In Vitro Activity of Ceftolozane-Tazobactam and Other Antibiotics against Pseudomonas aeruginosa Infection-Isolates from an Academic Medical Center in Thailand
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA | Pseudomonas aeruginosa |
C-T | Ceftolozane-tazobactam |
MSMC | The HRH Princess Maha Chakri Sirindhorn Medical Center |
MIC | The minimal inhibitory concentration |
MDR | Multidrug-resistant |
XDR | Extremely drug-resistant |
PDR | Pan-drug resistant |
CRPA | Carbapenem-resistant Pseudomonas aeruginosa |
CDC | Center––of Disease Control and Prevention |
NARST | National Nosocomial Resistance Surveillance, Thailand |
PCR | Polymerase Chain Reaction |
SMART | Global Study for Monitoring Antimicrobial Resistance Trends |
ST | Sequence type |
CIP | Ciprofloxacin |
CAZ | Ceftazidime |
TZP | Piperacillin-tazobactam |
ATM | Aztreonam |
MEM | Meropenem |
IPM | Imipenem |
AMK | Amikacin |
GEN | Gentamicin |
TOB | Tobramycin |
CST | Colistin |
S | Susceptible |
I | Intermediate |
R | Resistance |
References
- Centers of Disease Control and Prevention. Pseudomonas aeruginosa. In Healthcare Settings; Centers for Disease Control and Prevention: Atlanta, GA, USA. Available online: https://www.cdc.gov/hai/organisms/pseudomonas.html (accessed on 14 December 2021).
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 14 December 2021).
- Kadri, S.S. Key Takeaways from the U.S. CDC’s 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit. Care Med. 2020, 48, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Dejsirilert, S.; Suankratay, C.; Trakulsomboon, S.; Thongmali, O.; Sawanpanyalert, P.; Aswapokee, N.; Tantisiriwat, W. National Antimicrobial Resistance Surveillance, Thailand (NARST) Data among Clinical Isolates of Pseudomonas aeruginosa in Thailand from 2000 to 2005. J. Med. Assoc. Thai. 2009, 92 (Suppl. 4), S68–S75. [Google Scholar] [PubMed]
- The National Antimicrobial Resistance Surveillance, Thailand (NARST): Antimicrobial Resistance Rates of P. aeruginosa from 2000–2020. Available online: http://www.narst.dmsc.moph.go.th/data/AMR%202000-2020-12M.pdf (accessed on 14 December 2021).
- Suwantarat, N.; Carroll, K.C. Epidemiology and Molecular Characterization of Multidrug-resistant Gram-Negative Bacteria in Southeast Asia. Antimicrob. Resist Infect. Control 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, V.H.; Rogers, C.A.; Chang, K.T.; Weston, J.S.; Caeiro, J.P.; Garey, K.W. Impact of Multidrug-Resistant Pseudomonas aeruginosa Bacteremia on Patient Outcomes. Antimicrob. Agents Chemother. 2010, 54, 3717–3722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Repetto, E.; Trecarichi, E.M.; Bernardini, C.; Pascale, G.; Parisini, A.; Rossi, M.; Molinari, M.P.; Spanu, T.; Viscoli, C.; et al. Multidrug-Resistant Pseudomonas aeruginosa Bloodstream Infections: Risk Factors and Mortality. Epidemiol. Infect. 2011, 139, 1740–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, E.B.; Tam, V.H. Impact of Multidrug-Resistant Pseudomonas aeruginosa Infection on Patient Outcomes. Expert Rev. Pharm. Outcomes Res. 2010, 10, 441–451. [Google Scholar]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2020; Version 1.0. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 14 December 2021).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Kiratisin, P.; Apisarnthanarak, A.; Laesripa, C.; Saifon, P. Molecular Characterization and Epidemiology of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates Causing Health Care-associated Infection in Thailand, where the CTX-M Family is Endemic. Antimicrob. Agents Chemother. 2008, 52, 2818–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for Detection of Acquired Carbapenemase Genes. Diagn. Microbiol. Infect Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Ellington, M.J.; Kistler, J.; Livermore, D.M.; Woodford, N. Multiplex PCR for Rapid Detection of Genes Encoding Acquired Metallo-Beta-Lactamases. J. Antimicrob. Chemother. 2007, 59, 321–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.-H.; Leu, Y.-S.; Wang, N.-Y.; Liu, C.-P.; Yan, T.-R. Prevalence of Different Carbapenemase Genes among Carbapenem-Resistant Acinetobacter baumannii Blood Isolates in Taiwan. Antimicrob. Resist Infect. Control 2018, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for Genes Encoding Prevalent OXA Carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Srinivasan, R.; Karaoz, U.; Volegova, M.; MacKichan, J.; Kato-Maeda, M.; Miller, S.; Nadarajan, R.; Brodie, E.; Lynch, S.V. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. PLoS ONE 2015, 10, e0117617. [Google Scholar] [CrossRef]
- Lob, S.H.; Kazmierczak, K.M.; Chen, W.T.; Siddiqui, F.; DeRyke, C.A.; Young, K.; Motyl, M.R.; Sahm, D.F. In Vitro Activity of Ceftolozane/Tazobactam against Gram-Negative Isolates Collected from ICU Patients with Lower Respiratory Tract Infections in Seven Asian Countries—SMART 2017–2019. J. Glob Antimicrob. Resist. 2021, 8, S2213-7165(21)00264-2. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration Thailand. Detail of Medical Product: Zerbaxa. Available online: http://pertento.fda.moph.go.th/FDA_SEARCH_DRUG/SEARCH_DRUG/pop-up_drug_ex.aspx?Newcode=U1DR2C1012600001811C (accessed on 4 April 2022).
- Khuntayaporn, P.; Yamprayoonswat, W.; Yasawong, M.; Chomnawang, M.T. Dissemination of Carbapenem-Resistance among Multidrug Resistant Pseudomonas aeruginosa Carrying Metallo-Beta-Lactamase Genes, including the Novel blaIMP-65 Gene in Thailand. Infect. Chemother. 2019, 51, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target Gene | Primer | References |
---|---|---|
blaCTX-M | (F) 5′-GCGATGTGCAGCACCAGTAA-3′ (R) 5′-GGTTGAGGCTGGGTGAAGTA-3′ | [13] |
blaNDM | (F) 5′-GGTTTGGCGATCTGGTTTTC-3′ (R) 5′-CGGAATGGCTCATCACGATC-3′ | [14] |
blaIMP | (F) 5′-GGAATAGAGTGGCTTAAYTCTC-3′ (R) 5′-CCAAACYACTASGTTATCT-3′ | [15] |
blaVIM | (F) 5′-GATGGTGTTTGGTCGCATA-3′ (R) 5′-CGAATGCGCAGCACCAG-3′ | [16] |
blaOXA-23 | (F) 5′-GATCGGATTGGAGAACCAGA-3′ (R) 5′-ATTTCTGACCGCATTTCCAT-3′ | [17] |
blaOXA-48 | (F) 5′-GCGTGGTTAAGGATGAACAC-3′ (R) 5′-CATCAAGTTCAACCCAACCG-3′ | [14] |
mcr-1 | (F) 5′-CGGTCAGTCCGTTTGTTC-3′ (R) 5′-CTTGGTCGGTCTGTAGGG-3′ | [18] |
Antimicrobial Agent | Susceptibility (n) | p-Value Compared to C-T | ||
---|---|---|---|---|
S | I | R | ||
Ceftazidime | 78 | 7 | 15 | <0.001 |
Piperacillin-tazobactam | 74 | 11 | 15 | <0.001 |
Aztreonam | 74 | 10 | 16 | <0.001 |
Meropenem | 83 | 6 | 11 | 0.001 |
Imipenem | 84 | 3 | 13 | 0.002 |
Gentamicin | 91 | 3 | 6 | 0.25 |
Amikacin | 90 | 4 | 6 | 0.125 |
Tobramycin | 89 | 3 | 8 | 0.063 |
Ciprofloxacin | 84 | 5 | 11 | 0.002 |
Colistin | - | 96 | 4 | 0.687 |
Ceftolozane-tazobactam | 94 | - | 6 |
Isolation Number | MIC (µg/mL) | Antibiotic Resistance | Type |
---|---|---|---|
1 | >256 | All antibiotics | PDR |
8 | 0.75 | CIP, CAZ, TZP, ATM, IPM | XDR |
11 | 1 | CIP, ATM, MEM | MDR |
27 | 1 | CAZ, TZP, ATM, IPM, CST | XDR |
30 | 3 | CAZ, TZP, ATM | MDR |
31 | 0.75 | CAZ, TZP, ATM, MEM, IPM | MDR |
37 | >256 | CIP, CAZ, ATM, MEM, IPM, GEN, TOB, CST, C-T | XDR |
52 * | >256 | CIP, CAZ, ATM, MEM, IPM, GEN, TOB, C-T | XDR |
64 | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
77 ** | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
92 | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
101 | 1 | CIP, CAZ, TZP, IPM | MDR |
102 | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
103 *** | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
104 | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
105 | 2 | CAZ, TZP, ATM, MEM, IPM | MDR |
106 | >256 | CIP, CAZ, TZP, ATM, MEM, IPM, AMK, GEN, TOB, C-T | XDR |
108 | 1 | CAZ, TZP, ATM, MEM, IPM | MDR |
Antimicrobial Agent | Susceptibility (n) | p-Value Compared to C-T | ||
---|---|---|---|---|
S | I | R | ||
Ceftazidime | - | 1 | 17 | 0.008 |
Piperacillin-tazobactam | - | 3 | 15 | 0.008 |
Aztreonam | 1 | - | 17 | 0.016 |
Meropenem | 2 | 2 | 14 | 0.031 |
Imipenem | 1 | 1 | 16 | 0.016 |
Gentamicin | 7 | 1 | 10 | 1.0 |
Amikacin | 6 | 4 | 8 | 0.5 |
Tobramycin | 8 | - | 10 | 1.0 |
Ciprofloxacin | 5 | - | 13 | 0.25 |
Colistin | - | 15 | 3 | 0.039 |
Ceftolozane-tazobactam | 8 | - | 10 |
Non-Susceptible Antibiotic (A) | C-T Susceptibility (B) |
---|---|
B/A (%) | |
Ceftazidime | 19/29 (65.5) |
Piperacillin-tazobactam | 23/33 (69.7) |
Aztreonam | 23/33 (69.7) |
Carbapenems | 10/20 (50.0) |
Antipseudomonal β-lactams | 8/18 (44.5) |
Previous Antipseudomonal Antibiotic(s) Exposure | All Isolations | Total | |
---|---|---|---|
Resistance (MDR, XDR or PDR) | Non-Resistance | ||
Yes | 13 (46.4%) | 15 (53.6%) | 28 (100%) |
No | 5 (6.3%) | 74 (93.7%) | 79 (100%) |
Total | 18 | 89 | n = 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tantisiriwat, W.; Buppanharun, J.; Ekpanyaskul, C.; Onruang, K.; Yungyuen, T.; Kiratisin, P.; Santiwatanakul, S. In Vitro Activity of Ceftolozane-Tazobactam and Other Antibiotics against Pseudomonas aeruginosa Infection-Isolates from an Academic Medical Center in Thailand. Antibiotics 2022, 11, 732. https://doi.org/10.3390/antibiotics11060732
Tantisiriwat W, Buppanharun J, Ekpanyaskul C, Onruang K, Yungyuen T, Kiratisin P, Santiwatanakul S. In Vitro Activity of Ceftolozane-Tazobactam and Other Antibiotics against Pseudomonas aeruginosa Infection-Isolates from an Academic Medical Center in Thailand. Antibiotics. 2022; 11(6):732. https://doi.org/10.3390/antibiotics11060732
Chicago/Turabian StyleTantisiriwat, Woraphot, Jirawat Buppanharun, Chatchai Ekpanyaskul, Kwanchai Onruang, Thitiya Yungyuen, Pattarachai Kiratisin, and Somchai Santiwatanakul. 2022. "In Vitro Activity of Ceftolozane-Tazobactam and Other Antibiotics against Pseudomonas aeruginosa Infection-Isolates from an Academic Medical Center in Thailand" Antibiotics 11, no. 6: 732. https://doi.org/10.3390/antibiotics11060732
APA StyleTantisiriwat, W., Buppanharun, J., Ekpanyaskul, C., Onruang, K., Yungyuen, T., Kiratisin, P., & Santiwatanakul, S. (2022). In Vitro Activity of Ceftolozane-Tazobactam and Other Antibiotics against Pseudomonas aeruginosa Infection-Isolates from an Academic Medical Center in Thailand. Antibiotics, 11(6), 732. https://doi.org/10.3390/antibiotics11060732