection was carbapenem-resistant bacteria;
- -
- The study reported the clinical outcome of the patient(s) treated with CFD.
- The study did not report clinical outcome;
- The study had duplicate data with others (in these cases, only the largest study was retained);
- The study presented pooled data that did not allow for extrapolation of useful information.
- Resistant to any carbapenem antimicrobial (i.e., minimum inhibitory concentrations [MIC] of ≥4 mcg/mL for doripenem, meropenem, or imipenem OR ≥ 2 mcg/mL for ertapenem);
- Documented to produce carbapenemase (e.g., KPC, NDM, VIM, IMP, OXA-48).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Health Care-Associated Infections. Available online: https://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf (accessed on 4 February 2022).
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 4 February 2022).
- Trecarichi, E.M.; Tumbarello, M. Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence 2017, 8, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Lalaoui, R.; Bakour, S.; Livnat, K.; Assous, M.V.; Diene, S.M.; Rolain, J.M. Spread of Carbapenem and Colistin-Resistant Klebsiella pneumoniae ST512 Clinical Isolates in Israel: A Cause for Vigilance. Microb. Drug Resist. 2019, 25, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Zahedi Bialvaei, A.; Samadi Kafil, H.; Ebrahimzadeh Leylabadlo, H.; Asgharzadeh, M.; Aghazadeh, M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran. J. Microbiol. 2015, 7, 226–246. [Google Scholar] [PubMed]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 2014, 20, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Healthcare-Associated Infections Acquired in Intensive Care Units. Annual Epidemiological Report for 2017. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-HAI.pdf (accessed on 4 February 2022).
- Cerceo, E.; Deitelzweig, S.B.; Sherman, B.M.; Amin, A.N. Multidrug-resistant gram-negative bacterial infections in the hospital setting: Overview, implications for clinical practice, and emerging treatment options. Microb. Drug Resist. 2016, 22, 412–431. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 4 February 2022).
- Di Franco, S.; Alfieri, A.; Pace, M.C.; Sansone, P.; Pota, V.; Fittipaldi, C.; Fiore, M.; Passavanti, M.B. Blood Stream Infections from MDR Bacteria. Life 2021, 11, 575. [Google Scholar] [CrossRef]
- Giurazza, R.; Mazza, M.C.; Andini, R.; Sansone, P.; Pace, M.C.; Durante-Mangoni, E. Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life 2021, 11, 519. [Google Scholar] [CrossRef]
- Giaccari, L.G.; Pace, M.C.; Passavanti, M.B.; Gargano, F.; Aurilio, C.; Sansone, P. Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence. Life 2021, 11, 474. [Google Scholar] [CrossRef]
- Ito, A.; Kohira, N.; Bouchillon, S.K.; West, J.; Rittenhouse, S.; Sader, H.S.; Rhomberg, P.R.; Jones, R.N.; Yoshizawa, H.; Nakamura, R.; et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J. Antimicrob. Chemother. 2016, 71, 670–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. 2017, 62, e01454-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Nishikawa, T.; Ota, M.; Ito-Horiyama, T.; Ishibashi, N.; Sato, T.; Tsuji, M.; Yamano, Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J. Antimicrob. Chemother. 2018, 73, 3049–3052. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, chemistry, and pharmacological profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S538–S543. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pdf (accessed on 4 February 2022).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 4 February 2022).
- Clinical and Laboratory Standards Institute. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 4 February 2022).
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Bleibtreu, A.; Dortet, L.; Bonnin, R.A.; Wyplosz, B.; Sacleux, S.C.; Mihaila, L.; Dupont, H.; Junot, H.; Bunel, V.; Grall, N.; et al. The Cefiderocol French Study Group OBO. Susceptibility Testing Is Key for the Success of Cefiderocol Treatment: A Retrospective Cohort Study. Microorganisms 2021, 9, 282. [Google Scholar] [CrossRef]
- Oliva, A.; Ceccarelli, G.; De Angelis, M.; Sacco, F.; Miele, M.C.; Mastroianni, C.M.; Venditti, M. Cefiderocol for compassionate use in the treatment of complicated infections caused by extensively and pan-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2020, 23, 292–296. [Google Scholar] [CrossRef]
- Bodro, M.; Hernández-Meneses, M.; Ambrosioni, J.; Linares, L.; Moreno, A.; Sandoval, E.; Olivas, P.; Hernández-Tejero, M.; Miró, J.M.; Marco, F.; et al. Salvage Treatment with Cefiderocol Regimens in Two Intravascular Foreign Body Infections by MDR Gram-Negative Pathogens, Involving Non-Removable Devices. Infect. Dis. Ther. 2021, 10, 575–581. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as Rescue Therapy for Acinetobacter baumannii and Other Carbapenem-resistant Gram-negative Infections in Intensive Care Unit Patients. Clin. Infect. Dis. 2021, 72, 2021–2024. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Volpi, S.; Faltoni, M.; Dolci, G.; Orlando, G.; Franceschini, E.; Menozzi, M.; Sarti, M.; Del Fabro, G.; Fumarola, B.; et al. Real-life experience with compassionate use of cefiderocol for difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections. JAC Antimicrob. Resist. 2021, 3, dlab188. [Google Scholar] [CrossRef] [PubMed]
- Zingg, S.; Nicoletti, G.J.; Kuster, S.; Junker, M.; Widmer, A.; Egli, A.; Hinic, V.; Sendi, P.; Battegay, M.; Bättig, V.; et al. Cefiderocol for Extensively Drug-Resistant Gram-Negative Bacterial Infections: Real-world Experience from a Case Series and Review of the Literature. Open Forum Infect. Dis. 2020, 7, ofaa185. [Google Scholar] [CrossRef] [PubMed]
- Alamarat, Z.I.; Babic, J.; Tran, T.T.; Wootton, S.H.; Dinh, A.Q.; Miller, W.R.; Hanson, B.; Wanger, A.; Gary, J.L.; Arias, C.A.; et al. Long-Term Compassionate Use of Cefiderocol to Treat Chronic Osteomyelitis Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae in a Pediatric Patient. Antimicrob. Agents Chemother. 2020, 64, e01872-19. [Google Scholar] [CrossRef] [Green Version]
- Bavaro, D.F.; Romanelli, F.; Stolfa, S.; Belati, A.; Diella, L.; Ronga, L.; Fico, C.; Monno, L.; Mosca, A.; Saracino, A. Recurrent neurosurgical site infection by extensively drug-resistant P. aeruginosa treated with cefiderocol: A case report and literature review. Infect. Dis. 2021, 53, 206–211. [Google Scholar] [CrossRef]
- Carney, B.W.; Rizzo, J.A.; Alderete, J.F.; Cindass, R., Jr.; Markelz, A.E.; Cancio, L.C. Carbapenem-Resistant Enterobacterales Infection After Massive Blast Injury: Use of Cefiderocol Based Combination Therapy. Mil. Med. 2021, 186, 1241–1245. [Google Scholar] [CrossRef]
- Cipko, K.; Kizny Gordon, A.; Adhikari, S.; Konecny, P. Cefiderocol treatment of Pseudomonas aeruginosa and extensively drug-resistant Acinetobacter baumannii retained spinal hardware infection causing reversible acute interstitial nephritis: Recto: Cefiderocol causing acute interstitial nephritis. Int. J. Infect. Dis. 2021, 109, 108–111. [Google Scholar] [CrossRef]
- Contreras, D.A.; Fitzwater, S.P.; Nanayakkara, D.D.; Schaenman, J.; Aldrovandi, G.M.; Garner, O.B.; Yang, S. Coinfections of Two Strains of NDM-1- and OXA-232-Coproducing Klebsiella pneumoniae in a Kidney Transplant Patient. Antimicrob. Agents Chemother. 2020, 64, e00948-19. [Google Scholar] [CrossRef]
- Dagher, M.; Ruffin, F.; Marshall, S.; Taracila, M.; Bonomo, R.A.; Reilly, R.; Fowler, V.G., Jr.; Thaden, J.T. Case Report: Successful Rescue Therapy of Extensively Drug-Resistant Acinetobacter baumannii Osteomyelitis with Cefiderocol. Open Forum Infect. Dis. 2020, 7, ofaa150. [Google Scholar] [CrossRef]
- Edgeworth, J.D.; Merante, D.; Patel, S.; Young, C.; Jones, P.; Vithlani, S.; Wyncoll, D.; Roberts, P.; Jones, A.; Nagata, T.D.; et al. Compassionate Use of Cefiderocol as Adjunctive Treatment of Native Aortic Valve Endocarditis Due to Extremely Drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2019, 68, 1932–1934. [Google Scholar] [CrossRef] [Green Version]
- Perez, C.G.; Maillart, E.; Deyi, V.M.; Huang, T.D.; Kamgang, P.; Dernier, Y.; Clevenbergh, P. Compassionate use of cefiderocol in a pancreatic abscess and emergence of resistance. Infect. Dis. Now 2021, 51, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Rando, E.; Segala, F.V.; Vargas, J.; Seguiti, C.; De Pascale, G.; Murri, R.; Fantoni, M. Cefiderocol for Severe Carbapenem-Resistant A. baumannii Pneumonia: Towards the Comprehension of Its Place in Therapy. Antibiotics 2021, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Siméon, S.; Dortet, L.; Bouchand, F.; Roux, A.-L.; Bonnin, R.A.; Duran, C.; Decousser, J.-W.; Bessis, S.; Davido, B.; Sorriaux, G.; et al. Compassionate Use of Cefiderocol to Treat a Case of Prosthetic Joint Infection Due to Extensively Drug-Resistant Enterobacter hormaechei. Microorganisms 2020, 8, 1236. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.W.; Clancy, M. Compassionate Use of Cefiderocol in the Treatment of an Intraabdominal Infection Due to Multidrug-Resistant Pseudomonas aeruginosa: A Case Report. Pharmacotherapy 2019, 39, 1113–1118. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Quirino, A.; Scaglione, V.; Longhini, F.; Garofalo, E.; Bruni, A.; Biamonte, E.; Lionello, R.; Serapide, F.; Mazzitelli, M.; et al. Successful treatment with cefiderocol for compassionate use in a critically ill patient with XDR Acinetobacter baumannii and KPC-producing Klebsiella pneumoniae: A case report. J. Antimicrob. Chemother. 2019, 74, 3399–3401. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/ECDC-WHO-AMR-report.pdf (accessed on 4 February 2022).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 4 February 2022).
- Labaste, F.; Grossac, J.; Bounes, F.V.; Conil, J.-M.; Ruiz, S.; Seguin, T.; Grare, M.; Fourcade, O.; Minville, V.; Georges, B. Risk factors for acquisition of carbapenem-resistance during treatment with carbapenem in the intensive care unit: A prospective study. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2077–2085. [Google Scholar] [CrossRef] [Green Version]
- Aurilio, C.; Sansone, P.; Paladini, A.; Barbarisi, M.; Coppolino, F.; Pota, V.; Pace, M. Multidrug Resistence Prevalence in COVID Area. Life 2021, 11, 601. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2019, 16, 74. [Google Scholar] [CrossRef]
- Luscher, A.; Moynié, L.; Auguste, P.S.; Bumann, D.; Mazza, L.; Pletzer, D.; Naismith, J.H.; Köhler, T. TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates. Antimicrob. Agents Chemother. 2018, 62, e00097-18. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Sadek, M.; Nordmann, P. Contribution of PER-Type and NDM-Type β-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e0087721. [Google Scholar] [CrossRef]
- Shields, R.K.; Iovleva, A.; Kline, E.G.; Kawai, A.; McElheny, C.L.; Doi, Y. Clinical Evolution of AmpC-Mediated Ceftazidime-Avibactam and Cefiderocol Resistance in Enterobacter cloacae Complex Following Exposure to Cefepime. Clin. Infect. Dis. 2020, 71, 2713–2716. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Bartzavali, C.; Lambropoulou, A.; Solomou, A.; Tsiata, E.; Anastassiou, E.D.; Fligou, F.; Marangos, M.; Spiliopoulou, I.; Christofidou, M. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J. Antimicrob. Chemother. 2019, 74, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/assessment-report/fetcroja-epar-public-assessment-report_en.pdf (accessed on 4 February 2022).
EUCAST | CLSI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacteriaceae | Acinetobacter | Pseudomonas | Enterobacteriaceae | Acinetobacter | Pseudomonas | |||||||
Carbapenem | S | R | S | R | S | R | S | R | S | R | S | R |
Doripenem | ≤1 | ≥4 | ≤1 | ≥2 | ≤1 | ≥2 | ≤1 | ≥4 | ≤2 | ≥8 | ≤1 | ≥8 |
Ertapenem | ≤0.5 | ≥1 | - | - | - | - | ≤0.5 | ≥2 | - | - | - | - |
Imipenem | ≤2 | ≥8 | ≤2 | ≥8 | ≤4 | ≥8 | ≤1 | ≥4 | ≤2 | ≥8 | ≤2 | ≥8 |
Meropenem | ≤2 | ≥8 | ≤2 | ≥8 | ≤2 | ≥8 | ≤1 | ≥4 | ≤2 | ≥8 | ≤2 | ≥8 |
Author, Year | Study | No. | Country | Bacterial Agent | Carbapenemase | Site of Infection |
---|---|---|---|---|---|---|
Alamarat ZI et al., 2020 [31] | CR | 1 | Nigeria | -Pseudomonas aeruginosa (n = 1) | -NDM-1 (n = 1) | -Osteomyelitis (n = 1) |
Bassetti et al., 2020 [24] | RCT | 101 (80) | 16 countries in North America, South America, Europe and Asia | -Acinetobacter baumannii (n = 37) -Klebsiella Pneumoniae (n = 27) -Pseudomonas aeruginosa (n = 12) -Stenotrophomonas maltophilia (n = 5) -Acinetobacter nosocomialis (n = 2) -Enterobacter cloacae (n = 2) -Eschierichia Coli (n = 2) | N/D | -Nosocomial pneumonia (n = 45) -BSI or sepsis (n = 30) -cUTI (n = 26) |
Bavaro DF et al., 2020 [32] | CR | 1 | Italy | -Pseudomonas aeruginosa (n = 1) | N/D | -Osteomyelitis (n = 1) |
Bleibtreu et al., 2021 [25] | OS | 12 | France | -Pseudomonas aeruginosa (n = 9) -Acinetobacter baumannii (n = 2) -Klebsiella pneumoniae (n = 1) -Enterobacter hormaechei (n = 1) | -VIM-2 (n = 3) -VIM-4 (n = 1) -OXA-23 (n = 2) -OXA-48 (n = 1) -OXA-836 (n = 1) -NDM-1 (n = 1) | -Respiratory tract (n = 10) -Intra-abdominal (n = 2), -Osteo-articular (n = 2), -Skin-and-skin structure (n = 1), -Urinary tract (n = 1). |
Bodro et al., 2021 [27] | CS | 2 | Spain | -Acinetobacter xylosidans (or xylosoxidans?) (n = 1) -Pseudomonas aeruginosa (n = 1) | N/D | -Bacteremia (n = 2) |
Carney et al., 2021 [33] | CR | 1 | USA | -Eschierichia Coli (n = 1) | -NDM-5 (n = 1) | -Osteomyelitis (n = 1) |
Cipko K et al., 2021 [34] | CR | 1 | Australia | -Acinetobacter baumannii (n = 1) | -OXA-23 (n = 1) | -Osteomyelitis (n = 1) |
Contreras DA et al., 2020 [35] | CR | 1 | USA | -Klebsiella pneumoniae (n = 1) | -NDM-1 (n = 1) -OXA-48 (n = 1) | -Abdominal infection (n = 1) |
Dragher M et al., 2020 [36] | CR | 1 | USA | -Acinetobacter baumannii (n = 1) | -OXA-23 (n = 1) | -Osteomyelitis (n = 1) |
Edgeworth JD et al., 2019 [37] | CR | 1 | Kuwait | -Acinetobacter baumannii (n = 1) -Klebsiella pneumoniae (n = 1) | -OXA-23 (n = 1) -OXA-48 (n = 1) -OXA-51 (n = 1) | -Endocarditis (n = 1) |
Falcone et al., 2020 [28] | CS | 10 | Italy | -Acinetobacter baumannii (n = 8) -Klebsiella pneumoniae (n = 3) -Stenotrophomonas maltophilia (n = 1) | -NDM (n = 3) | -VAP (n = 4) -BSI (n = 6) |
Grande Perez C et al., 2021 [38] | CR | 1 | Belgium | -Pseudomonas aeruginosa (n = 1) | -VIM (n = 1) | -Pancreatitis (n = 1) |
Meschiari M et al., 2021 [29] | CS | 17 | Italy | -Pseudomonas aeruginosa (n = 17) | N/D | -VAP (n = 7) -HAP (n = 1) -Peritonitis (n = 3) -Cholangitis (n = 1) -Osteomyelitis (n = 1) -Meningitis (n = 1) -Skin infection (n = 1) -Empyema (n = 1) -Primary bacteremia (n = 1) |
Oliva A et al., 2020 [26] | CS | 3 | Italy | -Acinetobacter baumannii (n = 3) -Klebsiella pneumoniae (n = 1) -Pseudomonas aeruginosa (n = 1) | N/D | -VAP (n = 1) -BSI (n = 1) -Spondylodiscitis (n = 1) |
Rando E et al., 2022 [39] | OS | 13 | Italy | -Acinetobacter baumannii (n = 13) -Klebsiella pneumoniae (n = 2) -Pseudomonas aeruginosa (n = 2) | N/D | -VAP (n = 10) -HAP (n = 3) |
Simeon S et al., 2020 [40] | CR | 1 | France | -Enterobacter hormaechei (n = 1) | N/D | -knee prosthetic joint infection (n = 1) |
Stevens WS et al., 2019 [41] | CR | 1 | USA | -Pseudomonas aeruginosa (n = 1) | N/D | -Abdominal infection (n = 1) |
Trecarichi EM et al., 2019 [42] | CR | 1 | Italy | -Acinetobacter baumannii (n = 1) -Klebsiella pneumoniae (n = 1) | KPC | -VAP (n = 1) -BSI (n = 1) |
Zingg S et al., 2020 [30] | CS | 3 | Swisse | -A. baumannii (n = 3) -E. cloacae KPC (n = 1) -Pseudomonas aeruginosa (n = 1) | -OXA-23 (n = 2) -OXA-40 (n = 1) -OXA-58 (n = 1) -NDM (n = 1) -VIM (n = 1) -KPC | -Acute osteomyelitis (n = 1) -Postoperative implant-associated surgical site infection (n = 1) -Pleural empyema (n = 1) |
No. | |
---|---|
Patients | 160 |
M/F | 111/49 |
Age ± SD (years) | 58.8 ± 15.8 |
Race -White -Asian -Black or African American -Other -n/D | 97 31 1 11 32 |
Comorbidities -Renal disease (renal transplant) -Diabetes -Chronic pulmonary disease -Cancer -Congestive/ischemic heart disease -Arterial hypertension -Vascular disease -Hepatitis -Cerebral or neurological disease -Blood disease -Atrial fibrillation -Pancreatitis -Endocarditis -Hypothyroidism -Gout arthritis -Recurrent infections in hip replacement | 44 (3) 44 43 31 17 16 13 12 6 3 2 1 1 1 1 1 |
Country of infection -Afghanistan -Australia -Belgium -Columbia -France -Italy -Kuwait -Nigeria -Serbia -Spain -Thailand -US | 1 1 1 1 2 6 1 1 1 1 1 3 |
Study | Bacterial Agent | AMK | AZT | CEF | CFD | CZA | CIP | COL | FOM | GEN | IPM | MEM | TZP | TGC | TOB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alamarat ZI et al. | P. aeruginosa | <32 | 6 | >16 | 4 | >256 | >2 | 0.75 | NA | >8 | R | >8 | >64 | >4 | >8 |
Bassetti et al. | A. baumannii | NA | NA | NA | 1 | NA | NA | NA | NA | NA | R | R | NA | NA | NA |
K. pneumoniae | NA | NA | NA | 4 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
P. aeruginosa | NA | NA | NA | 2 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
Bavaro DF et al. | P. aeruginosa | NA | NA | 16 (R) | 0.5 (S) 27 mm | >8 (R) | >2 (R) | 1 (S) | 32 (S) | >8 (R) | >8 (R) | >8 (R) | >64 (R) | NA | >8 (R) |
Bleibtreu et al. | P. aeruginosa | 64 (R) | R | R | 2 (S) | 32 (R) | 32 (R) | 2 (S) | NA | >256 (R) | 32 (R) | 32 (R) | R | 16 (R) | >256 (R) |
A. baumannii | 16 (S) | R | R | 1 (S) | 32 (R) | 32 (R) | 2 (S) | NA | >256 (R) | 32 (R) | 32 (R) | R | 2 | 3 (S) | |
A. baumannii | >256 (R) | R | R | 0.5 (S) | 32 (R) | 32 (R) | 1 (S) | NA | >256 (R) | 32 (R) | 32 (R) | R | 4 | >256 (R) | |
P. aeruginosa | >256 (R) | R | R | 4 (S) | 32 (R) | 32 (R) | 4 (R) | NA | >256 (R) | 2 | 16 (R) | R | 8 (R) | >256 (R) | |
P. aeruginosa | >256 (R) | R | R | 2 (S) | 32 (R) | 32 (R) | 2 (S) | NA | >256 (R) | 32 (R) | 32 (R) | R | 16 (R) | >256 (R) | |
E. hormaechei | 16 (R) | R | R | 1 (S) | 8 (S) | 32 (R) | 0.5 (S) | NA | >256 (R) | 8 (R) | 16 (R) | R | 1 (S) | 48 (R) | |
K. pneumoniae | 4 (R) | R | R | 0.5 (S) | ≤0.25 (S) | 1.5 (R) | 1 (S) | NA | 0.5 (S) | 2 (I) | 2 (R) | R | 2 | 6 (S) | |
P. aeruginosa | >256 (R) | R | R | 4 (S) | 32 (R) | 32 (R) | 2 (S) | NA | >256 (R) | 32 (R) | 32 (R) | R | 8 (R) | >256 (R) | |
P. aeruginosa | >256 (R) | R | R | 8 (I) | 32 (R) | 32 (R) | 2 (S) | NA | 16 (R) | 32 (R) | 32 (R) | R | 8 (R) | 32 (R) | |
P. aeruginosa | >256 (R) | R | R | 16 (R) | 32 (R) | 32 (R) | 64 (R) | NA | 8 (I) | 32 (R) | 16 (R) | R | 8 (R) | >256 (R) | |
P. aeruginosa | >256 (R) | R | R | 16 (R) | 32 (R) | 32 (R) | 2 (S) | NA | >256 (R) | 2 | 16 (R) | R | 8 (R) | >256 (R) | |
P. aeruginosa | >256 (R) | R | R | >32 (R) | 32 (R) | 32 (R) | 2 (S) | NA | >256 (R) | 32 (R) | 32 (R) | R | 8 (R) | >256 (R) | |
P. aeruginosa | 16 (S) | R | R | 16 (R) | 32 (R) | 4 (R) | 2 (S) | NA | 3 (S) | 32 (R) | 32 (R) | R | 16 (R) | 1 (S) | |
Bodro et al. | A. xylosidans | NA | NA | NA | 21 mm (S) | NA | >2 (R) | 1 (S) | NA | NA | R | >16 (R) | 2/4 (S) | 2 (S) | NA |
P. aeruginosa | NA | NA | NA | 23 mm (S) | >8/4 (R) | >1 (R) | 2 (S) | NA | NA | R | >8 (R) | 32/4 (R) | NA | >4 (R) | |
Carney et al. | E. coli | 8 | >32 | >16 | 2 (S) | >64 | >4 | 4 | NA | NA | 16 | 64 | NA | 0.5 | NA |
Cipko K et al. | A. baumannii | ≤16 (S) | >84 | >2 (R) | 0.5 | 25 (R) | >1 (R) | 1 (S) | >32 (R) | >2 (R) | >32 (R) | >32 (R) | >16/2 (R) | 4 (R) | NA |
Contreras DA et al. | K. pneumoniae | >32 (R) | >32 (R) | >32 (R) | 21 mm (S) | >32 (R) | ≥2 (R) | ≤2 (R) | >16 (R) | >16 (R) | >16 (R) | 128 (R) | 1 (S) | >16 (R) | |
Dragher M et al., | A. baumannii | >32 (R) | >16 (R) | >16 (R) | 23 mm (S) | 15 mm (R) | >2 (R) | ≤2 (S) | 17 mm (S) | >8 (R) | 6 mm (R) | >8 (R) | NA | 6 mm (R) | >8 (R) |
Edgeworth JD et al. | P. aeruginosa | S | NA | NA | 21.3 mm (S) | R | NA | S | NA | S | R | >32 (R) | NA | NA | NA |
Falcone et al. | A. baumannii | NA | NA | NA | 0.25 | NA | NA | NA | NA | NA | R | R | NA | NA | NA |
A. baumannii | NA | NA | NA | 0.5 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | 0.5 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | 0.5 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | 0.25 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | 0.5 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
S. maltophilia + K. pneumoniae | NA | NA | NA | 0.5/1 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
K. pneumoniae | NA | NA | NA | 1 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
A. baumannii + K. pneumoniae | NA | NA | NA | 0.12/2 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | 0.5 | NA | NA | NA | NA | NA | R | R | NA | NA | NA | |
Grande Perez C et al. | P. aeruginosa | NA | NA | NA | 8 (R) | NA | NA | S | NA | NA | R | R | NA | NA | NA |
Meschiari M et al. | P. aeruginosa | 4 | NA | 16 | ≤2 | 16 | 0.5 | NA | NA | 2 | >8 | >8 | 16 | NA | NA |
P. aeruginosa | ≤32 | NA | 32 | 1 | 32 | 1 | NA | 32 | 2 | >8 | 32 | 64 | NA | NA | |
P. aeruginosa | 32 | NA | 16 | 0.25 | 16 | 0.5 | NA | >64 | ≤1 | 8 | ≥16 | 32 | NA | NA | |
P. aeruginosa | 4 | NA | 16 | 0.5 | 16 | 1 | NA | >64 | NA | > 8 | 16 | ≥128 | NA | NA | |
P. aeruginosa | 4 | NA | 8 | ≤2 | 2 | 2 | NA | NA | 2 | 2 | 2 | 32 | NA | NA | |
P. aeruginosa | 2 | NA | 16 | ≤2 | 16 | 0.12 | NA | NA | ≤1 | >8 | >8 | >64 | NA | NA | |
P. aeruginosa | ≤1 | NA | NA | ≤2 | 32 | >2 | NA | Na | ≤1 | >8 | >8 | >64 | NA | NA | |
P. aeruginosa | 2 | NA | 16 | NA | 16 | 1 | NA | 128 | ≤1 | >8 | 32 | 32 | NA | NA | |
P. aeruginosa | 8 | NA | >16 | ≤2 | >32 | > 2 | NA | 64 | >8 | >8 | > 8 | >64 | NA | NA | |
P. aeruginosa | 2 | NA | >32 | 0.12 | >32 | 0.5 | NA | 32 | 2 | >8 | 64 | 16 | NA | NA | |
P. aeruginosa | 2 | NA | >32 | 0.5 | ≥64 | 0.25 | NA | 64 | ≤1 | NA | 32 | ≥128 | NA | NA | |
P. aeruginosa | 8 | NA | ≥32 | NA | ≥64 | 1 | NA | >256 | 4 | >8 | 64 | ≥128 | NA | NA | |
P. aeruginosa | 8 | NA | ≥32 | 1 | ≥64 | ≥4 | NA | >64 | ≥16 | NA | 16 | 32 | NA | NA | |
P. aeruginosa | 4 | NA | NA | ≤2 | 16 | >2 | NA | 128 | 4 | NA | >8 | 32 | NA | NA | |
P. aeruginosa | 4 | NA | 16 | ≤2 | >32 | 0.5 | NA | NA | 2 | >8 | >8 | >64 | NA | NA | |
P. aeruginosa | 4 | NA | 16 | ≤2 | 8 | >2 | NA | 64 | >8 | >8 | >8 | >64 | NA | NA | |
P. aeruginosa | 4 | NA | 16 | ≤2 | >32 | 0.12 | NA | NA | 4 | >8 | >8 | >64 | NA | NA | |
Oliva A et al. | A. baumannii | NA | NA | NA | S | NA | NA | 2 | NA | NA | R | R | NA | 4 | NA |
A. baumannii | NA | NA | NA | S | NA | NA | 0.5 (S) | NA | NA | R | R | NA | 4 | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | 0.5 (S) | NA | NA | R | R | NA | 2 | NA | |
Simeon S et al. | E. hormaechei | 16 (R) | >32 (R) | >32 (R) | 1 (S) | 8 (S) | >32 (R) | 0.5 (S) | >256 (R) | 8 (R) | 16 (R) | 128 (R) | 1 (S) | 48 (R) | |
Rando E et al. | A. baumannii + P. aeruginosa | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii + P. aeruginosa | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii + K. pneumoniae | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii + K. pneumoniae | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
A. baumannii | NA | NA | NA | S | NA | NA | S | NA | NA | R | R | NA | NA | NA | |
Stevens WS et al. | P. aeruginosa | 8 (S) | >32 (R) | >16 (R) | 0.12 (S) | 32 (R) | >4 (R) | 1 (S) | NA | >16 (S) | 32 (R) | 32 (R) | 8 mm (R) | NA | >16 (R) |
Trecarichi EM et al. | A. baumannii | NA | NA | NA | S | NA | NA | 0.5 (S) | NA | NA | R | R | NA | NA | NA |
K. pneumoniae | NA | NA | NA | S | 4 (S) | NA | 0.5 (S) | NA | 2 (S) | R | R | NA | NA | NA | |
Zingg S et al. | A. baumannii | R | NA | R | 23 mm (S) | R | R | S | S | NA | R | R | NA | S | R |
E. cloacae | R | R | I | 14 mm (R) | S | R | S | R | NA | I | R | NA | S | S | |
P. aeruginosa | R | R | R | 24 mm (S) | R | R | S | S | NA | R | R | NA | NA | R | |
A. baumanni | R | R | R | 18 mm (S) | R | R | S | R | NA | R | R | NA | R | R | |
A. baumanni | I | R | R | 20 mm (S) | R | R | S | R | NA | R | R | NA | R | R |
EUCAST | CLSI | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacteriaceae | Acinetobacter | Pseudomonas | Enterobacteriaceae | Acinetobacter | Pseudomonas | |||||||||||||
S | I | R | S | I | R | S | I | R | S | I | R | S | I | R | S | I | R | |
CFD | <2 | – | >2 | – | – | – | <2 | – | >2 | <4 | 8 | >16 | <4 | 8 | >16 | <4 | 8 | >16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansone, P.; Giaccari, L.G.; Coppolino, F.; Aurilio, C.; Barbarisi, A.; Passavanti, M.B.; Pota, V.; Pace, M.C. Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence. Antibiotics 2022, 11, 904. https://doi.org/10.3390/antibiotics11070904
Sansone P, Giaccari LG, Coppolino F, Aurilio C, Barbarisi A, Passavanti MB, Pota V, Pace MC. Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence. Antibiotics. 2022; 11(7):904. https://doi.org/10.3390/antibiotics11070904
Chicago/Turabian StyleSansone, Pasquale, Luca Gregorio Giaccari, Francesco Coppolino, Caterina Aurilio, Alfonso Barbarisi, Maria Beatrice Passavanti, Vincenzo Pota, and Maria Caterina Pace. 2022. "Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence" Antibiotics 11, no. 7: 904. https://doi.org/10.3390/antibiotics11070904
APA StyleSansone, P., Giaccari, L. G., Coppolino, F., Aurilio, C., Barbarisi, A., Passavanti, M. B., Pota, V., & Pace, M. C. (2022). Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence. Antibiotics, 11(7), 904. https://doi.org/10.3390/antibiotics11070904