pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
2.1. Two Transposon Mutants Exhibited High Antibiotic Tolerance
2.2. Antibiotic Susceptibility of Transposon Mutants and Deletion Mutants
2.3. High Antibiotic Tolerance of Deletion Mutants
2.4. Antibiotic Tolerance of the Complemented Strains
2.5. Gene Expression of pruR and PA0066-65-64 Genes
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Bacterial Strains and Growth Condition
4.3. Primers
4.4. Bacterial Strains Construction
4.4.1. Transposon Mutants
4.4.2. Deletion Mutant
4.4.3. Complementation Strain
4.5. Screening of Transposon Mutants
4.5.1. Initial Screening
4.5.2. Final Screening
4.6. Transposon Insertion Site Determination
4.7. Susceptibility Assay
4.8. Killing Assay
4.9. Quantitative RT-PCR
4.9.1. pruR and PA0066-65-64 Expression Analysis
4.9.2. Stress Response Gene Expression Analysis
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meylan, S.; Andrews, I.W.; Collins, J.J. Targeting Antibiotic Tolerance, Pathogen by Pathogen. Cell 2018, 172, 1228–1238. [Google Scholar] [CrossRef] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States; Department of Health and Human Services: Atlanta, GA, USA, 2019. [CrossRef] [Green Version]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, S.; Sysoeva, T.; You, L. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLoS Biol. 2019, 17, e3000573. [Google Scholar] [CrossRef]
- Handwerger, S.; Tomasz, A. Antibiotic Tolerance Among Clinical Isolates of Bacteria. Ann. Rev. Pharmacol. Toxicol. 1985, 7, 368–386. [Google Scholar] [CrossRef]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Genet. 2019, 17, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef]
- Santi, I.; Manfredi, P.; Maffei, E.; Egli, A.; Jenal, U. Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections. mBio 2021, 12, e03482-20. [Google Scholar] [CrossRef]
- Höffken, G.; Niederman, M.S. The Importance of a De-escalating Strategy for Antibiotic Treatment of Pneumonia in the ICU. Chest 2002, 122, 2183–2196. [Google Scholar] [CrossRef]
- Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen–Host Interactions in Pseudomonas aeruginosa Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 1209–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Ono, T.; Noma, Y.; Minase, I.; Amoh, T.; Irie, Y.; Hirota, K.; Miyake, Y. Explorative gene analysis of antibiotic tolerance-related genes in adherent and biofilm cells of Pseudomonas aeruginosa. J. Infect. Chemother. 2017, 23, 271–277. [Google Scholar] [CrossRef]
- Nguyen, D.; Joshi-Datar, A.; Lepine, F.; Bauerle, E.; Olakanmi, O.; Beer, K.; McKay, G.; Siehnel, R.; Schafhauser, J.; Wang, Y.; et al. Active Starvation Responses Mediate Antibiotic Tolerance in Biofilms and Nutrient-Limited Bacteria. Science 2011, 334, 982–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, D.; McKay, G.; Sampathkumar, G.; Khakimova, M.; English, A.M.; Nguyen, D. Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2018, 115, 9797–9802. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Ono, T.; Viducic, D.; Kayama, S.; Mori, M.; Hirota, K.; Nemoto, K.; Miyake, Y. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol. Lett. 2005, 242, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.P.; Pesci, E.C.; Iglewski, B.H. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 1997, 179, 5756–5767. [Google Scholar] [CrossRef] [Green Version]
- Schuster, M.; Greenberg, E.P. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2006, 296, 73–81. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015, 6, 26–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoh, T.; Murakami, K.; Kariyama, R.; Hori, K.; Viducic, D.; Hirota, K.; Igarashi, J.; Suga, H.; Parsek, M.R.; Kumon, H.; et al. Effects of an autoinducer analogue on antibiotic tolerance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2017, 72, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Murakami, K.; Hiroshima, Y.; Amoh, T.; Sebe, M.; Kataoka, K.; Fujii, H. Autoinducer Analogs Can Provide Bactericidal Activity to Macrolides in Pseudomonas aeruginosa through Antibiotic Tolerance Reduction. Antibiotics 2021, 11, 10. [Google Scholar] [CrossRef]
- Smith, K.M.; Bu, Y.; Suga, H. Induction and Inhibition of Pseudomonas aeruginosa Quorum Sensing by Synthetic Autoinducer Analogs. Chem. Biol. 2003, 10, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.M.; Bu, Y.; Suga, H. Library Screening for Synthetic Agonists and Antagonists of a Pseudomonas aeruginosa Autoinducer. Chem. Biol. 2003, 10, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Boursier, M.E.; Manson, D.E.; Combs, J.B.; Blackwell, H.E. A comparative study of non-native N-acyl L-homoserine lactone analogs in two Pseudomonas aeruginosa quorum sensing receptors that share a common native ligand yet inversely regulate virulence. Bioorg. Med. Chem. 2018, 26, 5336–5342. [Google Scholar] [CrossRef]
- Ishida, T.; Ikeda, T.; Takiguchi, N.; Kuroda, A.; Ohtake, H.; Kato, J. Inhibition of Quorum Sensing in Pseudomonas aeruginosa by N-Acyl Cyclopentylamides. Appl. Environ. Microbiol. 2007, 73, 3183–3188. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Feng, X.; Wei, X.; Pan, X.; Liu, C.; Song, R.; Jin, Y.; Bai, F.; Jin, S.; Wu, W.; et al. PutA Is Required for Virulence and Regulated by PruR in Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 548. [Google Scholar] [CrossRef]
- Del Prete, S.; Bua, S.; Supuran, C.T.; Capasso, C. Escherichia coli γ-carbonic anhydrase: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1545–1554. [Google Scholar] [CrossRef]
- Sharma, A.; Bhattacharya, A.; Shrivastava, A. Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzym. Microb. Technol. 2011, 48, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Chin, T.; Okuda, Y.; Ikeuchi, M. Improved sorbitol production and growth in cyanobacteria using promiscuous haloacid dehalogenase-like hydrolase. J. Biotechnol. 2019, 306S, 100002. [Google Scholar] [CrossRef]
- Chin, T.; Ikeuchi, M. Detection of active sorbitol-6-phosphate phosphatase in the haloacid dehalogenase-like hydrolase superfamily. J. Gen. Appl. Microbiol. 2018, 64, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Kaldalu, N.; Mei, R.; Lewis, K. Killing by Ampicillin and Ofloxacin Induces Overlapping Changes in Escherichia coli Transcription Profile. Antimicrob. Agents Chemother. 2004, 48, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, K.; Ono, T.; Murakami, K.; Viducic, D.; Kayama, S.; Hirota, K.; Nemoto, K.; Miyake, Y. Novel Pseudomonas aeruginosa Gene That Suppresses Tolerance to Carbapenems. Antimicrob. Agents Chemother. 2003, 47, 2997–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayama, S.; Murakami, K.; Ono, T.; Ushimaru, M.; Yamamoto, A.; Hirota, K.; Miyake, Y. The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2009, 298, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, R.; Traxler, B.; An, D.D.; Parsek, M.R.; Schaefer, A.L.; Singh, P.K. A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2010, 107, 7916–7921. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.T.; Karkhoff-Schweizer, R.R.; Kutchma, A.J.; Schweizer, H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212, 77–86. [Google Scholar] [CrossRef]
- Newman, J.R.; Fuqua, C. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 1999, 227, 197–203. [Google Scholar] [CrossRef]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S.L. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2015, 44, D646–D653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Strain | Biapenem | Levofloxacin | Tobramycin | AIA-1 | ||||
---|---|---|---|---|---|---|---|---|
MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | |
PAO1 | 0.5 | 1 | 0.5 | 1 | 2 | 4 | 64 | 128 |
Tn5-pruR | 0.5 | 1 | 0.5 | 1 | 4 | 8 | 64 | 64 |
Tn5-PA0065 | 0.5 | 2 | 0.5 | 1 | 4 | 8 | 64 | 64 |
ΔpruR | 0.5 | 0.5 | 0.5 | 1 | 2 | 2 | 64 | 64 |
ΔPA0066-65-64 | 0.5 | 1 | 0.5 | 1 | 2 | 2 | 64 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pahlevi, M.R.; Murakami, K.; Hiroshima, Y.; Murakami, A.; Fujii, H. pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa. Antibiotics 2022, 11, 773. https://doi.org/10.3390/antibiotics11060773
Pahlevi MR, Murakami K, Hiroshima Y, Murakami A, Fujii H. pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa. Antibiotics. 2022; 11(6):773. https://doi.org/10.3390/antibiotics11060773
Chicago/Turabian StylePahlevi, Muhammad Reza, Keiji Murakami, Yuka Hiroshima, Akikazu Murakami, and Hideki Fujii. 2022. "pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa" Antibiotics 11, no. 6: 773. https://doi.org/10.3390/antibiotics11060773
APA StylePahlevi, M. R., Murakami, K., Hiroshima, Y., Murakami, A., & Fujii, H. (2022). pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa. Antibiotics, 11(6), 773. https://doi.org/10.3390/antibiotics11060773