Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes
Abstract
:1. Introduction
2. Results
2.1. Metagenomic Reads Assembly and Coverage Analysis
2.2. Screening PKS I Genes and Phylogenetic Analysis
2.3. Marine Sediments of the GoM as a Source of Bioactive Compounds
2.4. Exploring Biosynthetic Genes from Genome Bins
3. Discussion
4. Materials and Methods
4.1. Sampling Sites and DNA Sequencing
4.2. Quality Control and Assembly
4.3. Taxonomy Profiles, Coverage, and Diversity Estimations
4.4. Hidden Markov Model Search and Phylogenetic Tree Reconstruction
4.5. Bioactive Potential in Marine Sediments and Environmental Draft Genome Reconstruction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadri, S.S. Key Takeaways from the U.S. CDC’s 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit. Care Med. 2020, 48, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.F. Marine microbial diversity: The tip of the iceberg. Trends Biotechnol. 1997, 15, 203–207. [Google Scholar] [CrossRef]
- Pace, N.R. A molecular view of microbial diversity and the biosphere. Science 1997, 276, 734–740. [Google Scholar] [CrossRef]
- Hugenholtz, P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002, 3, reviews0003.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugenholtz, P.; Goebel, B.M.; Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 1998, 180, 4765–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; De Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum Information about a Biosynthetic Gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.T.; Khosla, C. Combinatorial biosynthesis of polyketides-a perspective. Curr. Opin. Chem. Biol. 2012, 16, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Lou, L. PKS and NRPS release mechanisms. Nat. Prod. Rep. 2009, 27, 255–278. [Google Scholar] [CrossRef]
- Cane, D.E.; Walsh, C.T.; Khosla, C. Harnessing the biosynthetic code: Combinations, permutations, and mutations. Science 1998, 282, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R.; Kumari, R.; Kaur, H.; Khanna, R.; Dhingra, N.; Tuteja, D. Regulation and manipulation of the gene clusters encoding type-I PKSs. Trends Biotechnol. 2000, 18, 264–274. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qin, L. Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol. 2005, 23, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Mavromatis, K.; Ivanova, N.; Barry, K.; Shapiro, H.; Goltsman, E.; McHardy, A.C.; Rigoutsos, I.; Salamov, A.; Korzeniewski, F.; Land, M.; et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat. Methods 2007, 4, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Pignatelli, M.; Moya, A. Evaluating the fidelity of De Novo short read metagenomic assembly using simulated data. PLoS ONE 2011, 6, e19984. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y.; Fuhrman, J.A.; Sun, F.; Zhu, S. Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences. Brief. Bioinform. 2020, 21, 777–790. [Google Scholar] [CrossRef]
- Meleshko, D.; Mohimani, H.; Tracanna, V.; Hajirasouliha, I.; Medema, M.H.; Korobeynikov, A.; Pevzner, P.A. BiosyntheticSPAdes: Reconstructing biosynthetic gene clusters from assembly graphs. Genome Res. 2019, 29, 1352–1362. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. MetaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-R, L.M.; Konstantinidis, K.T. Nonpareil: A redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics 2014, 30, 629–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-R, L.M.; Gunturu, S.; Tiedje, J.M.; Cole, J.R.; Konstantinidisa, K.T. Nonpareil 3: Fast Estimation of Metagenomic Coverage and Sequence Diversity. mSystems 2018, 3, e00039-18. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, I.; Kim, S.K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy: Fundamentals, Applications and Strategy; Badal, R.D.S., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 233–266. ISBN 9780128021040. [Google Scholar]
- Perri, F.; Coricello, A.; Adams, J.D. Monoterpenoids: The Next Frontier in the Treatment of Chronic Pain? J. Multidiscip. Sci. J. 2020, 3, 195–214. [Google Scholar] [CrossRef]
- Khalili, N.; Safavipour, A. Evaluation of the Effects of Acarbose on Weight and Metabolic, Inflammatory, and Cardiovascular Markers in Patients with Obesity and Overweight. Int. J. Prev. Med. 2020, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Foerstner, K.U.; Doerks, T.; Creevey, C.J.; Doerks, A.; Bork, P. A computational screen for type I polyketide synthases in metagenomics shotgun data. PLoS ONE 2008, 3, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-R, L.M.; Konstantinidis, K.T. Estimating coverage in metagenomic data sets and why it matters. ISME J. 2014, 8, 2349–2351. [Google Scholar] [CrossRef] [Green Version]
- Geers, A.U.; Buijs, Y.; Strube, M.L.; Gram, L.; Bentzon-Tilia, M. The natural product biosynthesis potential of the microbiomes of Earth—Bioprospecting for novel anti-microbial agents in the meta-omics era. Comput. Struct. Biotechnol. J. 2022, 20, 343–352. [Google Scholar] [CrossRef]
- Raggi, L.; García-Guevara, F.; Godoy-Lozano, E.E.; Martínez-Santana, A.; Escobar-Zepeda, A.; Gutierrez-Rios, R.M.; Loza, A.; Merino, E.; Sanchez-Flores, A.; Licea-Navarro, A.; et al. Metagenomic Profiling and Microbial Metabolic Potential of Perdido Fold Belt (NW) and Campeche Knolls (SE) in the Gulf of Mexico. Front. Microbiol. 2020, 11, 1825. [Google Scholar] [CrossRef]
- Ramírez, D.; Vega-Alvarado, L.; Taboada, B.; Estradas-Romero, A.; Soto, L.; Juárez, K. Bacterial diversity in surface sediments from the continental shelf and slope of the North West gulf of Mexico and the presence of hydrocarbon degrading bacteria. Mar. Pollut. Bull. 2020, 150, 110590. [Google Scholar] [CrossRef]
- Belova, S.E.; Saltykova, V.A.; Dedysh, S.N. Antimicrobial Activity of a Novel Freshwater Planctomycete Lacipirellula parvula PX69T. Microbiology 2020, 89, 503–509. [Google Scholar] [CrossRef]
- Letzel, A.C.; Pidot, S.J.; Hertweck, C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genom. 2014, 15, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Obaidi, I.; Nagar, S.; Scalabrino, G.; Sheridan, H. The antiviral potential of algal-derived macromolecules. Curr. Res. Biotechnol. 2021, 3, 120–134. [Google Scholar] [CrossRef]
- Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs 2013, 11, 3632–3660. [Google Scholar] [CrossRef] [Green Version]
- Minowa, Y.; Araki, M.; Kanehisa, M. Comprehensive Analysis of Distinctive Polyketide and Nonribosomal Peptide Structural Motifs Encoded in Microbial Genomes. J. Mol. Biol. 2007, 368, 1500–1517. [Google Scholar] [CrossRef]
- Reddy, B.V.B.; Kallifidas, D.; Kim, J.H.; Charlop-Powers, Z.; Feng, Z.; Brady, S.F. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 2012, 78, 3744–3752. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Bruns, H.; Herrmann, J.; Müller, R.; Wang, H.; Wagner Döbler, I.; Schulz, S. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164. J. Nat. Prod. 2018, 81, 131–139. [Google Scholar] [CrossRef]
- Arashida, N.; Shimbo, K.; Terada, T.; Okimi, T.; Kikuchi, Y.; Hashiro, S.; Umekage, S.; Yasueda, H. Identification of novel long chain N-acylhomoserine lactones of chain length C20 from the marine phototrophic bacterium Rhodovulum sulfidophilum. Biosci. Biotechnol. Biochem. 2018, 82, 1683–1693. [Google Scholar] [CrossRef] [Green Version]
- Chianese, G.; Esposito, F.P.; Parrot, D.; Ingham, C.; de Pascale, D.; Tasdemir, D. Linear aminolipids with moderate antimicrobial activity from the antarctic gram-negative bacterium Aequorivita sp. Mar. Drugs 2018, 16, 187. [Google Scholar] [CrossRef] [Green Version]
- Li, J.S.; Barber, C.C.; Zhang, W. Natural products from anaerobes. J. Ind. Microbiol. Biotechnol. 2019, 46, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Graça, A.P.; Calisto, R.; Lage, O.M. Planctomycetes as novel source of bioactive molecules. Front. Microbiol. 2016, 7, 1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef] [PubMed]
- Darshan, N.; Manonmani, H.K. Prodigiosin and its potential applications. J. Food Sci. Technol. 2015, 52, 5393–5407. [Google Scholar] [CrossRef] [Green Version]
- Clements, T.; Rautenbach, M.; Ndlovu, T.; Khan, S.; Khan, W. A Metabolomics and Molecular Networking Approach to Elucidate the Structures of Secondary Metabolites Produced by Serratia marcescens Strains. Front. Chem. 2021, 9, 633870. [Google Scholar] [CrossRef]
- Bhagwat, A.; Padalia, U. Optimization of prodigiosin biosynthesis by Serratia marcescens using unconventional bioresources. J. Genet. Eng. Biotechnol. 2020, 18, 26. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Quintans, J.S.S.; Quintans-Júnior, L.J. Monoterpenes with analgesic activity—A systematic review. Phyther. Res. 2012, 27, 1–15. [Google Scholar] [CrossRef]
- Vardanyan, R.; Hruby, V. Chapter 30—Antibiotics. In Synthesis of Best-Seller Drugs; Academic Press: Cambridge, MA, USA, 2016; pp. 573–643. ISBN 978-0-12-411492-0. [Google Scholar]
- Adhikari, A.; Shen, B.; Rader, C. Challenges and opportunities to develop enediyne natural products as payloads for antibody-drug conjugates. Antib. Ther. 2021, 4, 1–15. [Google Scholar] [CrossRef]
- Germovsek, E.; Barker, C.I.; Sharland, M. What do i need to know about aminoglycoside antibiotics? Arch. Dis. Child. Educ. Pract. Ed. 2017, 102, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Bian, C.; Duan, Y.; Wang, J.; Xiu, Q.; Wang, J.; Hou, Y.; Song, X.; Zhou, M. Validamycin a induces broad-spectrum resistance involving salicylic acid and jasmonic acid/ethylene signaling pathways. Mol. Plant-Microbe Interact. 2020, 33, 1424–1437. [Google Scholar] [CrossRef]
- Bian, C.; Duan, Y.; Xiu, Q.; Wang, J.; Tao, X.; Zhou, M. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. Mol. Plant Pathol. 2021, 22, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, B.J.; Hudson, G.A.; Dunbar, K.L.; Mitchell, D.A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 2015, 11, 564–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloosterman, A.M.; Shelton, K.E.; van Wezel, G.P.; Medema, M.H.; Mitchell, D.A. RRE-Finder: A Genome-Mining Tool for Class-Independent RiPP Discovery. mSystems 2020, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Hudson, G.A.; Mitchell, D.A. RiPP antibiotics: Biosynthesis and engineering potential. Curr. Opin. Microbiol. 2018, 45, 61–69. [Google Scholar] [CrossRef]
- Cuadrat, R.R.C.; Ionescu, D.; Dávila, A.M.R.; Grossart, H.P. Recovering genomics clusters of secondary metabolites from lakes using genome-resolved metagenomics. Front. Microbiol. 2018, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Aldred, E.M.; Buck, C.; Vall, K. Terpenes. In Pharmacology; Churchill Livingstone: London, UK, 2009; pp. 167–174. ISBN 9780443068980. [Google Scholar]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In Medicinal Plants; Joshee, N., Dhekney, S.P.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 333–359. ISBN 9783030312695. [Google Scholar]
- van Niftrik, L.; Jetten, M.S.M. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties. Microbiol. Mol. Biol. Rev. 2012, 76, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Antonsen, S.; Østby, R.B.; Stenstrøm, Y. Naturally Occurring Cyclobutanes: Their Biological Significance and Synthesis; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 57, ISBN 9780444640574. [Google Scholar]
- Murray, R.G.; Stackebrandt, E. Taxonomic Note: Implementation of the Provisional Status Candidatus for Incompletely Described Procaryotes. Int. J. Syst. Bacteriol. 1995, 45, 186–187. [Google Scholar] [CrossRef] [Green Version]
- Rego, A.; Sousa, A.G.G.; Santos, J.P.; Pascoal, F.; Canário, J.; Leão, P.N.; Magalhães, C. Diversity of bacterial biosynthetic genes in maritime antarctica. Microorganisms 2020, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Charlop-Powers, Z.; Owen, J.G.; Reddy, B.V.B.; Ternei, M.; Guimaraes, D.O.; De Frias, U.A.; Pupo, M.T.; Seepe, P.; Feng, Z.; Brady, S.F. Global biogeographic sampling of bacterial secondary metabolism. eLife 2015, 2015, e05048. [Google Scholar] [CrossRef]
- Lemetre, C.; Maniko, J.; Charlop-Powers, Z.; Sparrow, B.; Lowe, A.J.; Brady, S.F. Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale. Proc. Natl. Acad. Sci. USA 2017, 114, 11615–11620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Salazar, J.; Loza, A.; Ornelas-Ocampo, K.; Gutierrez-Rios, R.M.; Pardo-López, L. Bacteria From the Southern Gulf of Mexico: Baseline, Diversity, Hydrocarbon-Degrading Potential and Future Applications. Front. Mar. Sci. 2021, 8, 625477. [Google Scholar] [CrossRef]
- Godoy-Lozano, E.E.; Escobar-Zepeda, A.; Raggi, L.; Merino, E.; Gutierrez-Rios, R.M.; Juarez, K.; Segovia, L.; Licea-Navarro, A.F.; Gracia, A.; Sanchez-Flores, A.; et al. Bacterial diversity and the geochemical landscape in the southwestern Gulf of Mexico. Front. Microbiol. 2018, 9, 2528. [Google Scholar] [CrossRef] [PubMed]
- Barcelos Santiago, C. Caracterización de las Comunidades Microbianas Presentes en los Sedimentos de Perdido y Coatzacoalcos del Golfo de México Mediante Análisis Metagenómicos; Centro de Investigación Científica y de Educación Superior de Ensenada: Ensenada, Mexico, 2018; 77p. [Google Scholar]
- Chen, S.; Huang, T.; Zhou, Y.; Han, Y.; Xu, M.; Gu, J. AfterQC: Automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinform. 2017, 18, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Mikheenko, A.; Saveliev, V.; Gurevich, A. MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics 2016, 32, 1088–1090. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.G.Z.; Cuevas, D.A.; Dutilh, B.E.; Edwards, R.A. FOCUS: An alignment-free model to identify organisms in metagenomes using non-negative least squares. PeerJ 2014, 2, e425. [Google Scholar] [CrossRef] [Green Version]
- Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Res. 2015, 43, D1086–D1098. [Google Scholar] [CrossRef] [Green Version]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, 412–419. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, S.; Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, 256–259. [Google Scholar] [CrossRef] [Green Version]
- Aramaki, T.; Blanc-Mathieu, R.; Endo, H.; Ohkubo, K.; Kanehisa, M.; Goto, S.; Ogata, H. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020, 36, 2251–2252. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.D.; Li, F.; Kirton, E.; Thomas, A.; Egan, R.; An, H.; Wang, Z. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019, 7, e7359. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Rinke, C.; Chuvochina, M.; Chaumeil, P.A.; Woodcroft, B.J.; Evans, P.N.; Hugenholtz, P.; Tyson, G.W. Recovery of nearly 8000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2017, 2, 1533–1542. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
Item | B7 (1200 m) | C10 (550 m) | C13 (2500 m) | C14 (3500 m) | D18 (1500 m) |
---|---|---|---|---|---|
Metagenome Assembly Data | |||||
Sequencing technology | Illumina 2 × 150 bp | ||||
Assembly method | SPAdes assembler (metaSPAdes mode) | ||||
No. of contigs | 22,110 | 122,996 | 31,210 | 57,793 | 97,171 |
N50 | 591 | 775 | 633 | 712 | 684 |
N75 | 535 | 605 | 551 | 575 | 566 |
L50 | 9237 | 40,525 | 12,420 | 20,421 | 33,483 |
L75 | 15,410 | 77,347 | 21,277 | 37,504 | 62,922 |
Metagenome Features | |||||
Size (>0 bp) | 533,840,363 | 551,431,092 | 431,618,439 | 521,418,371 | 756,722,373 |
Size (≥500 bp) | 13,832,311 | 99,792,104 | 20,782,953 | 43,271,384 | 72,530,889 |
GC content (%) | 55.6 | 57.88 | 56.69 | 57.91 | 50.97 |
No. of putative total coding sequences | 28,617 | 188,692 | 42,167 | 81,739 | 133,987 |
Longest sequences (bp) | 6143 | 21,536 | 42,054 | 7539 | 43,361 |
Shannon Index | Equitability Index | Margalef Richness Index | |||||||
---|---|---|---|---|---|---|---|---|---|
Short Reads | Assembly | Ds/Da | Short Reads | Assembly | Es/Ea | Short Reads | Assembly | Rs/Ra | |
B7 | 3.57 | 3.39 | 0.95 | 0.97 | 0.95 | 0.97 | 1.52 | 1.41 | 0.93 |
C10 | 3.27 | 3.36 | 1.03 | 0.96 | 0.95 | 0.98 | 1.17 | 1.38 | 1.18 |
C13 | 3.44 | 3.40 | 0.99 | 0.95 | 0.90 | 0.95 | 1.44 | 1.44 | 1.00 |
C14 | 3.49 | 3.39 | 0.97 | 0.96 | 0.95 | 0.99 | 1.48 | 1.40 | 0.95 |
D18 | 3.28 | 3.07 | 0.94 | 0.95 | 0.93 | 0.98 | 1.22 | 1.07 | 0.88 |
Biosynthesis of Secondary Metabolites | Number of Sequences | Metagenome Sample | PKS Domain | Orthology | Definition |
---|---|---|---|---|---|
Monoterpenoid biosynthesis | 1 | C14 | KR | K15095 | (+)-neomenthol dehydrogenase |
Type I polyketide structures | 2 | D18 | KR | K15643 | myxalamid-type polyketide synthase MxaB |
AT | K16410 | stigmatellin polyketide synthase StiF | |||
2 | C10 | ACP | K16025 | methoxymalonate biosynthesis acyl carrier protein | |
KR | K16417 | myxalamid-type polyketide synthase MxaC | |||
1 | C14 | KR | K20788 | myxalamid-type polyketide synthase MxaE | |
Biosynthesis of ansamycins | 1 | C10 | ACP | K16025 | methoxymalonate biosynthesis acyl carrier protein |
Biosynthesis of enediyne antibiotics | 8 | C10 | AT KS KR | K15314 | enediyne polyketide synthase |
6 | D18 | DH KR KS | |||
1 | C13 | KS | |||
2 | C14 | KS | |||
1 | C10 | ATC | K15320 | 6-methylsalicylic acid synthase | |
1 | C10 | MT | K21172 | enediyne biosynthesis protein CalE5 | |
2 | C13 | MT | |||
3 | C14 | MT | |||
Biosynthesis of type II polyketide backbone | 1 | C10 | ACP | K05553 | minimal PKS acyl carrier protein |
Tetracycline biosynthesis | 1 | C10 | ACP | K05553 | minimal PKS acyl carrier protein |
Polyketide sugar unit biosynthesis | 1 | C13 | ER | K01710 | dTDP-glucose 4,6-dehydratase |
Nonribosomal peptide structures | 1 | B7 | ACP | K15654 | surfactin family lipopeptide synthetase A |
2 | C10 | ACP | |||
2 | C13 | ACP | |||
2 | B7 | ACP KS | K15661 | iturin family lipopeptide synthetase A | |
1 | C10 | KS | |||
1 | D18 | KS | |||
1 | C13 | ACP | K15665 | plipastatin/fengycin lipopeptide synthetase B | |
1 | C14 | ACP | K15667 | plipastatin/fengycin lipopeptide synthetase D | |
1 | D18 | ACP | |||
Biosynthesis of siderophore group nonribosomal peptides | 2 | B7 | ACP TE | K02364 | L-serine-[L-seryl-carrier protein] ligase |
6 | C10 | ACP TE | |||
2 | C13 | ACP | |||
5 | C14 | ACP TE | |||
4 | D18 | ACP TE | |||
5 | C10 | ACP | K04780 | glyine-[glycyl-carrier protein] ligase | |
2 | C13 | ACP | |||
1 | C14 | ACP | |||
1 | D18 | ACP | |||
Biosynthesis of vancomycin group antibiotics | 1 | C13 | ER | K01710 | dTDP-glucose 4,6-dehydratase |
Streptomycin biosynthesis | 1 | C13 | ER | K01710 | dTDP-glucose 4,6-dehydratase |
Acarbose and validamycin biosynthesis | 1 | C13 | ER | K01710 | dTDP-glucose 4,6-dehydratase |
Prodigiosin biosynthesis | 7 | B7 | KR | K00059 | 3-oxoacyl-[acyl-carrier protein] reductase |
23 | C10 | KR | |||
6 | C13 | KR | |||
21 | C14 | KR | |||
17 | D18 | KR | |||
4 | B7 | AT | K00645 | [acyl-carrier-protein] S-malonyltransferase | |
16 | C10 | AT | |||
5 | C13 | AT | |||
5 | C14 | AT | |||
16 | D18 | AT | |||
1 | C14 | KS | K21783 | beta-ketoacyl ACP synthase | |
1 | C14 | ACP | K21784 | 4-hydroxy-2,2’-bipyrrole-5-methanol synthase | |
1 | C13 | ACP | K21790 | acyl carrier protein | |
1 | C14 | ACP | |||
Biosynthesis of various secondary metabolites | 1 | D18 | ACP | K02078 | acyl carrier protein |
1 | C10 | ACP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-López, M.; Sánchez-Reyes, A.; Barcelos, C.; Sidón-Ceseña, K.; Leite, R.B.; Lago-Lestón, A. Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes. Antibiotics 2022, 11, 887. https://doi.org/10.3390/antibiotics11070887
Fernández-López M, Sánchez-Reyes A, Barcelos C, Sidón-Ceseña K, Leite RB, Lago-Lestón A. Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes. Antibiotics. 2022; 11(7):887. https://doi.org/10.3390/antibiotics11070887
Chicago/Turabian StyleFernández-López, Maikel, Ayixon Sánchez-Reyes, Clara Barcelos, Karla Sidón-Ceseña, Ricardo B. Leite, and Asunción Lago-Lestón. 2022. "Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes" Antibiotics 11, no. 7: 887. https://doi.org/10.3390/antibiotics11070887
APA StyleFernández-López, M., Sánchez-Reyes, A., Barcelos, C., Sidón-Ceseña, K., Leite, R. B., & Lago-Lestón, A. (2022). Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes. Antibiotics, 11(7), 887. https://doi.org/10.3390/antibiotics11070887